
Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System -2012 to 2013-

National Veterinary Assay Laboratory

Ministry of Agriculture, Forestry and Fisheries

Contents

Introduction	1
I. The Japanese Veterinary Antimicrobial Resistance Monitoring System	2
1. Objectives	2
2. Outline of JVARM	2
(1) Monitoring of Antimicrobial Sales	2
(2) Monitoring of Antimicrobial-resistant Bacteria	3
3. JVARM Implementation System	3
(1)Monitoring system in farm	3
(2)Monitoring system in slaughterhouses	3
4. Quality Assurance/Quality Control Systems	4
5. Publication of Data	4
II. An Overview on the Availability of Veterinary Antimicrobial Products	in Japan used for
Therapy or Growth Promotion	6
III. Monitoring of Antimicrobial Resistance	9
1. Monitoring system in farm	9
(1)Escherichia coli	9
(2) Enterococci	10
(3)Campylobacter	10
(4) Salmonella	11
2. Monitoring system in slaughterhouses	
(1)Escherichia coli	
(2) Enterococci	17
(3) Campylobacter	17
(4) Salmonella	18
IV. JVARM Topics	19
Decreasaed resistance to broad-spectrum cephalosporin in Escherichia	coli isolated from
healthy broilers by voluntary withdrawn of ceftiofur.	19
V. Current Risk Management of Antimicrobial Resistance Linked to Antimic	robial Products 20
VI. JVARM Publications	26
VII. Acknowledgments	27
VIII. Participants in the JVARM program	28

IX. Appendix	x (Materials and Methods)
1. Samplin	g
2. Isolation	and Identification
3. Antimic	robial Susceptibility Testing
4. Resistan	ce Breakpoints
5. Statistic	al analysis
	p33-
—Table 2	Distribution of MICs and resistance(%) in Escherichia coli isolates
	from animals (2012-2013)
—Table 3	Distribution of MICs and resistance(%) in Enterococcus faecalis
	isolates from animals (2012-2013)
—Table 4	Distribution of MICs and resistance(%) in E. faecium isolates from
	animals(2012-2013)
—Table 5	Distribution of MICs and resistance(%) in Campylobacter jejuni
	isolates from animals (2012-2013)
—Table 6	Distribution of MICs and resistance(%) in C. coli isolates from
	animals(2012-2013)
—Table 7	Distribution of MICs and resistance(%) in Salmonella isolates from
	animals (2012-2013)
—Table 8	Salmonella serovars isolated from food-producing animals
	(2012-2013)

Introduction

Antimicrobial agents are essential for the maintenance of health and welfare in animals as well as humans. However, the use of antimicrobials can be linked to the emergence and increasing prevalence of antimicrobial-resistant bacteria. The impact on human health has been a concern since Swann et al. reported that antimicrobial-resistant bacteria arising from the use of veterinary antimicrobial agents were transmitted to humans through livestock products, which consequently reduced the efficacy of antimicrobial drugs in humans. In development addition. the of antimicrobial resistance in bacteria of animal origin reduces the efficacy of veterinary antimicrobial drugs.

Antimicrobial agents have been prevention, used for control, and treatment of infectious diseases in animals worldwide, and for non-therapeutic purposes, such as growth promotion in food-producing animals in some countries, including Japan. Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 in response to international concern over the impact of antimicrobial resistance on public and animal health. The **JVARM** program conducted

preliminary monitoring for antimicrobial-resistant bacteria in 1999, and the program has operated continuously since this initial surveillance was conducted.

Veterinary antimicrobial use is a selective force for the appearance and prevalence of antimicrobial-resistant bacteria in food-producing animals. However, antimicrobial-resistant bacteria are also found in the absence of antimicrobial selective pressures. The trends in antimicrobial resistance in zoonotic bacteria and in indicator bacteria from healthy food-producing animals, and antimicrobial sales volume under the JVARM program from 2012 to 2013, are outlined in this report.

References

Swann, M.M. 1969. Report of the joint committee on the use of antibiotics in animal husbandry and veterinary medicine. HM Stationary Office. London.

Tamura, Y. 2003. The Japanese veterinary antimicrobial resistance monitoring system (JVARM) In: Bernard, V. editor. OIE International Standards on Antimicrobial Resistance. Paris, France: OIE (World organisation for animal health); 2003. pp 206-210.

I. The Japanese Veterinary Antimicrobial Resistance Monitoring System

1. Objectives

The objectives of JVARM are to monitor both the occurrence antimicrobial resistance in bacteria in food-producing animals and the sales of antimicrobials for animal use. These allow the efficacy objectives antimicrobials in food-producing animals to be determined, prudent use of such antimicrobials to be encouraged, and the effect on public health to be ascertained.

2. Outline of JVARM

JVARM comprises three components (summarized in Figure 1)

1) monitoring the sales volume of antimicrobials used for animals, 2) monitoring resistance in zoonotic and indicator bacteria isolated from healthy animals, and 3) monitoring resistance in animal pathogens isolated from diseased animals. All bacteria were isolated from food-producing animals on farms until 2011. In order to enhance monitoring, samples were also collected in slaughterhouses starting in 2012.

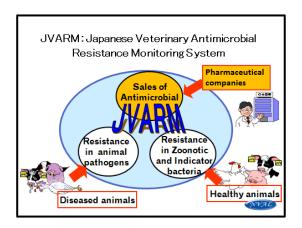


Fig.1 Outline of JVARM

(1) Monitoring of Antimicrobial Sales

The monitoring implementation system of antimicrobial sales volume is shown in Figure 2. Pharmaceutical companies that produce and import antimicrobials for animals are required to submit data to the National Veterinary Assay Laboratory (NVAL) annually in accordance with "The Act on Securing Quality, Efficacy, and Safety of Pharmaceuticals, Medical Devices, Regenerative Cellular and Therapy Products, Gene Therapy Products, and Cosmetics (Law No.145, Series of 1960)". NVAL subsequently collates, analyzes, and evaluates the data, and then posts this data in an annual report entitled "Amount of medicines and quasi-drugs for animal use" on the website

(http://www.maff.go.jp/nval/iyakutou/han baidaka/index.html).

The annual weight in kilograms of the active ingredients in approved antimicrobials used for animals is collected, but includes antimicrobials for only therapeutic animal use. Data are then subdivided into animal species. This method of analysis provides only an estimate of the antimicrobial sales volume for each target species, as one antimicrobial is frequently used for multiple animal species.

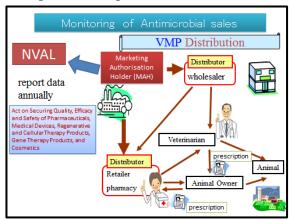


Fig. 2 Monitoring of Antimicrobial Sales

(2) Monitoring of Antimicrobial-Resistant Bacteria

Bacteria used in antimicrobial susceptibility testing were continuously collected and included zoonotic and indicator bacteria isolated from healthy animals and pathogenic bacteria isolated from diseased animals. Zoonotic bacteria Salmonella include species and Campylobacter jejuni or Campylobacter coli; indicator bacteria include Escherichia coliand Enterococcus faecium or Enterococcus faecalis. Animal pathogens, including certain species of Staphylococcus and E. coli, were collected over the duration of this report (data not shown). Minimum inhibitory concentrations (MICs) of antimicrobial agents for target bacteria were determined using microdilution the

method as described by the Clinical and Laboratory Standards Institute (CLSI).

3. JVARM Implementation System

(1) Monitoring System in Farms

The JVARM implementation system in farms is shown in Figure 3. Livestock Hygiene Service Centers (LHSCs), which belong to prefecture offices, participate in JVARM. The LHSCs function participating laboratories of JVARM and are responsible for the isolation and identification of target bacteria, as well as for MIC measurement. They send results and tested bacteria to NVAL, which functions as the reference laboratory of JVARM and is responsible for preserving the bacteria, collating and analyzing all data, and reporting **MAFF** to headquarters. MIC measurement, data collation, and preservation of E. faecium and E. faecalis are conducted at the Food and Agricultural Materials Inspection Center (FAMIC).

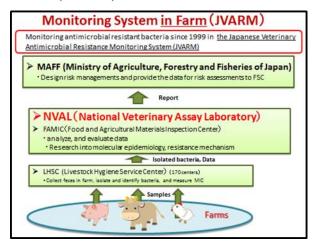


Fig. 3 Monitoring System in Farms

(2) Monitoring System in

Slaughterhouses

The JVARM implementation system in slaughterhouses is shown in Figure 4. MAFF contracts the isolation, identification, and MIC measurement of target bacteria private research to laboratories. These institutions results and tested bacteria to NVAL, which is responsible for preserving the bacteria, collating and analyzing all data, and reporting to MAFF headquarters. Data collection and preservation of E. faecium and E. faecalis are conducted at FAMIC.

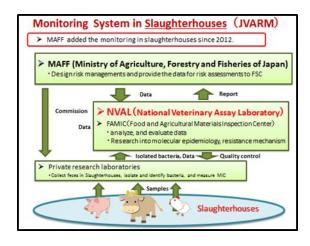


Fig. 4 Monitoring System in Slaughterhouses

4. Quality Assurance/Quality Control Systems

Quality control procedures are implemented in participating laboratories that perform antimicrobial susceptibility testing to help monitor the precision and accuracy of the testing procedures, the performance of the reagents used, and the training of the personnel involved. Strict adherence to standardized techniques is necessary for the collection of reliable

and reproducible data from participating laboratories. Quality control reference bacteria are also in tested each participating laboratory ensure standardization. Moreover, every year, NVAL holds a national training course LHSC staff on antimicrobial provide resistance to training standardized laboratory methods for the isolation, identification, and antimicrobial susceptibility testing of target bacteria. NVAL also conducts inspections of the private research laboratories.

5. Publication of Data

Because of the issue antimicrobial resistance influences animal and human health, it is of importance paramount to distribute information on antimicrobial resistance as soon as possible. We have officially taken three steps to publicize such information, first through the **MAFF** weekly newspaper entitled "Animal Hygiene News", followed by publication in scientific journals, and finally via the **NVAL** website (http://www.maff.go.jp/nval/yakuzai/y akuzai p3.html). Furthermore, NVAL conducts research into the molecular epidemiology and resistance mechanisms of the bacteria and publishes in the scientific paper (http://www.maff.go.jp/nval/yakuzai/pdf/j varm_publications_list_20150916.pdf).

References

Clinical and Laboratory Standards Institute, 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved standard-Third CLSI document edition. M31-A3. Clinical and Laboratory Standards Institute, Wayne, PA.

Franklin, A., Acar, J., Anthony, F., Gupta, R., Nicholls, T., Tamura, Y., Thompson, S., Threlfall, E.J., Vose, D., van Vuuren, M., White, D.G., Wegener, H.C., Costarrica, M.L. 2001. Antimicrobial resistance: harmonization of national antimicrobial resistance monitoring and surveillance programs in animals and in animal-derived food. Rev. Sci. Tech./Off. Int. Epizoot. 20:859-870.

Office International des Epizooties. 1999. Proceedings of European Scientific Conference on the use of antibiotics in animals ensuring the protection of public health. Paris, France, 24-26 March 1999.

Tamura, Y. 2003. The Japanese veterinary antimicrobial resistance monitoring system (JVARM) In: Bernard, V. editor.

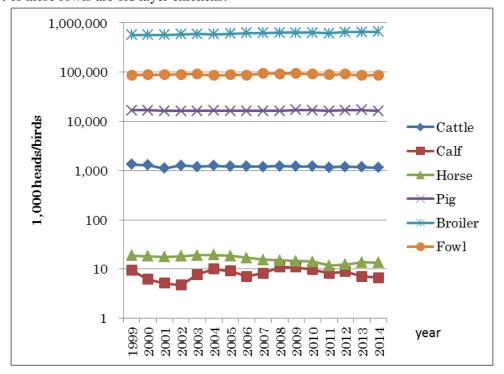
OIE International Standards on Antimicrobial Resistance. Paris, France: OIE (World organisation for animal health); 2003. pp 206-210.

White, D.G., Acar, J., Anthony, F., Franklin, A., Gupta, R., Nicholls, T., Tamura, Y., Thompson, S., Threlfall, E.J., Vose, D., van Vuuren, M., Wegener, H.C., Costarrica, M.L. 2001. Antimicrobial resistance: standardization and ofharmonization laboratory methodologies for the detection and quantification of antimicrobial resistance. Rev. Sci. Tech./Off. Int. Epizoot. 20:849-858.

World Health Organization Report. 1997. The medical impact of the use of antimicrobials in food animals. Report of a WHO meeting. Berlin, Germany, 13-17 October 1999.

World Health Organization Report. 1998. Use of quinolones in food animals and potential impact on human health. Report of a WHO meeting. Geneva, Switzerland, 2-5 June 1998.

II. An Overview of the Availability of Veterinary Antimicrobial Products Used for Therapy or Growth Promotion in Japan


The number of animals slaughtered for meat in slaughterhouses and poultry slaughtering plants between 2011 and 2013 is shown in Table 1.1 In the last decade, there has been no remarkable change in the number of meat animals produced (Figure 5). The scale of

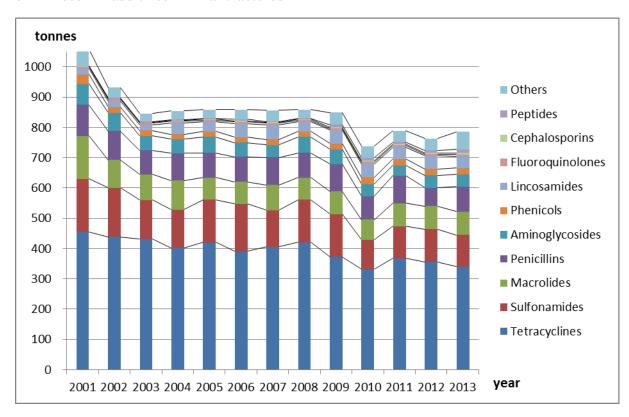
pig and poultry farms has increased each year (data not shown). However, the number of farmers in Japan has decreased because of the absence of successors.

Table 1.1 Number of animals slaughtered in slaughterhouses and poultry slaughtering plants (1,000 heads/birds).

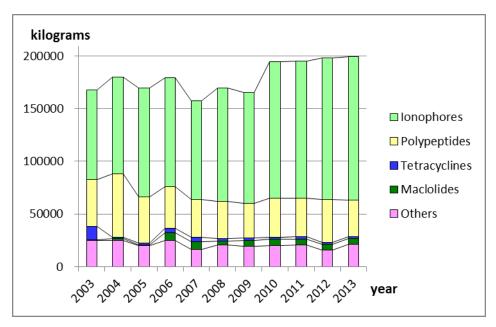
	Cattle	Calf	Horse	Pig	Broiler	Fowl*
2013	1177.9	7.1	13.7	16940.4	653999	86227
2012	1190.6	8.9	12.3	16776.2	649629	90656
2011	1165.9	8.3	11.9	16395.2	617176	88879

^{*}Most of these fowls are old layer chickens.

Fig. 5 Trends in the number of animals slaughtered in slaughterhouses and poultry slaughtering plants (1,000 heads/birds).


The total antimicrobial sales volume for animals decreased gradually between 2001 and 2013 (Figure 6). Antimicrobials were used most frequently in pigs, compared with cattle and poultry. Tetracycline accounted for 46% of total sales volume of veterinary antimicrobials, whereas fluoroquinolones and cephalosporins were used restrictively (less than 1% of total sales volume of veterinary antimicrobials) in 2013.

The use of antimicrobial feed additives commenced in the 1950s.


The current trends in the amount of feed additives manufactured

(converted to bulk products) are shown in Figure 7. From 2007 to 2009, the total volume was fairly constant, averaging 171 tons. After 2009, the total volume increased, which was associated with an increase of ionophores. Ionophores composed a large percentage of feed additives (136 tons [68.2%]) in 2013, and ionophores are widely used in the EU and USA without prescription.

Other compounds, polypeptides, tetracyclines, and macrolides, composed 17.6%, 0.8%, and 2.8% of the total volume in 2013, respectively.

Fig. 6 Trends in veterinary antimicrobials sold from pharmacies in Japan (in tons of active compound).

Fig. 7 Trends in the amount of manufactured antimicrobial feed additives in Japan (in kg of active compound).

III. Monitoring of Antimicrobial Resistance

1. Monitoring System in Farms

Table 1.2 shows the total number of bacteria isolated from food producing animals on farms. All isolates were subjected to antimicrobial susceptibility testing.

(1) Escherichia coli

In total, 1,482 isolates of *E. coli* (539 from cattle, 275 from pigs, 337 from broiler chickens, and 331 from layer chickens) collected between 2012 and 2013 were available for antimicrobial susceptibility testing. The MIC distributions during 2012–2013 are shown in Tables 2.1 and 2.2

Antimicrobial resistance was found for all antimicrobials tested except for colistin resistance in *E. coli* isolated from cattle and pigs. Resistance was frequently found against tetracycline, streptomycin, and ampicillin in food-producing animals.

In general, the highest resistance rate was found in *E. coli* from pigs or broilers. Resistance in pig and broiler isolates was most common against streptomycin (resistance rate in pigs and broilers, 39.9–43.9% and 38.0–38.9% respectively), tetracycline (53.8–60.1% and 58.5–61.1%, respectively), ampicillin (28.7–30.3% and 44.9–47.3%, respectively), kanamycin (7.0–7.6% and 24.4–27.8%, respectively), chloramphenicol (22.0–26.6% and 16.6–

22.1%, respectively), and trimethoprim (28.0–35.0% and 33.2–40.5%, respectively).

Incidence of nalidixic acid resistance was high in the E. coli isolates from broilers (30.2–35.1%), intermediate in those isolates from pigs (9.8%) and layers (9.6–16.4%), and low in those (1.3-3.7%). isolates from cattle Frequency of ciprofloxacin (0–7.8%), cefazolin (0-9.7%), and cefotaxime (0-8.7%) resistance in all animal species was low.

Resistance rates against most antimicrobials studied in the fifth stage were stable compared to the third and fourth stages (Table 1.3). However, the frequency of kanamycin, chloramphenicol, and trimethoprim-sulfamethoxazole resistance in E. coli from broilers, and ceftiofur-cefotaxime and chloramphenicol resistance in E. coli from layers in the fifth stage increased relative to those of the fourth stage (p<0.05). The frequency of ceftiofur cefotaxime resistance in E. coli from cattle and nalidixic acid resistance from E. coli in layers in the fifth stage increased compared to those of the third stage (p<0.05). However, the resistance rate of cefotaxime in E. coli from cattle (0-2.0%) and layers (2.9-3.6%) was still very limited.

Conversely, the frequency of

kanamycin resistance in E. coli from pigs in the fifth stage decreased relative to those of the third stage (p<0.05). In addition, the frequency of cefazolin and ceftiofur or cefotaxime resistance in E. coli from broilers decreased compared to those of the third and fourth stages (p<0.05). (This observation was described in detail in section IV of JVARM Topics).

(2) Enterococci

A total of 366 *E. faecalis* and 321 *E. faecium* isolates collected between 2012 and 2013 were subjected to antimicrobial susceptibility testing. *Enterococcus faecium* was isolated from feces of all four food-producing animal species, whereas *E. faecalis* was isolated mainly from the feces of pigs, layers, and broilers. The MIC distributions during 2012–2013 are shown in Tables 3.1–3.2 and 4.1–4.2.

The extent of resistance rates to each antimicrobial varied with the bacterial species and animal species. Antimicrobial resistance was more frequently found in *E. faecalis* isolates than *E. faecium* isolates.

Resistance in pig and broiler isolates was frequently found against oxytetracycline (respective resistance rates in *E. faecalis and E. faecium* were 61.5–85.5% and 42.4–67.4%), dihydrostreptomycin (40.0–80.0% and 15.2–32.1%, respectively), kanamycin (27.3–50.9% and 30.3–73.9%,

respectively), erythromycin (49.1–59.1% and 15.2–50.0%, respectively), and lincomycin (50.9–63.6% and 28.3–39.4%). The enrofloxacin resistance rate in *E. faecium* isolates (38.9–87.0%) was higher than in *E. faecalis* (0–5.5%).

Resistance rates against most antimicrobials studied in this the fifth were stable compared to those of the third and fourth stages. However, the frequency of kanamycin resistance in E. faecium from cattle, broilers, and layers in the fifth stage increased compared to those of the third stage (p<0.05) (Table 1.4).

Bycontrast, frequencies of dihydrostreptomycin, gentamicin, oxytetracycline resistance in E. faecalis from pigs in the fifth stage decreased compared to those of the third stage The (p<0.05). frequency of fluoroquinolone resistance in E. faecalis from pigs decreased in the fifth stage compared to that of the fourth stage (p < 0.05).

Frequencies of oxytetracycline and lincomycin resistance in *E. faecium* from layers decreased in the fifth stage compared to those of the third stage (p<0.05). The frequency of erythromycin resistance in *E. faecium* in cattle and layers decreased in the fifth stage compared to those of the fourth stage (p<0.05).

(3) Campylobacter

A total of 326 C. jejuni and 138

C. coli isolates collected between 2012 and 2013 were subjected to antimicrobial susceptibility testing. *C. jejuni* was isolated mainly from cattle, layer, and broiler feces, whereas *C. coli* was isolated mainly from pig feces. The MIC distributions from 2012 to 2013 are shown in Tables 5.1–5.2 and 6.1–6.2.

Antimicrobial resistance was found for all antimicrobials tested except gentamicin. However, the extent of resistance rates to each antimicrobial varied by bacterial species and animal species. *C. coli* isolates were more frequently resistant to almost all antimicrobials studied than *C. jejuni* isolates. In general, the highest resistance rate was found in *C. coli* from pigs.

Compared other to antimicrobials, resistance was more frequently detected against tetracyclines (oxytetracycline, 2008–2009; tetracycline, 2010–2011) in C. coli (62.3–75.0%) and C. jejuni (36.4–45.7%). Resistance in C. jejuni and C. coli isolates was also found against ampicillin (resistance rate in C. jejuni and C. coli, 15.3-17.3% and 4.9-6.5%, respectively), streptomycin (1.7– 1.9% and 39.3–51.9%, respectively), erythromycin (0% and 29.5–33.8%, respectively), chloramphenicol (0.8–1.0% and 13.1–22.1%, respectively), nalidixic (22.6 - 37.3%)and 32.5-52.5%, respectively), and ciprofloxacin, (22.1-31.4% and 28.6–42.6%, respectively).

Resistance rates against most antimicrobials studied in the fifth stage

were stable compared to those of the third and fourth stages (Table 1.5). However, frequency oxytetracycline-tetracycline resistance in C. jejuni from cattle in the fifth stage increased compared to that of the third (p < 0.05). stage The frequency resistance gradually fluoroquinolone increased in C. jejuni from cattle from the third stage to the fifth stage, but the increase was not significant.

Conversely, the frequencies of dihydrostreptomycin-streptomycin resistance in C. jejuni from layers and oxytetracycline-tetracycline resistance in C. coli from pigs in the fifth stage decreased compared to those of the third stage (p<0.05). The frequency of fluoroquinolone resistance decreased in C. coli from pigs in the fifth stage compared to that of the fourth stage (p<0.05).

Erythromycin resistance was not found in *C. jejuni* isolates from any animal but was frequently found in *C. coli* isolates from pigs (42.1–42.9%).

(4) Salmonella

In total, 365 *Salmonella* isolates (140 from cattle, 143 from pigs, and 82 from chickens) collected between 2012 and 2013 were available for antimicrobial susceptibility testing. The MIC distributions during the years 2012–2013 are shown in Tables 7.1–7.2.

The predominant serovars were *Salmonella* Typhimurium (119 isolates, 37.5%), O4:i:- (42 isolates, 13.2%),

Salmonella Choleraesuis (40 isolates, 12.6%), and Salmonella Infantis (19 isolates, 6%). S. Typhimurium was the predominant serovar isolated from cattle and pigs (59/128, 46.1% and 58/123, 47.2%, respectively). S. Infantis was the predominant serovar isolated from chickens (17/66, 25.8%).

Antimicrobial resistance was found for most antimicrobials tested, except ciprofloxacin. Resistance was frequently found against tetracyclines, streptomycin (2013), and ampicillin in food-producing animals.

In general, the highest resistance rate was found in *Salmonella* isolates from cattle and pigs. Resistance in cattle and pigs was most commonly against streptomycin (67.9% and 70.0% respectively, 2013), tetracycline (34.5–66.1% and 53.0–66.7%, respectively), and ampicillin (34.5–60.7% and 25.3–45.0%, respectively).

Resistance to cefazolin and cefotaxime was found in *Salmonella* isolates from cattle and chickens, however, resistance frequencies were low (0–8.9%).

Resistance to colistin was found in isolates from pigs and chickens, however, resistance frequencies were low (0–8.9%).

Resistance rates against most antimicrobials studied in the fifth stage were stable compared to those of the third and fourth stages (Table 1.6). However, the frequency of nalidixic acid resistance in Salmonella from cattle in the fifth stage increased compared to that of the third stage (p<0.05).

By contrast, the frequencies of kanamycin, oxytetracycline–tetracycline, and chloramphenicol resistance in *Salmonella* from pigs in the fifth stage decreased compared to those of the third stage (p<0.05).

Table 1.2 Total number of bacterial isolates examined from 1999 to 2013

						Compulabator	Salmonella			
	year	E.coli	Enterococcus	Campylobacter	Healty animal	Disease animal	Total			
Trial Stage	1999	1,018	1,024	166	124	194	318			
1 st stage	2000~2003	2,207	1,386	956	183	211	394			
2 nd stage	2004~2007	1,979	1,920	683	179	482	661			
3 rd stage	2008~2009	1,295	1,273	390	_	371	371			
4 th stage	2010~2011	1,567	1,432	540	_	325	325			
5 th stage	2012~2013	1,482	1,486	464	_	369	369			
ТОТА	L	10,327	9,341	3,439	486	2,124	2,610			

Table 1.3 Resistance rates of *E. coli* from third to fifth stage (%)

		Cattle			Pig			Broiler	,		Layer	
Antimicrobials	3rd	4th	5th	3rd	4th	5th	3rd	4th	5th	3rd	4th	5th
	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage
Ampicillin	8.5	6.5	6.7	29.8	27.4	29.5	46.5	42.4	45.8	19.7	13.6	14.2
Cefazolin	0	0.4	0.9	0	2.5	1.4	19.9	20.2	8.0 ^b	1.3	1.9	3.0
Ceftiofur-Cefotaxime	0	0.4	1.1 ^a	0	1.4	1.8	17.3	18.3	7.1 ^b	1.7	0.6	3.3 ^b
Dihydrostreptomycin- Streptomycin	18.1	-	17.3	50.7	-	41.8 ^a	38.1	-	38.3	13.7	-	17.2
Gentamicin	0	0	0.2	2.1	2.1	2.2	4.0	3.7	2.4	0.4	0.3	0.6
Kanamycin	2.5	3.2	2.4	15.6	9.5	7.3 ^a	20.4	13.2	26.4 ^a	2.6	3.6	4.3
Oxytetracycline- Tetracycline	24.7	19.3	22.4	63.8	59.3	57.1	63.7	52.2	59.4	27.9	25.8	32.7
Nalidixic acid	3.1	1.9	2.6	8.5	8.4	9.8	34.1	32.6	32.0	6.4	11.4	13.6 ^a
Enrofloxacin- Ciprofloxacin	0.2	0.4	0.6	1.8	2.1	0.7	9.7	5.1	7.7	2.1	0.8	0.6
Colistin	0.4	0	0	0.7	0	0	0	0	0	0	0	0
Chloramphenicol	3.8	3.2	3.9	24.8	21.8	24.4	13.7	10.1	18.7 ^b	5.2	2.2	8.4
Trimethoprim- Trimethoprim/Sulfa- methoxazole	3.2	3.4	3.3	28.4	26.7	31.6	31.4	24.7	35.9	12.9	9.2	13.0 ^b

a: Significantly different compared with the third stage

: Significantly increased

: Significantly decreased

b: Significantly different compared with the forth stage

Table 1.4 Resistance rates of *Campylobacter (C. jejuni* isolated from cattle, broilers, and layers; *C. coli* isolated from pigs) from third to fifth stage (%)

		Cattle			Pig			Broiler			Layer	
Antimicrobials	3rd	4th	5th	3rd	4th	5th	3rd	4th	5th	3rd	4th	5th
	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage	stage
Ampicillin	5.1	1.0	3.4	8.7	0.9	4.1	17.4	25.2	19.3	18.3	22.5	26.7
Dihydrostreptomycin- Streptomycin	0	-	5.1	61.5	-	60.6	0	0	0	4.9	-	0^{a}
Erythromycin	0	0	0	53.8	53.3	42.4	0	0	0	0	0	0
Oxytetracycline- Tetracycline	28.2	43.1	53.4 ^a	88.5	76.6	74.7 ^a	40.2	49.5	36.4	32.9	41.7	37.1
Nalidixic acid	33.3	34.3	44.1	48.1	56.1	37.4	22.8	34.2	22.7	13.4	14.6	14.7
Enrofloxacin- Ciprofloxacin	26.9	33.3	42.4	45.2	55.1	33.3 ^b	22.8	32.4	18.2	13.4	11.9	13.0
Chloramphenicol	0	0	1.7	28.8	19.6	25.2	1.1	0	0	0	1.3	0.9

a: Significantly different compared with the third stage

: Significantly increased

: Significantly decreased

b: Significantly different compared with the forth stage

Table 1.5 Resistance rates of *Enterococci* from third to fifth stage (%)

			Cattle			Pig			Broiler			Layer	
Species	Antimicrobials	3rd stage	4th stage	5th stage	3rd stage	4th stage	5th stage	3rd stage	4th stage	5th stage	3rd stage	4th stage	5th stage
	Ampicillin	0	0	0	0	0	1.7	0	0	0	0	0	0
	Dihydrostreptomycin	50.0	35.7	47.0	84.6	76.7	57.4ª	69.7	58.4	55.2	54.5	53.2	47.6
	Gentamicin	22.2	7.1	0	33.3	16.3	13.1ª	16.9	9.6	16.6	15.9	14.9	9.8
	Kanamycin	11.1	7.1	5.9	51.3	44.2	32.8	33.7	39.3	42.8	16.7	28.2	27.3
E. faecalis	Oxytetracycline	27.8	35.7	5.9	89.7	76.7	67.2ª	86.5	73.0	75.2	62.1	52.7	53.9
E. jaecans	Chloramphenicol	0	0	0	30.8	53.5	42.6	11.2	9.6	14.5	4.5	5.3	6.3
	Erythromycin	11.1	0	0	66.7	65.1	55.7	52.8	51.7	51.7	35.6	29.3	25.9
	Tylosin	-	0	0	-	62.8	52.5	-	51.7	53.1	-	29.3	25.2
	Lincomycin	11.1	0	0	76.9	62.8	59.0	55.1	52.2	53.1	35.6	29.8	25.2
	Enrofloxacin	5.6	7.1	0	2.6	11.6	0^{b}	2.2	4.5	2.1	2.3	0.5	2.1
	Ampicillin	0	0	0	0	0	0	5.3	2.2	2.3	0	0	0
	Dihydrostreptomycin	13.0	11.1	22.2	48.2	31.7	27.4	35.1	19.1	26.9	12.5	13.9	4.7
	Gentamicin	1.3	0.0	1.9	3.6	3.2	0.0	1.1	7.9	3.1	3.6	5.6	1.2
	Kanamycin	9.1	27.8	38.9 ^a	26.8	41.3	41.2	18.1	34.8	48.4 ^a	19.6	36.1	40.7 ^a
E. faecium	Oxytetracycline	14.3	18.5	7.4	62.5	54.0	45.1	71.3	60.7	64.6	37.5	19.4	11.6 ^a
L. jaccium	Chloramphenicol	0	1.9	0	1.8	6.3	5.9	2.1	1.1	3.9	0	0	0
	Erythromycin	9.1	33.3	14.8 ^b	25.0	34.9	27.5	30.9	28.1	29.2	12.5	30.6	7.0 ^b
	Tylosin	-	5.6	7.4	-	25.4	19.6	-	14.6	22.3	-	4.2	1.2
	Lincomycin	5.2	9.3	7.4	41.1	33.3	39.2	33.0	21.3	30.0	10.7	4.2	O ^a
	Enrofloxacin	20.8	37.0	35.2	51.8	28.6	43.2	63.8	58.4	73.1	55.4	47.2	55.8

a: Significantly different compared with the third stage

: Significantly increased

: Significantly decreased

b: Significantly different compared with the forth stage

Table 1.6 Resistance rates of Salmonella from third to fifth stage (%)

		Cattle			Pig		(Chicker	n
Antimicrobials	3rd	4th	5th	3rd	4th	5th	3rd	4th	5th
	stage	stage	stage	stage	stage	stage	stage	stage	stage
Ampicillin	34.4	45.1	45.0	46.5	31.1	33.6	7.5	6.9	6.1
Cefazolin	1	4.2	4.3	0	0.8	0	4.3	1.7	3.6
Cefotaxime	-	3.5	4.3	1	0.8	0	1	1.7	2.4
Gentamicin	0	0	0	15.8	13.1	8.4	0	0.0	1.2
Kanamycin	20	19	12.2	21.9	15.6	9.8 ^a	22.6	13.8	19.5
Oxytetracycline- Tetracycline	37.6	45.1	47.1	79.8	66.4	58.7 ^a	40.9	22.4	31.7
Chloramphenicol	11.5	21.5	11.4	26.3	9.8	12.6 ^a	1.1	0	6.1
Colistin	0	0	0	0	0	0.7	1.1	0	2.4
Nalidixic acid	0.6	5.5	5.0 ^a	19.3	9.8	14.7	7.5	6.9	7.3
Enrofloxacin- Ciprofloxacin	0	0	0	0	0	0	0	0	0
Trimethoprim- Trimethoprim/Sulfa- methoxazole	1.9	3.5	1.4	31.6	29.5	28.0	18.3	10.3	14.6

a: Significantly different compared with the third stage

b: Significantly different compared with the forth stage

: Significantly increased

: Significantly decreased

2. Monitoring System in Slaughterhouses

(1) Escherichia coli

In total, 1210 isolates of *E. coli* (589 from cattle, 322 from pigs, and 299 from broiler chickens) collected between 2012 and 2013 were available for antimicrobial susceptibility testing. The MIC distributions during 2012–2013 are

shown in Tables 2.3–2.4. Antimicrobial resistance was found for all antimicrobials tested. Resistance was frequently found against tetracycline, streptomycin, and ampicillin.

In general, the highest resistance rate was found in *E. coli* from pigs or broilers. Resistance in pig and broiler isolates was most common against streptomycin (resistance rate in pigs and

broilers, 44.1–44.9% and 39.1–38.6%, respectively), tetracycline (58.5–62.2% and 44.0–49.6%, respectively), ampicillin (26.0–32.3% and 30.8–35.5%, respectively), kanamycin (7.9–9.7% and 24.1%, respectively), chloramphenicol (23.6% and 11.3–11.4%, respectively), and sulfamethoxazol/trimethoprim (23.6–26.8% and 24.8–31.9%, respectively).

Incidence of nalidixic acid resistance was high in the *E. coli* isolates from broilers (36.1–39.8%), intermediate in those isolates from pigs (4.1–11.0%), and low in those isolates from cattle (1.8–2.4%). Frequency of ciprofloxacin resistance remained low (\leq 1.5%), except for isolates of *E. coli* from broilers (5.4–6.0%).

Resistance to cefazolin and cefotaxime remained low ($\leq 1.0\%$) in *E. coli* isolates, except for isolates of *E. coli* from broilers (1.5–7.8%).

(2) Enterococci

A total of 221 *E. faecalis* and 38 *E. faecium* isolates collected in 2012 were subjected to antimicrobial susceptibility testing. The MIC distributions in 2012 are shown in Tables 3.3 and 4.3.

Antimicrobial resistance was found for 9 of the 13 tested antimicrobials in *E. faecalis* and *E. faecium* (Tables 3.3 and 4.3, respectively). Extent of resistance rates to each antimicrobial varied with the bacterial species and animal species. Resistance rates of isolates originating from pigs and broilers tended to be higher

than those isolates originating from cattle.

Resistance in pig and broiler isolates was frequently found against oxytetracycline (resistance rates in E. faecalis and E. faecium, 64.7-75.0% and 35.0-83.3%, respectively), dihydrostreptomycin (76.9-88.2% and 50.0-75.0%, respectively), kanamycin (71.2-72.9% and 90.0-100%, respectively), erythromycin (51.8-58.7% 25.0–60.0%, respectively), lincomycin (57.7–76.5% and 30.0–50.0%, respectively).

The enrofloxacin resistance rate in *E. faecium* isolates (65.0–83.3%) was higher than in *E. faecalis* (2.9–5.9%).

(3) Campylobacter

A total of 377 *C. jejuni* and 368 *C. coli* isolates collected between 2012 and 2013 were subjected to antimicrobial susceptibility testing. *C. jejuni* was isolated mainly from cattle and broilers, whereas *C. coli* was isolated mainly from pigs. The MIC distributions from 2012 to 2013 are shown in Tables 5.3–5.4 and 6.3–6.4.

Antimicrobial resistance was found for all antimicrobials tested, except gentamicin. However, the extent of resistance rates to each antimicrobial varied by bacterial species and animal species. *C. coli* isolates were more frequently resistant to almost all antimicrobials studied than *C. jejuni* isolates. In general, the highest resistance rate was found in *C. coli* from pigs.

Compared other to antimicrobials. resistance was more frequently found against tetracycline in C. coli (80.7–82.1%) and C. jejuni (41.8– 49.6%). Resistance in C. jejuni and C. coli isolates was found against ampicillin (resistance rate in C. jejuni and C. coli, 9.2–12.9% and 15.9–18.6%, respectively), streptomycin (2.0–2.2% and 30.6–51.2%, respectively), erythromycin (0-0.4% and 27.1–31.4%, respectively), chloramphenicol (0-4.0% and 3.-7.2%, respectively), nalidixic acid (36.6-38.8% 51.2–57.8%, respectively), ciprofloxacin, (33.0-36.6% and 51.2-52.2%, respectively).

Incidence of ciprofloxacin resistance was high in C. coli isolates cattle (60.3-70.3%)intermediate in C. coli from pigs (46.2-46.5%), C. jejuni isolates from broilers (39.4–39.5%), and cattle (29.4–34.1%). Erythromycin resistance was frequently found in C. coli isolates from pigs (32.6– 44.3%). However, frequency erythromycin resistance in C. jejuni isolates was only detected in cattle (0.7%).

(4) Salmonella

In total, 212 *Salmonella* isolates from broilers collected between 2012 and 2013 were available for antimicrobial susceptibility testing. The MIC distributions during the years 2012–2013 are shown in Tables 7.3–7.4.

The predominant serovars isolated from chickens were *S.* Infantis (104 isolates, 51.2%), *Salmonella* Schwarzengrund (36 isolates, 17.7%), *S.* Typhimurium (33 isolates, 16.3%), and *Salmonella* Manhattan (24 isolates, 11.8%).

Antimicrobial resistance was found for most antimicrobials tested, except gentamicin, ciprofloxacin, and colistin. Resistance in chickens was most commonly against streptomycin (77.7–84.7%), tetracycline (74.5–82.2%), ampicillin (22.9–31.9%), kanamycin (31.9–42.4%),

trimethoprim-sulfamethoxazole (31.9–48.3%), and nalidixic acid (29.8–19.5%)

Resistance to cefazolin, cefotaxime, and chloramphenicol was found in *Salmonella* isolates from chickens, however, resistance frequencies were low (5.9–7.4%, 5.1–7.4% and 0–0.8%, respectively).

IV. JVARM Topics

Decreased resistance to broad-spectrum cephalosporin in *Escherichia coli* isolated from healthy broilers by voluntary withdrawal of ceftiofur usage.

The emergence and prevalence of broad-spectrum cephalosporin (BSC)-resistant *Escherichia coli* in food-producing animals is a global public health concern. BSC antibiotics are designated as critically important antimicrobial agents in human medicine by the Food Safety Committee of Japan as well as in other countries.

The incidence of resistance against ceftiofur (CTF) was 4.0% in broiler chicken isolates from 2000 to 2003. However, since 2004, CTF resistance in *E. coli* isolates from broiler chickens has increased by about 10% (Figure 8).

In Japan, broad-spectrum cephalosporin antibiotics were approved for use in cattle and pigs in 1996, but not

in poultry. However, the off-label use of CTF in conjunction with *in ovo* vaccination or vaccination of newly hatched chicks had been adopted at some hatcheries.

The MAFF announced the results of the increasing resistance to CTF to the broiler farmers association in JVARM.

Consequently, CTF usage was voluntarily withdrawn by farmer's associations in March 2012. The percentage of BSC-resistant *E. coli* isolates significantly decreased after voluntary withdrawal of off-label use of CTF. These events indicate that the JVARM monitoring system is acting effectively as risk management tool.

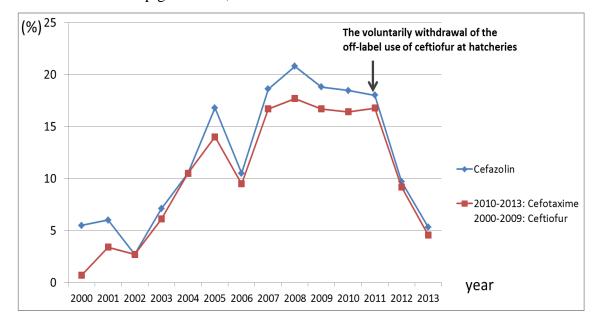


Fig. 8 The cephalosporin resistance rate in *E. coli* isolates from healthy broilers from 2000 to 2013

V. Current Risk Management of Antimicrobial Resistance Linked to Antimicrobial Products

Veterinary medical products (VMPs), including antimicrobial products, therapeutic purposes used for regulated by "The Act on Securing Efficacy, and Safety Quality, of Pharmaceuticals. Medical Devices. Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics (Law No.145, Series of 1960)". The purpose of the law is to regulate matters pertaining to drugs, quasi-drugs, medical devices, and regenerative and cellular therapy products to ensure their quality, efficacy, and safety at each stage of development, manufacturing (importing), marketing, retailing, usage. In addition to therapeutic use, growth promotion is another important use of antimicrobials and has significant economic consequences on the livestock industry. Feed additives, which include antimicrobial products used for growth promotion, are regulated by the Law Concerning Safety Assurance and Quality Improvement of Feed (Law No.35 of 1953). Compared to antimicrobial VMPs, FAs are used at lower concentrations and for longer periods. Antimicrobial growth promoters in the animals cannot be used for 7 days preceding slaughter for human consumption.

There are specific requirements for marketing approval of antimicrobial VMPs in Japan. For the approval of

antimicrobial VMPs, data concerning the antimicrobial spectrum; the antimicrobial susceptibility tests of recent field isolates of targeted bacteria, indicator bacteria, and zoonotic bacteria; and the resistance acquisition test are attached to application for consideration of public and animal health issues. For approval of VMPs for food-producing animals, data concerning the stability of antimicrobial substances natural circumstances is also attached. The antimicrobial substance in the VMP is thoroughly described in the dossier, and the period of administration is limited to 1 week, where possible.

General and specific data are evaluated at an expert meeting conducted by MAFF. The data of VMPs used in food-producing animals are also evaluated the Food by Safety Commission. The Pharmaceutical Affairs and Food Sanitation Council, which is an advisory organization to the Minister, evaluates the quality, efficacy, and safety of the VMP. If the VMP satisfies all requirements, the Minister of MAFF approves the VMP. In Japan, post-marketing surveillance of VMPs occurs at two stages: during reexamination of new VMPs and during reevaluation of all VMPs. After the reexamination period has ended for the new VMP, the field investigation data

about efficacy, safety, and public and livestock health is attached to the application. For new VMPs, results of monitoring for antimicrobial resistance submitted according are to the of the re-examination requirements system. For all approved drugs, MAFF conducts literature reviews about efficacy, safety, residues, and resistant bacteria as per the requirements of the re-evaluation system.

Because most of the antimicrobial VMPs have been approved drugs requiring directions prescriptions from a veterinarian, these VMPs cannot be used without the diagnosis and instruction of a veterinarian. The distribution and use of VMPs, including veterinary antimicrobial products, is routinely inspected by the regulatory authority (MAFF).

For marketing and use of VMPs, veterinarians prescribe the drug and place restrictions on its use so that the drug does not remain beyond MRLs in livestock products. As for the label, there are restrictions relating to the description on the 'direct container' and on the 'package insert'. The description on the label must include all of the following: (1) the prescribed drug; (2) disease and bacterial species indicated; (3) the route, dose, and period of administration; (4) prohibition/withdrawal periods; (5) precautions for use, such as side effects and handling; and (6) in the case of specific antimicrobial drugs

(fluoroquinolones and third generation cephalosporins), the description includes an explanation that the drug is not considered the first-choice drug. For the specific antimicrobial drugs fluoroquinolone and third generation cephalosporins, which are particularly for public health, important application for approval of the drug for use in animals is not accepted until the end of the period of re-examination of the corresponding drug for use in humans. After marketing, monitoring data on the amount sold and the appearance of antimicrobial resistance in target pathogens and foodborne pathogens must be submitted to MAFF.

The risk assessment for antimicrobial resistance in bacteria arising from the use of antimicrobials in animals, especially in those bacteria that are common to human medicine, is provided to MAFF by the Food Safety Commission (FSC), which was established in 2003. FSC is an organization risk responsible for assessment based on the Food Safety Basic Law (Law No. 48 of 2003) and is independent of risk management organizations such as MAFF and the Ministry of Health, Labour, and Welfare (MHLW). The risk assessment for antimicrobial resistance in bacteria from the use of antimicrobials in animals is undertaken on the basis of their new guidelines that are based on the OIE guidelines of antimicrobial resistance, Codex, and FDA guidelines (Food Safety

Commission 2004).

To imm

the risk assessment by FSC, management guidelines for reducing the risk of antimicrobial resistance arising from antimicrobial use in food-producing animals and aquatic animals have been defined (http://www.maff.go.jp/nval/tyosa_kenky u/taiseiki/pdf/240411.pdf). The purpose of the guidelines is to reduce the adverse effects for human health. However, the significance of antimicrobial VMPs in veterinary medicine should be considered in order to ensure food safety and stability. The guidelines cover the entire from process, development implementation of risk management options in on-farm animal practices, referring to the standard guidelines for risk management adopted by the MAFF and MHLW (http://www.maff.go.jp/j/syouan/seisaku/r

implement

management strategy developed based on

the

risk

Establishment of risk management strategy should be undertaken according to a stepwise approach. Firstly, available and feasible risk management options are considered based on the results of risk assessment by FSC ('high', 'medium', 'low', or 'negligible'), as shown in Table 9. Extended results of release assessments should especially be considered to determine risk management options; a high-risk estimation-of-release

isk_analysis/sop/pdf/sop_241016.pdf).

assessment should be carefully estimated. Secondly, to determine risk management options, the factors in Table 10 are fully considered based on target animals and approved administration routes. As necessary, risk communication, including public comment procedures, should be implemented.

The present status of risk analysis of antimicrobial resistance in food-producing animals in Japan is shown in Table 11.

Antimicrobial VMPs are essential in animal husbandry in Japan. Growth promotion is another important use of antimicrobials in the livestock industry. In the present conditions, with the increased risk of outbreak due to emerging bacterial diseases as well as viral diseases such as foot-and-mouth disease and avian influenza, clinical veterinarians need various classes of antimicrobials to treat endemic and unexpected disease in domestic animals. The risk assessments of antimicrobial resistance in food-producing animals have been performed by FSC. Risk management strategies for Antimicrobial VMPs are established according to predetermined guidelines in order to perform appropriate risk-management implementation on antimicrobial resistance, taking into consideration the benefits/risks of antimicrobial use in animal husbandry.

Table 9. Selected examples and expected effects of risk management options for antimicrobial drugs depending on their risk assessment result

Assessment result	Examples of risk management	Expected effects
	options	
High	Withdrawal	Distribution of the drug in the country is
		discontinued.
	Temporary ban on use	Distribution of the drug in the country is
		discontinued (temporarily).
High/ medium	Withdrawal of the antimicrobial:	
	against specific animal species	When the drug is approved for use in multiple
		animal species, it will be banned in some target
		animals. The use of the drug for the target
		animal should be considered for each
		administration route of the drug.
	against target disease/bacteria	When the drug is approved for multiple target
		diseases/bacteria species, it will be banned in
		some target diseases/bacteria. The use of the
		drug for the target animal should be considered
		for each target disease/bacteria.
	Limitation of antimicrobial use	Use volume of the drug is decreased by setting
	near the time of slaughter	limits on its use during the final stage of a
		rearing period; otherwise, a high amount of the
		drug would be administered per animal. This
		will prevent increases in resistant bacteria due
		to selective pressures during the final stage of a
		rearing period.
	Shortening duration of	A course dose per animal is decreased by
	antimicrobial administration	shortening a dosage period of AVMPs based on
		veterinary diagnosis.
Medium	Strict use as secondary line of	The drug is strictly used only when treatment
	AVMPs	with the first-line drug is ineffective, as stated
		on the label of the specific AVMPs such as new
		quinolone drugs or third-generation
		cephalosporin antibiotics available in Japan.
	Intensified monitoring of	Changes in the resistance of bacteria are

	antimicrobial resistance	detected immediately by increasing the
		monitoring frequency and area.
Low/ negligible	Continued monitoring of	-
	antimicrobial	
	resistance	

AVMPs, antimicrobial veterinary medicinal products.

Table 10. Basic components required to set criteria for risk management options ${\bf r}$

Decision factors	Comments
Significance of antimicrobial veterinary	Severity (e.g., organs affected, potential systemic
medicinal products in veterinary medicine	involvement, and pathology) of the target disease
	Significance in the clinical settings (e.g., facility,
	efficacy, and economy)
The presence of alternates for the target	Availability of alternates including different classes of
disease	antimicrobials and vaccines used for the same
	purposes
Secondary risk	Possible harmful consequences entailed in
	implementing each risk-management option
Estimated efficacy of risk-management option	Extent of efficacy imposed by implementing each
	risk-management option
Feasibility of risk-management option	Feasibility in terms of technical, administrative, and
	financial issues involved in implementing each
	risk-management option
Other concerns	Decision factors depending on antimicrobial
	characteristics whenever necessary

Table 11. The present situation of risk analysis of antimicrobial resistance in food-producing animals in Japan (as of October 2, 2015)

	URL of Japanese	documents*
Antimicrobials	Risk assessment	Risk management
Fluoroquinolones	http://www.fsc.go.jp/fsciis/evaluation	http://www.maff.go.jp/j/syouan/tikus
used in cattle and	Document/show/kya20071024051	ui/yakuzi/pdf/fluoro.pdf
swine (2nd edition)	(Risk estimation: Medium)	
Tulathromycin used	http://www.fsc.go.jp/fsciis/evaluation	http://www.maff.go.jp/j/syouan/ti
in swine	Document/show/kya20091124004	kusui/yakuzi/pdf/draxxin_kanri
	(Risk estimation: Medium)	sochi.pdf
Pirlimycin used in	http://www.fsc.go.jp/fsciis/evaluation	http://www.maff.go.jp/j/syouan/ti
dairy cows	Document/show/kya20080212002	kusui/yakuzi/pdf/pirlimy.pdf
	(Risk estimation: Low)	
Fluoroquinolones	https://www.fsc.go.jp/fsciis/evaluatio	http://www.maff.go.jp/j/syouan/ti
used in poultry	nDocument/show/kya20071024051	kusui/yakuzi/pdf/risk_mana_tor
	**https://www.jstage.jst.go.jp/article/f	ifq.pdf
	oodsafetyfscj/2/4/2_2014035s/_article	
	(Risk estimation: Medium)	
Gamithromycin	https://www.fsc.go.jp/fsciis/evaluatio	Continue existing risk
used in cattle	nDocument/show/kya2013111337z	management
	**http://www.fsc.go.jp/english/evaluat	
	ionreports/vetmedicine/July_22_201	
	4_Gamithromycin.pdf	
	(Risk estimation: Low)	
Ceftiofur used in	https://www.fsc.go.jp/fsciis/evaluatio	Not released
cattle and swine	nDocument/show/kya20100201004	
	(Risk estimation: Medium)	
Tulathromycin used	https://www.fsc.go.jp/fsciis/evaluatio	Continue existing risk
in cattle	nDocument/show/kya20150310290	management
	(Risk estimation: Low)	

^{*} English version is not available.

^{**} Summary in English.

VI. JVARM Publications

2012

Baba, K., Ishihara, K., Ozawa, M., Usui, M., Hiki, M., Tamura, Y., Asai, T. Prevalence and Mechanism of Antimicrobial Resistance in *Staphylococcus aureus* Isolates from Diseased Cattle, Swine and Chickens in Japan. J Vet Med Sci 74(5): 561–565, 2012.

Usui, M., Hiki, H., Murakami, K., Ozawa, M., Nagai, H., Asai, T. Evaluation of transferability of R-plasmid in bacteriocin-producing donors to bacteriocin-resistant recipients. Jpn. J. Infect. Dis. 65, 252-255, 2012

Ozawa, M., Makita, K., Tamura, Y., Asai, T. Associations of antimicrobial use with antimicrobial resistance in *Campylobacter coli* from grow-finish pigs in Japan. Prev Vet Med. 106(3-4):295-300, 2012.

Asai, T., Hiki, M., Baba, K., Usui, M., Ishihara, K., Tamura, Y. Presence of *Staphylococcus aureus* ST398 and ST9 in swine in Japan. Jpn. J. Infect. Dis. 65(6):551-2, 2012.

2013

Hiki, M., Usui, M., Kojima, A., Ozawa, M., Ishii, Y., Asai, T. Diversity of plasmid replicons encoding the blaCMY-2 gene in broad-spectrum cephalosporin-resistant *Escherichia coli*

from livestock animals in Japan. Foodborne Pathog Dis.10(3):243-249, 2013.

Asai, T., Usui, M., Hiki, M., Kawanishi, M., Nagai, H., Sasaki, Y. *Clostridium difficile* isolated from the fecal contents of swine in Japan. J Vet Med Sci. 75(4): 539-541, 2013.

Ozawa, M., Asai, T. Relationships between mutant prevention concentrations and mutation frequencies against enrofloxacin for avian pathogenic *Escherichia coli* isolates. J Vet Med Sci. 75(6): 709-713, 2013.

Hosoi, Y., Asai, T., Koike, R., Tsuyuki, M., Sugiura, K. Use of veterinary antimicrobial agents from 2005 to 2010 in Japan. International Journal of Antimicrobial Agents. 41(5): 489-490, 2013.

Usui M, Nagai H, Hiki M, Tamura Y T (2013).Effect Asai antimicrobial exposure AcrAB expression in Salmonella enterica subspecies enterica serovar Choleraesuis. Front. Microbiol. 4:53. doi: 10.3389/fmicb.2013.00053

Kawanishi M, Ozawa M, Hiki M, Abo H, Kojima A, Asai T. Detection of aac(6')-Ib-cr in avian pathogenic *Escherichia coli* isolates in Japan. J Vet Med Sci. 75(11):1539-1542. 2013.

VII. Acknowledgments

The JVARM members would like to thank the staff of the Livestock Hygiene Service Centres for collecting samples and isolates from animals. Gratitude is also extended to the farmers for providing faecal samples and valuable information concerning antimicrobial use.

The JVARM members are grateful to the following people for helpful support and encouragement:

Haruo Watanabe, Makoto Kuroda, Hidemasa Izumiya, Jun Terajima (National Institute of Infectious Disease)

Shizunobu Igimi (National Institute of Health Science)

Masato Akiba (National Institute of Animal Health)

Yasushi Kataoka (Nippon Veterinary and Life Science University)

Yutaka Tamura (Rakuno Gakuen University)

Yoshikazu Ishii (Toho University)

Akemi Kai (Tokyo Metropolitan Institute of Public Health)

Takayuki Kurazono (Saitama Institute of Public Health)

Masumi Taguchi (Osaka Prefectural Institute of Public Health)

Kanako Ishihara (Tokyo University of Agriculture and Technology)

VIII. Participants in the JVARM program

1. Data from the National Veterinary Assay Laboratory was provided thanks to the contributions of the following people:

2013

2012 Shuichi Hamamoto (Head of Assay

Shuichi Hamamoto (Head of Assay Division II)

Division II) Akemi Kojima

Tetsuo Asai (Chief of JVARM) Michiko Kawanishi

Michiko Kawanishi, Mototaka Hiki, Mototaka Hiki,

2. Data from the Food and Agricultural Materials Inspection Centre was provided thanks to the contributions of the following people:

2012 2013

Norio Aita (Director, Feed Analysis II

Division)

Sayaka Hashimoto, Susumu Yoshinaga, Toshiaki Yamata, Yoshiyasu Hashimoto, Masaru Kondo, Yasuharu Takashima,

Chisa Shimamura, Naoko Tamaru

Norio Aita (Director, Feed Analysis II Division)

Susumu Yoshinaga, Toshiaki Yamata, Yoshiyasu Hashimoto, Masaru Kondo, Masaki Kasahara, Chisa Shimamura, Mayu Enomoto, Naoko Tamaru

3. Data from the Livestock Hygiene Services Centre was provided thanks to the contributions of the following people:

2012

Minako Tomiyama (Aomori), Yasuo Sato (Iwate), Risa Yajima (Miyagi), Atsushi Tanaka (Akita), Toru Ojima (Yamagata), Hidetaka Oonishi (Fukushima), Hitomi Tanabe (Ibaraki), Hirofumi Yuzawa (Tochigi), Rie Arai (Saitama), Atsuko Matsumoto (Chiba), Hiroshi Yoshizaki (Tokyo), Chieko Kosuge (Kanagawa), Shizuka Fukudome (Niigata), Toshitaka

Goto , Kana Sugibayashi (Toyama), Hisahiro Ide (Ishikawa), **Kiyohito** Katsuragi (Fukui), Kazutada Ushiyama (Yamanashi), Junichi Ando (Nagano), Keiko Otsu (Gifu), Kazuho Suzuki (Shizuoka), Toshinari Suzuki (Aichi), Tomoko Yamane (Mie), Taketoshi Morooka (Shiga), Isao Taneda (Kyoto), Hiromi Otsuka (Osaka), Atsuko Kojima Minako Moriyama (Nara), (Hyogo),

Kumi Toyoshi (Wakayama), Yuuji Watanabe (Tottori), Yoichi Sakamoto (Shimane), Reiko Tahara (Okayama), Kanako Kishimoto (Hiroshima), Daiki Ooishi (Yamaguchi), Kanichirou Suzuki (Tokushima), Shuichi Taji (Ehime), Yasumichi Hamada (Kochi), Dai Fukamizu (Fukuoka), Kengo Shimojo (Nagasaki), Yuka Uchiyama (Kumamoto), Fumiko Yamamoto (Oita), Hiroko Matsukawa (Miyazaki), Shunsuke Kamimura (Kagoshima), Satoko Nakao (Okinawa)

2013

Minako Tomiyama (Aomori), Yasuo Sato (Iwate), Risa Yajima (Miyagi), Atsushi Tanaka (Akita), Toru Ojima (Yamagata), Hidetaka Oonishi (Fukushima), Hitomi Tanabe (Ibaraki), Shunsuke Akama (Tochigi), Rie Arai (Saitama), Atsuko Matsumoto (Chiba), Hiroshi Yoshizaki (Tokyo), Chieko Kosuge (Kanagawa), Kensuke Tanaka (Niigata), Mie Maiko

(Toyama), Hisahiro Ide (Ishikawa), Tomomi Tanaka (Fukui), Kazutada Ushiyama (Yamanashi), Junichi Ando (Nagano), Keiko Otsu (Gifu), Megumi Sadahiro (Shizuoka), Toshinari Suzuki (Aichi), Haru Uehara (Mie), Michiko Mitsumatsu (Shiga), Akane Kato, Isao Taneda (Kyoto), Eiichi Tsuyama (Osaka), Atsuko Kojima (Hyogo), Minako Moriyama (Nara), Kumi Toyoshi (Wakayama), Yuuji Watanabe (Tottori), Yoichi Sakamoto (Shimane), Reiko Tahara (Okayama), Megumi Kanehiro (Hiroshima), Daiki Ooishi (Yamaguchi), Shizu Kashioka (Tokushima), Naohito Okazaki (Ehime), Yuka Chikami (Kochi), Yuiko Morinaga (Fukuoka), Kengo Shimojo (Nagasaki), Yuka Uchiyama (Kumamoto), Fumiko Yoshida (Oita), Hiroko Matsukawa (Miyazaki), Eriko Uchimura (Kagoshima), Satoko Nakao (Okinawa)

IX. Appendix (Materials and Methods)

1. Sampling

(1) Monitoring System in Farms

Sampling was carried out by the Prefectural Livestock Hygiene Service Center across Japan. Fresh fecal samples were collected from healthy cattle, pigs, and layer and broiler chickens on each farm.

Escherichia coli, Enterococcus and Campylobacter were isolated from these fecal samples while Salmonella was isolated from diagnostic submissions of clinical cases.

In brief, the 47 prefectures were divided into two groups (23 or 24 prefectures per year), selected evenly based on geographical differences between northern to southern areas. Freshly voided fecal samples from healthy cattle, pigs, broiler chickens, and layer chickens were collected from approximately six healthy cattle, two pigs, two broiler chickens, and two layer chickens at the different farms in each prefecture.

(2) Monitoring System in Slaughterhouses

Sampling was carried out by private research laboratories. Fresh cecal feces samples were collected from healthy broilers, and rectal feces from cattle and pigs at each slaughterhouse.

Freshly voided cecal or rectal feces samples from healthy cattle, pigs, broiler chickens, and layer chickens were collected from approximately 300 cattle, 200 pigs, and 272 broiler chickens at different slaughterhouses.

E. coli, Enterococcus and Campylobacter were isolated from these cecal or rectal fecal samples from healthy cattle, pigs, and broilers, while Salmonella was isolated from only cecal fecal samples of healthy broilers.

2. Isolation and Identification

(1) Escherichia coli

E. coli isolates from each sample were maintained using desoxycholate-hydrogen sulfate-lactose agar (DHL agar, Eiken, Japan). Candidate colonies were identified biochemically using a commercially available kit (API20E, bioMérieux, March l'Etoile, France). These isolates were then stored at -80°C until further testing.

(2) Enterococci

Fecal samples were cultured in one of the following two ways: direct culturing using bile esculin azide agar (BEA, Difco Laboratories, Detroit, MI, USA) or using the enrichment procedure with Buffered Peptone Water (Oxoid, Basingstoke, Hampshire, England). The former plates were incubated at 37°C for 48-72 h; the latter tubes were incubated at 37°C for 18-24 h and subsequently passaged onto plates used for the direct culturing method. **Isolates** were presumptively identified as enterococci by colony morphology. These isolates

were subcultured onto heart infusion agar (Difco) supplemented with 5% (v/v) sheep blood, whereupon hemolysis was observed and Gram staining performed. Isolates were tested for catalase production, for growth in heart infusion broth supplemented with 6.5% NaCl, and for growth at 45°C. Hydrolysis L-pyrrolidonyl-β-naphthylamide, pigmentation, motility, and API 20 STREP (bioMérieux) were also evaluated. Further identification was achieved using D-Xylose and sucrose fermentation tests if necessary (Facklam and Sahm, 1995). All isolates were stored at -80°C until testing.

(3) Campylobacter

Campylobacter isolation was performed by the direct inoculation method onto Campylobacter blood-free selective agar (mCCDA: Oxoid, UK). Isolates were identified biochemically and molecularly using PCR (Linton et al., 1997). In short, two isolates per sample for antimicrobial were selected susceptibility testing. These isolates were suspended in 15% glycerin to which Buffered Peptone Water (Oxoid) had been added. They were then stored at -80°C until further use in tests.

(4) Salmonella

Salmonella isolates from diagnostic submissions of clinical cases were provided by the Livestock Hygiene Service Centers from farm monitoring.

While monitoring in slaughterhouses, Salmonella is isolated from cecal fecal samples from healthy broilers. Fecal cultured samples were using enrichment procedure with Buffered Peptone Water (Oxoid, Basingstoke, Hampshire, England). Tubes containing sample were incubated at 37°C for 18-24 and subsequently passaged Rappaport-Vassiliadis broth and incubated at 42°C for 18-24 h. They were then passaged onto CHROM agar Salmonella plates and incubated at 37°C for 18–24 h. Isolates were presumptively identified as Salmonella by colony morphology.

After biochemical identification, serotype of isolates was determined by slide and tube agglutination according to the latest versions of the Kauffmann-White scheme. All isolates were stored at -80°C until testing.

3. Antimicrobial Susceptibility Testing

The minimum inhibitory concentrations (MICs) of E. coli, Enterococci, Campylobacter, and Salmonella isolates were determined using the broth microdilution method according to the CLSI guidelines. Staphylococcus aureus ATCC 29213 and E. coli ATCC 25922 were used as quality control strains. C. jejuni ATCC33560 was used for quality control for MIC determination in Campylobacter organisms.

4. Resistance Breakpoints

Resistance breakpoints were defined microbiologically in serial studies. The intermediate MIC of two peak distributions was defined as the breakpoint where the MICs for the isolates were bimodally distributed (Working Party of the British Society for Antimicrobial Chemotherapy, 1996).

The MICs of each antimicrobial established by the CLSI were interpreted using the CLSI criteria. The breakpoints

of the other antimicrobial agents were determined microbiologically.

5. Statistical analysis

Resistance rates of the fifth stage were compared with the third and fourth stages using the chi-square test followed by multiple comparisons made by Ryan's method. If the expected frequency was less than 5, fisher's exact test was used. Difference with p<0.05 was considered significant.

Table 2.1. Distribution of MICs and resistance (%) in Escherichia coli from cattle (n=299), pigs (n=143), broilers (n=205) and layers (n=195) in 2012_Farm

Antimicrobial agent	Animal species			%Resistant	95% Distribution(%) of MICs															
					interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	8.0	6.4	3.86-9.75						0.7	13.7	60.9	17.7	0.7	0.3			6.0	
	Pigs	4.0	>128	28.7	21.42-36.83							10.5	49.0	11.9			0.7		28.0	
	Broilers	8.0	>128	44.9	37.94-51.97							14.1	33.7	6.8	0.5	0.5		0.5	43.9	
	Layers	4.0	>128	12.3	8.04-17.76						1.0	16.9	53.8	14.9	1.0	0.5		0.5	11.3	
	Total	4.0	>128	20.9	18.20-23.81						0.5	14.0	50.6	13.4	0.6	0.4	0.1	0.2	20.2	
Cefazolin	Cattle	≦1	2.0	1.7	0.54 - 3.86						64.9	28.8	3.3	1.3		0.3	0.3		1.0	
	Pigs	≦1	4.0	1.4	0.16 - 4.97						51.7	31.5	12.6	2.8					1.4	
	Broilers	2.0	16.0	9.8	6.06 - 14.67						43.9	31.2	11.2	0.5	3.4		1.0		8.8	
	Layers	≦1	2.0	3.1	1.13 - 6.58						57.4	35.4	2.6	1.0	0.5				3.1	
	Total	≦1	4.0	3.9	2.71 - 5.47						55.8	31.4	6.7	1.3	1.0	0.1	0.4		3.4	
Cefotaxime	Cattle	≤ 0.5	≤ 0.5	2.0	0.73-4.32					96.7	1.0	0.3	0.7	0.3	0.7	0.3				
	Pigs	≤ 0.5	≤ 0.5	2.8	0.76 - 7.01					96.5	0.7		1.4	1.4						
	Broilers	≤ 0.5	2.0	8.8	5.28 - 13.53					87.3	2.4	1.5	2.4	1.5	2.4	1.0	1.5			
	Layers	≤ 0.5	≤ 0.5	3.6	1.45 - 7.26					94.9	1.5		1.0	1.0		0.5		1.0		
	Total	≤ 0.5	≤ 0.5	4.2	2.91 - 5.74					93.9	1.4	0.5	1.3	1.0	0.8	0.5	0.4	0.2		
Streptomycin	Cattle	4.0	64.0	15.1	11.19-19.62							1.7	49.2	29.8	4.3	3.7	5.4	3.0	3.0	
	Pigs	16.0	>128	39.9	31.77-48.38								22.4	26.6	11.2	6.3	12.6	5.6	15.4	
	Broilers	8.0	>128	38.0	31.37-45.08								25.4	27.3	9.3	4.4	3.9	5.4	24.4	
	Layers	8.0	128.0	18.5	13.27-24.64							0.5	41.0	30.3	9.7	3.6	1.5	4.6	8.7	
	Total	8.0	>128	25.7	22.73-28.75							0.7	36.9	28.7	8.0	4.3	5.3	4.4	11.6	
Gentamicin	Cattle	≤ 0.5	1.0	0.0	0-1.23					87.0	11.7	1.3				=				
	Pigs	≤ 0.5	1.0	2.8	0.76 - 7.01					79.7	14.0	3.5				0.7	1.4	0.7		
	Broilers	≤ 0.5	1.0	3.4	1.38 - 6.91					76.6	16.6	3.4				1.5	2.0			
	Layers	≤ 0.5	1.0	1.0	0.12 - 3.66					82.6	13.8	2.1	0.5		0.5	0.5				
	Total	≤ 0.5	1.0	1.5	0.82 - 2.63					82.2	13.8	2.4	0.1		0.1	0.6	0.7	0.1		
Kanamycin	Cattle	4.0	8.0	2.3	0.94 - 4.77						0.3	34.4	53.2	7.7	2.0				2.3	
	Pigs	4.0	8.0	7.0	3.40-12.49							20.3	53.1	17.5	2.1		1.4		5.6	
	Broilers	4.0	>128	27.8	21.78-34.48							17.6	43.4	10.2	1.0		0.5		27.3	
	Layers	4.0	8.0	3.1	1.13 - 6.58						1.0	21.5	59.5	12.8	1.5	0.5			3.1	
	Total	4.0	16.0	9.5	7.60-11.69						0.4	24.9	52.3	11.2	1.7	0.1	0.4		9.1	

Table2.1. Distribution of MICs and resistance(%) in Escherichia coli from cattle(n=299), pigs(n=143), broilers(n=205) and layers(n=195) in 2012_Farm

Antimicrobial	Animal	MIC	MIC	0/ D : - t t	95%						D	istribut	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	2.0	64.0	22.4	17.80-27.57						17.1	34.4	24.4	1.7	2.0	2.3	9.4	8.7		
	Pigs	64.0	>64	60.1	51.62-68.23						11.2	19.6	7.7	1.4	1.4	2.8	21.0	35.0		
	Broilers	64.0	>64	58.5	51.46-65.36					1.0	10.2	18.0	9.8	2.4		2.9	21.5	34.1		
	Layers	4.0	>64	37.9	31.11-45.16					0.5	20.0	24.1	16.9	0.5	1.0	1.5	16.9	18.5		
	Total	4.0	>64	41.2	37.86-44.63					0.4	15.1	25.5	16.3	1.5	1.2	2.4	16.0	21.6		
Nalidixic acid	Cattle	4.0	8.0	3.7	1.85 - 6.49						0.7	15.1	68.9	11.7					3.7	
	Pigs	4.0	16.0	9.8	5.45 - 15.89							7.0	69.9	9.8	3.5		0.7	1.4	7.7	
	Broilers	4.0	>128	30.2	24.04-37.03							10.2	46.8	8.8	3.9	2.0	2.9	2.9	22.4	
	Layers	4.0	>128	16.4	11.50-22.37							11.8	64.6	6.2	1.0		2.1	2.6	11.8	
	Total	4.0	>128	14.1	11.84-16.68						0.2	11.8	62.7	9.4	1.8	0.5	1.3	1.5	10.8	
Ciprofloxacin	Cattle	≦0.03	≤ 0.03	1.0	0.20-2.91	94.6	1.7		1.7	0.3	0.3	0.3		1.0						
	Pigs	≤ 0.03	0.1	0.7	0.01 - 3.84	84.6	1.4	4.9	6.3	2.1				0.7						
	Broilers	≤ 0.03	1.0	7.8	4.52 - 12.37	65.4		5.4	13.2	5.4	1.5	1.5	2.9	4.9						
	Layers	≤ 0.03	0.3	1.0	0.12 - 3.66	81.5	2.6	3.6	7.7	2.6	1.0		0.5	0.5						
	Total	≤ 0.03	0.3	2.6	1.64-3.93	82.8	1.4	3.0	6.7	2.4	0.7	0.5	0.8	1.8						
Colistin	Cattle	0.3	0.5	0.0	0 - 1.23			6.0	74.2	16.1	1.7	0.7	1.3							
	Pigs	0.3	0.5	0.0	0 - 2.55			6.3	67.8	19.6	1.4	2.8	2.1							
	Broilers	0.3	0.5	0.0	0 - 1.79			3.4	71.2	17.6	2.9	3.4	1.5							
	Layers	0.3	0.5	0.0	0-1.88			4.1	71.3	21.5	2.6		0.5							
	Total	0.3	0.5	0.0	0-0.44			5.0	71.7	18.3	2.1	1.5	1.3							
Chloramphenicol	Cattle	8.0	8.0	3.3	1.61 - 6.07							0.3	22.1	69.2	5.0	0.7	1.3	0.7	0.7	
	Pigs	8.0	128.0	26.6	19.54-34.61								18.2	54.5	0.7	4.2	9.1	6.3	7.0	
	Broilers	8.0	64.0	16.6	11.76-22.40							1.5	18.5	56.1	7.3	3.9	5.4	2.4	4.9	
	Layers	8.0	16.0	9.7	5.96 - 14.80								16.4	70.3	3.6	0.5	1.5	0.5	7.2	
	Total	8.0	32.0	12.0	9.87-14.39							0.5	19.2	63.8	4.5	2.0	3.7	2.0	4.3	
Trimethoprim	Cattle	0.5	1.0	2.3	0.94 - 4.77				21.7	39.5	29.8	5.4	1.0	0.3		2.3				
	Pigs	1.0	>16	35.0	27.18-43.38				15.4	30.1	16.8	2.8			0.7	34.3				
	Broilers	1.0	>16	33.2	26.76-40.08				15.6	31.7	15.6	2.4	1.5			33.2				
	Layers	0.5	>16	13.3	8.89-18.93				20.0	35.9	23.1	4.6	1.5	1.5		13.3				
	Total	0.5	>16	17.9	15.39-20.70				18.8	35.2	22.6	4.0	1.1	0.5	0.1	17.8				

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 2.2. Distribution of MICs and resistance(%) in Escherichia coli from cattle(n=240), pigs(n=132), broilers(n=131) and layers(n=136) in 2013_Farm

Antimicrobial	Animal	MIC	MIC	0/ D : 4 4	95%			Í	•		Г	istribu	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	8.0	7.1	4.18-11.10						2.5	19.2	60.4	10.8					7.1	
1	Pigs	4.0	>128	30.3	22.61-38.91						3.0	23.5	40.2	3.0				3.8	26.5	
	Broilers	8.0	>128	47.3	38.54-56.24							19.1	26.0	7.6			0.8	4.6	42.0	
	Layers	4.0	>128	16.9	11.03-24.30						0.7	21.3	45.6	14.7	0.7			1.5	15.4	
	Total	4.0	>128	22.2	19.05-25.65						1.7	20.5	46.0	9.4	0.2		0.2	2.0	20.0	
Cefazolin	Cattle	≦1	2.0	0.0	0-1.53						59.6	34.2	4.2	1.3	0.8					
	Pigs	≤ 1	4.0	1.5	0.18 - 5.37						50.0	38.6	7.6	2.3				0.8	0.8	
	Broilers	2.0	8.0	5.3	2.17 - 10.7						32.8	39.7	15.3	5.3	1.5		0.8	0.8	3.8	
	Layers	2.0	4.0	2.9	0.8 - 7.36						44.1	41.2	9.6	1.5	0.7			1.5	1.5	
	Total	2.0	4.0	2.0	1.08-3.46						48.8	37.7	8.3	2.3	0.8		0.2	0.6	1.3	
Cefotaxime	Cattle	≤ 0.5	≤ 0.5	0.0	0 - 1.53					98.3	1.7									
	Pigs	≤ 0.5	≤ 0.5	0.8	0.01 - 4.15					97.7	0.8	0.8		0.8						
	Broilers	≤ 0.5	≤ 0.5	4.6	1.69 - 9.71					94.7	0.8		1.5	2.3	0.8					
	Layers	≤ 0.5	≤ 0.5	2.9	0.80 - 7.36					95.6	1.5		1.5		1.5					
	Total	≤ 0.5	≤ 0.5	1.7	0.86-3.06					96.9	1.3	0.2	0.6	0.6	0.5					
Streptomycin	Cattle	8.0	64.0	20.0	15.13-25.63								36.3	40.4	3.3	4.6	5.4	4.6	5.4	
	Pigs	8.0	>128	43.9	35.31-52.84								22.7	28.0	5.3	6.1	6.8	9.1	22.0	
	Broilers	8.0	>128	38.9	30.53-47.84							0.8	19.8	32.1	8.4	6.9	2.3	5.3	24.4	
	Layers	8.0	128.0	14.7	9.22 - 21.80							1.5	30.1	47.8	5.9	3.7	0.7	2.9	7.4	
	Total	8.0	>128	27.7	24.26-31.35							0.5	28.8	37.7	5.3	5.2	4.1	5.3	13.1	
Gentamicin	Cattle	≤ 0.5	1.0	0.4	0.01 - 2.30					82.9	16.3	0.4					0.4			
	Pigs	≤ 0.5	1.0	1.5	0.18 - 5.37					75.0	19.7	2.3	1.5			1.5				
	Broilers	≤ 0.5	1.0	0.8	0.01 - 4.18					78.6	16.8	3.8			0.8					
	Layers	≤ 0.5	1.0	0.0	0-2.68					77.2	19.1	3.7								
	Total	≤ 0.5	1.0	0.6	0.17-1.60					79.2	17.7	2.2	0.3		0.2	0.3	0.2			
Kanamycin	Cattle	4.0	8.0	2.5	0.92 - 5.37						1.3	45.0	42.9	7.9	0.4				2.5	
	Pigs	4.0	8.0	7.6	3.69 - 13.50						0.8	37.1	46.2	6.8	1.5				7.6	
	Broilers	4.0	>128	24.4	17.34-32.70						1.5	35.9	35.1	1.5	1.5			0.8	23.7	
	Layers	4.0	8.0	5.9	2.57 - 11.27						0.7	33.8	47.1	12.5					5.9	
	Total	4.0	8.0	8.8	6.68-11.23						1.1	39.1	42.9	7.4	0.8			0.2	8.6	

Table 2.2. Distribution of MICs and resistance(%) in Escherichia coli from cattle(n=240), pigs(n=132), broilers(n=131) and layers(n=136) in 2013_Farm

Antimicrobial	Animal	MIC	MIC	0/Pasistant	95% Confidence						D	istribut	tion(%)	of MI	Cs					
agent	species	MHC_{50}	MIC_{90}	% Kes istant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	2.0	64.0	22.5	17.37-28.32						16.3	41.7	18.3	1.3	1.7	2.5	9.2	9.2		
	Pigs	32.0	>64	53.8	44.90-62.50						15.9	21.2	9.1		1.5	2.3	22.0	28.0		
	Broilers	64.0	>64	61.1	52.16-69.47						6.1	23.7	8.4	0.8		5.3	29.8	26.0		
	Layers	2.0	>64	24.3	17.32-32.36						16.2	37.5	22.1			2.2	10.3	11.8		
	Total	4.0	>64	37.2	33.48-41.13						14.1	32.9	15.2	0.6	0.9	3.0	16.3	17.1		
Nalidixic acid	Cattle	4.0	4.0	1.3	0.25 - 3.61						0.4	19.2	72.1	7.1		0.4			0.8	
	Pigs	4.0	8.0	9.8	5.34 - 16.26							19.7	62.1	8.3				3.0	6.8	
	Broilers	4.0	>128	35.1	26.98-43.94							9.9	47.3	6.1	1.5	0.8	1.5	3.8	29.0	
	Layers	4.0	8.0	9.6	5.18 - 15.80						0.7	16.9	67.6	5.1			2.2	1.5	5.9	
	Total	4.0	128.0	11.7	9.34-14.49						0.3	16.9	64.0	6.7	0.3	0.3	0.8	1.7	8.9	
Ciprofloxacin	Cattle	≦0.03	≦0.03	0.0	0-1.53	96.3	2.1	0.4	0.8		0.4									
	Pigs	≤ 0.03	0.1	0.8	0.01 - 4.15	87.9	1.5	5.3	2.3	1.5	0.8			0.8						
	Broilers	≤ 0.03	1.0	7.6	3.72 - 13.60	59.5		8.4	15.3	5.3	3.1	0.8	1.5	6.1						
	Layers	≤ 0.03	0.1	0.0	0-2.68	88.2	2.2	2.2	6.6		0.7									
	Total	≤ 0.03	0.1	1.7	0.86 - 3.06	85.3	1.6	3.4	5.3	1.4	1.1	0.2	0.3	1.4						
Colistin	Cattle	0.3	0.5	0.0	0 - 1.53			25.8	52.9	12.5	4.6	4.2								
	Pigs	0.3	1.0	0.0	0 - 2.76			24.2	50.8	14.4	3.8	3.8	2.3	0.8						
	Broilers	0.3	0.5	0.0	0-2.78			23.7	44.3	25.2	0.8	4.6	1.5							
	Layers	0.3	0.5	0.0	0-2.68			19.1	45.6	25.7	8.1	1.5								
	Total	0.3	0.5	0.0	0-0.58			23.6	49.1	18.3	4.4	3.6	0.8	0.2						
Chloramphenicol	Cattle	8.0	8.0	4.6	2.30 - 8.06							1.7	25.0	67.5	1.3			2.1	2.5	
	Pigs	8.0	128.0	22.0	15.23-30.01							1.5	21.2	53.8	1.5	5.3	4.5	3.0	9.1	
	Broilers	8.0	128.0	22.1	15.35-30.23							1.5	17.6	53.4	5.3	2.3	6.1	5.3	8.4	
	Layers	8.0	8.0	6.6	3.07 - 12.20							2.2	23.5	64.7	2.9		4.4	0.7	1.5	
	Total	8.0	64.0	12.2	9.76 - 15.00							1.7	22.4	61.2	2.5	1.6	3.1	2.7	4.9	
Trimethoprim	Cattle	0.5	1.0	4.6	2.30-8.06				13.8	53.8	23.8	3.8	0.4			4.6				
	Pigs	0.5	>16	28.0	20.56-36.51				20.5	36.4	14.4	0.8				28.0				
	Broilers	1.0	>16	40.5	31.97-49.39				9.2	29.0	17.6	3.1	0.8			40.5				
	Layers	0.5	>16	12.5	7.45 - 19.26				14.7	47.8	19.9	5.1				12.5				
	Total	0.5	>16	18.5	15.53-21.70				14.4	43.8	19.7	3.3	0.3			18.5				

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 2.3. Distribution of MICs and resistance (%) in *Escherichia coli* from cattle (n=248), pigs (n=195) and broilers (n=133) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Dasistant	95%						Di	stribut	ion(%)	of MIC	Cs					
agent	species	$MIIC_{50}$	MIC_{90}	%Kesistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	4.0	2.4	0.89-5.20						2.4	30.2	60.1	4.4	0.4				2.4	
r	Pigs	4.0	>128	32.3	25.80-39.37						2.1	17.9	36.9	10.8			0.5	2.6	29.2	
	Broilers	4.0	>128	30.8	23.11-39.42							12.0	39.8	15.0	2.3				30.8	
	Layers				-															
	Total	4.0	>128	19.1	15.96-22.55						1.7	21.9	47.6	9.0	0.7		0.2	0.9	18.1	
Cefazolin	Cattle	≦1	2.0	0.4	0.01-2.23						50.8	44.8	2.8	1.2				0.4		
	Pigs	2.0	4.0	1.0	0.12 - 3.66						40.0	43.1	12.3	3.6		1.0				
	Broilers	2.0	8.0	3.0	0.82 - 7.53						31.6	39.1	16.5	7.5	2.3	0.8	0.8		1.5	
	Layers				-															
	Total	2.0	4.0	1.2	0.48 - 2.49						42.7	42.9	9.2	3.5	0.5	0.5	0.2	0.2	0.3	
Cefotaxime	Cattle	≤ 0.5	≤ 0.5	0.0	0-1.48					99.6		0.4								
	Pigs	≤ 0.5	≤ 0.5	0.0	0-1.88					100.0										
	Broilers	≤ 0.5	≤ 0.5	1.5	0.18 - 5.33					97.0	0.8	0.8	0.8					0.8		
	Layers				-															
	Total		≤ 0.5	0.3	0.04 - 1.25					99.1	0.2	0.3	0.2					0.2		
Streptomycin	Cattle	8.0	64.0	14.9	10.72-19.98								13.3	57.3	14.5	2.0	4.4	8.5		
	Pigs	16.0	>64	44.1	37.01-51.38							2.6	12.3	23.1	17.9	5.6	8.2	30.3		
	Broilers	16.0	>64	39.1	30.75-47.94								9.8	31.6	19.5	4.5	5.3	29.3		
	Layers				-															
	Total	8.0	>64	30.4	26.64-34.32							0.9	12.2	39.8	16.8	3.8	5.9	20.7		
Gentamicin	Cattle	1.0	2.0	0.0	0-1.48					38.7	44.4	16.5		0.4						
	Pigs	≤ 0.5	2.0	0.5	0.01-2.83					50.8	26.7	17.9	4.1			0.5				
	Broilers	1.0	2.0	1.5	0.18 - 5.33					26.3	33.1	34.6	4.5			1.5				
	Layers	• •	2.0	0 =	-					20.0	0 0	24.2	2.4	0.0		~ -				
T7 ·	Total	1.0	2.0	0.5	0.10-1.52					39.9	35.8	21.2	2.4	0.2		0.5	1		1.0	
Kanamycin	Cattle	4.0	8.0	1.2	0.25-3.50						0.4	16.9	49.2	29.8	2.4	o =	1.0		1.2	
	Pigs	4.0	32.0	9.7	5.96-14.80						0.5	18.5	35.9	28.7	6.2	0.5	1.0		8.7	
	Broilers	8.0	>128	24.1	17.07-32.24							9.0	27.1	27.8	11.3	0.8	1.5		22.6	
	Layers Total	4.0	16.0	9.4	- 7.12-12.06						0.3	15.6	39.6	29.0	5.7	0.3	0.7		8.7	
	IUIAI	4.0	10.0	0.4	1.14 14.00						0.0	10.0	00.0	40.0	0.1	0.0	0.7		0.1	

Table 2.3. Distribution of MICs and resistance(%) in *Escherichia coli* from cattle(n=248), pigs(n=195) and broilers(n=133) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Posistant	95% Confidence			ĺ	•		Di	stribut	ion(%)	of MIC	Cs					
agent	species	MIC_{50}	W11C ₉₀	%nesistani	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	2.0	64.0	19.0	14.26-24.40					2.0	41.5	20.2	8.9	8.5	3.6	2.0	6.5	6.9		
	$_{ m Pigs}$	64.0	>64	58.5	51.20-65.46					0.5	14.4	15.4	9.2	2.1	0.5	2.1	20.5	35.4		
	Broilers	8.0	>64	49.6	40.84-58.43						2.3	20.3	24.1	3.8	2.3	6.0	18.8	22.6		
	Layers				-															
	Total	4.0	>64	39.4	35.39-43.54					1.0	23.3	18.6	12.5	5.2	2.3	3.0	14.1	20.1		
Nalidixic acid	Cattle	4.0	8.0	2.4	0.89 - 5.20							15.7	73.8	6.9	1.2	0.8	0.8		0.8	
	Pigs	4.0	8.0	4.1	1.78 - 7.93							14.4	60.5	17.4	3.6			0.5	3.6	
	Broilers	8.0	>128	39.8	31.46-48.70							9.0	33.8	14.3	3.0	0.8	1.5	3.8	33.8	
	Layers				-															
	Total	4.0	128.0	11.6	9.12-14.54							13.7	60.1	12.2	2.4	0.5	0.7	1.0	9.4	
Ciprofloxacin	Cattle		≤ 0.03	0.0	0-1.48	94.8	2.8	0.8	1.2	0.4										
	Pigs		≤ 0.03	1.5	0.31-4.43	91.3	1.0	1.0	3.6	1.5				1.5						
	Broilers	≤ 0.03	1.0	6.0	2.63 - 11.51	57.9		5.3	18.8	6.0	3.8	2.3	3.0	3.0						
	Layers				-															
	Total	≤ 0.03		1.9	0.95 - 3.40	85.1	1.6	1.9	6.1	2.1	0.9	0.5	0.7	1.2	_					
Colistin	Cattle	0.3	0.5	0.0	0-1.48			48.4	35.9	11.3	3.2	1.2								
	Pigs	0.3	0.5	0.0	0-1.88			31.8	42.1	17.9	4.6	2.1	1.5							
	Broilers	0.3	0.5	0.8	0.01 - 4.12			36.1	45.1	12.8	1.5	2.3	1.5			0.8				
	Layers				-															
	Total	0.3	0.5	0.2	0-0.97			39.9	40.1	13.9	3.3	1.7	0.9			0.2				
Chloramphenicol	Cattle	8.0	8.0	5.2	2.82-8.80							0.8	33.5	56.9	3.6	2.4	1.2	0.8	0.8	
	Pigs	8.0	>128	23.6	17.81-30.19								22.6	49.7	4.1	3.1	4.6	5.6	10.3	
	Broilers	8.0	32.0	11.3	6.45 - 17.92								6.8	63.2	18.8	7.5	0.8	0.8	2.3	
	Layers				-															
	Total	8.0	32.0	12.8	10.22-15.86							0.3	23.6	55.9	7.3	3.8	2.3	2.4	4.3	
-					95%								. (2.1)	0.7.57.4	~					
Antimicrobial	Animal	MIC	MIC	%Rocietant	Confidence						Di	stribut	ion(%)	of MIC	Js					
agent	species	W11C50	W11C90	/ortesistant	interval			2.38/0.12	4.75/0.25	9.5/0.5	19/1	38/2	76/4	152/8	>152/8					
Sulfamethoxazole	Cattle	<0.00/0.30	9.5/0.5	2.0	0.65-4.65			74.2	9.3	7.3	3.2	4.0	. 3. 1		2.0					
/Trimethoprim	Pigs		9.5/0.5 >152/8	$\frac{2.0}{23.6}$	17.81-30.19			51.3	9.5 10.8	8.7	5.2 5.1	0.5		0.5	$\frac{2.0}{23.1}$					
riimeunoprim	Broilers				17.73-33.05			$\frac{51.5}{47.4}$	9.0	0. <i>t</i> 11.3	5.1	$\frac{0.3}{2.3}$		0.5	$\frac{23.1}{24.8}$					
	Dioners	4.10/0.20	-104/0	44.0	11.10 00.00			47.4	<i>9</i> .0	11.0	0.0	۵.ن			44.0					

60.2

8.7

2.4

4.3

0.2 14.4

White fields represent the range of dilutions tested.

Layers

Total

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

 $\leq 2.38/0.12 > 152/8 \quad 14.6$

MIC values greater than the highest concentration in the range are presented as one dilution step above the range

11.80-17.74

Table 2.4. Distribution of MICs and resistance (%) in Escherichia coli from cattle (n=341), pigs (n=127) and broilers (n=166) in 2013_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/ D	95%			Í	•		Б	istribu	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Kesistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	8.0	6.5	4.08-9.61						2.1	18.8	61.0	11.4	0.3	1.2	0.3		5.0	
	Pigs	4.0	>128	26.0	18.60-34.52						1.6	15.7	46.5	8.7	1.6				26.0	
	Broilers	8.0	>128	35.5	28.27-43.34						0.6	9.6	39.2	15.1			0.6	1.2	33.7	
	Layers				-															
	Total	4.0	>128	18.0	15.06-21.20						1.6	15.8	52.4	11.8	0.5	0.6	0.3	0.3	16.7	
Cefazolin	Cattle	≤ 1	2.0	0.3	0-1.63						73.6	23.8	2.3			0.3				
	Pigs	2.0	4.0	0.8	0.01 - 4.31						48.8	35.4	15.0						0.8	
	Broilers	2.0	8.0	7.8	4.23- 13.02						42.2	30.1	12.7	7.2		1.2	0.6	0.6	5.4	
	Layers				-															
	Total	≦1	4.0	2.4	1.33-3.88						60.4	27.8	7.6	1.9		0.5	0.2	0.2	1.6	
Cefotaxime	Cattle	≤ 0.5	≤ 0.5	0.0	0-1.08					93.3	4.1	2.6								
	Pigs	≤ 0.5	1.0	0.0	0-2.87					88.2	6.3	5.5								
	Broilers	≤ 0.5	≤ 0.5	4.8	2.10 - 9.28					93.4	1.2	0.6	2.4	1.2		0.6	0.6			
	Layers				-															
	Total		≤ 0.5	1.3	0.54 - 2.48					92.3	3.8	2.7	0.6	0.3		0.2	0.2			
Streptomycin	Cattle	8.0	64.0	12.3	9.02 - 16.29							1.5	36.7	40.2	9.4	1.2	3.8	7.3		
	Pigs	16.0	>64	44.9	36.05-53.96							0.8	15.0	29.9	9.4	6.3	3.9	34.6		
	Broilers	16.0	>64	38.6	31.11-46.42							0.6	12.0	33.7	15.1	4.8	6.0	27.7		
	Layers				-															
	Total	8.0	>64	25.7	22.34-29.30							1.1	25.9	36.4	10.9	3.2	4.4	18.1		
Gentamicin	Cattle	≤ 0.5	1.0	0.3	0-1.63					77.4	20.5	1.8					0.3			
	Pigs	≤ 0.5	1.0	2.4	0.48 - 6.75					61.4	32.3	3.9				0.8	0.8	0.8		
	Broilers	1.0	2.0	1.8	0.37 - 5.20					37.3	29.5	27.1	4.2					1.8		
	Layers				-															
	Total	≤ 0.5		1.1	0.44 - 2.27					63.7	25.2	8.8	1.1			0.2	0.3	0.6		
Kanamycin	Cattle	4.0	8.0	1.5	0.47 - 3.39						1.8	40.5	44.3	11.4	0.6				1.5	
	Pigs	4.0	8.0	7.9	3.84-14.01						3.1	21.3	48.0	18.1	1.6				7.9	
	Broilers	8.0	>128	24.1	17.80-31.34							9.6	34.9	24.1	7.2				24.1	
	Layers				-															
	Total	4.0	16.0	8.7	6.60-11.15						1.6	28.5	42.6	16.1	2.5				8.7	

Table 2.4. Distribution of MICs and resistance(%) in *Escherichia coli* from cattle(n=341), pigs(n=127) and broilers(n=166) in 2013_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Posistant	95% Confidence						D	istribu	tion(%)	of MI	Cs					
agent	species	MIC_{50}	W11C ₉₀	%nesistant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	2.0	>64	16.4	12.65-20.79					0.6	15.5	44.0	19.6	3.8	1.8	1.2	2.9	10.6		
	Pigs	64.0	>64	62.2	53.17-70.66						6.3	18.1	7.9	5.5	0.8	1.6	15.7	44.1		
	Broilers	4.0	>64	44.0	36.29-51.88					1.8	9.0	31.9	12.7	0.6	1.2	3.0	19.3	20.5		
	Layers				-															
	Total	4.0	>64	32.8	29.16-36.62					0.8	12.0	35.6	15.5	3.3	1.4	1.7	9.8	19.9		
Nalidixic acid	Cattle	4.0	8.0	1.8	0.64 - 3.80						0.6	10.6	75.7	10.3	1.2	0.6			1.2	
	Pigs	4.0	64.0	11.0	6.15 - 17.81							3.9	62.2	19.7	3.1		3.1	0.8	7.1	
	Broilers	4.0	>128	36.1	28.83-43.96							9.6	48.2	4.8	1.2	0.6	1.2	4.2	30.1	
	Layers				-															
	Total	4.0	128.0	12.6	10.13-15.46						0.3	9.0	65.8	10.7	1.6	0.5	0.9	1.3	9.9	
Ciprofloxacin	Cattle	≤ 0.03	≤ 0.03	0.6	0.07 - 2.11	96.5	1.2	0.6	1.2					0.6						
	Pigs	≤ 0.03	0.1	0.8	0.01 - 4.31	87.4	3.9	4.7	2.4			0.8		0.8						
	Broilers	≤ 0.03	0.5	5.4	2.50 - 10.05	60.8	1.2	9.6	17.5	1.2	3.0	1.2	1.2	4.2						
	Layers				-															
	Total	≤ 0.03	0.1	1.9	0.98 - 3.29	85.3	1.7	3.8	5.7	0.3	0.8	0.5	0.3	1.6						
Colistin	Cattle	0.3	1.0	0.0	0-1.08			25.5	37.8	25.8	9.7	0.9	0.3							
	Pigs	0.3	0.5	0.0	0-2.87			17.3	59.1	22.0		1.6								
	Broilers	0.5	1.0	0.6	0.01 - 3.32			10.2	29.5	39.8	15.7	2.4	1.2	0.6		0.6				
	Layers				-															
	Total	0.3	1.0	0.2	0-0.88			19.9	39.9	28.7	9.3	1.4	0.5	0.2		0.2				
Chloramphenicol	Cattle	8.0	8.0	2.3	1.01 - 4.58						0.3	0.3	18.8	72.1	6.2	0.6	0.3	0.3	1.2	
	Pigs	8.0	>128	23.6	16.54-31.98								12.6	53.5	10.2	2.4	3.9	5.5	11.8	
	Broilers	8.0	32.0	11.4	7.03 - 17.30						0.6		24.1	57.8	6.0	3.0	4.2	1.8	2.4	
	Layers				-															
	Total	8.0	16.0	9.0	6.88-11.50						0.3	0.2	18.9	64.7	6.9	1.6	2.1	1.7	3.6	
Antimicrobial	Animal			_	95%						D	istribu	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence			2 20/0 12		0.5/0.5	10/1	00/0	7014	1 50/0	> 1 50/0					
					interval				4.75/0.25			38/2		152/8	>152/8					
Sulfamethoxazole	Cattle		9.5/0.5		1.41 - 5.33			66.9	16.7	8.5	4.1	0.9	0.3		2.6					
/Trimethoprim	Pigs		>152/8		19.30-35.36			44.1	8.7	7.1	8.7	4.7			26.8					
	Broilers	4.75/0.25	152/8	31.9	24.91-39.60			48.2	8.4	7.2	3.6	0.6		31.9						

57.4 12.9 7.9

4.9

1.6

6.8

White fields represent the range of dilutions tested.

Layers Total

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

 $\leq 2.38/0.12$ 152/8 15.3

MIC values greater than the highest concentration in the range are presented as one dilution step above the range

12.58-18.35

Table 3.1. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=14), pigs(n=39), broilers(n=90) and layers(n=76) in 2012_Farm

Antimicrobial	Animal	MIC	MIC	0/Dasistant	95% Confidence						Di	stribut	ion(%)	of MI	Cs					
agent	species	MIC_{50}	WIIC ₉₀	%nesistant	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	1.0	0.0	0-23.17	0.00	14.3	7.1	7.1	71.4		-		10		01	120		012	012
r	Pigs	1.0	1.0	2.6	0.06-13.48				28.2	66.7	2.6							2.6		
	Broilers	1.0	1.0	0.0	0-4.02				10.0	87.8	2.2									
	Layers	1.0	1.0	0.0	0 - 4.74				23.7	76.3										
	Total	1.0	1.0	0.5	0.01 - 2.52		0.9	0.5	17.8	79.0	1.4							0.5		
Dihydrostreptomycin	Cattle	64.0	128.0	35.7	12.75-64.87									14.3	14.3	35.7	35.7			
	Pigs	128.0	512.0	51.3	34.78-67.59							2.6			7.7	38.5	5.1			46.2
	Broilers	64.0	512.0	40.0	29.81-50.87										5.6	54.4	14.4		2.2	23.3
	Layers	64.0	512.0	34.2	23.70-45.99										22.4	43.4	15.8	2.6		15.8
	Total	64.0	512.0	39.7	33.19-46.54							0.5		0.9	12.3	46.6	14.6	0.9	0.9	23.3
Gentamicin	Cattle	16.0	16.0	0.0	0-23.17							28.6		71.4						
	Pigs	16.0	>256	12.8	4.29 - 27.43						5.1	7.7	20.5	53.8					12.8	
	Broilers	16.0	32.0	16.7	9.63 - 26.00								40.0	43.3	7.8				8.9	
	Layers	16.0	16.0	6.6	2.17 - 14.69						1.3	5.3	38.2	48.7	6.6					
	Total	16.0	32.0	11.4	7.52 - 16.39						1.4	5.0	33.3	48.9	5.5				5.9	
Kanamycin	Cattle	64.0	64.0	0.0	0-23.17									7.1	21.4	71.4				
	Pigs	64.0	512.0	35.9	21.17-52.91									7.7	12.8	43.6				35.9
	Broilers	64.0	512.0	37.8	27.76-48.62										18.9	43.3	8.9	2.2		26.7
	Layers	64.0	512.0	31.6	21.38-43.26									5.3	26.3	36.8	13.2	2.6	2.6	
	Total	64.0	512.0	32.9	26.69-39.53									3.7	20.5	42.9	8.2	1.8	0.9	21.9
Oxytetracycline	Cattle	0.5	1.0	0.0	0-23.17			7.1	64.3	28.6										
	Pigs		>64	61.5	44.51-76.81			7.7	10.3	12.8		2.6	5.1	2.6	7.7	5.1	46.2			
	Broilers	32.0	>64	68.9	58.26-78.24			2.2	4.4	12.2		2.2	10.0	15.6	12.2	8.9	32.2			
	Layers	32.0	>64	57.9	46.01-69.14			7.9	21.1	11.8	1.3			6.6	5.3	13.2	32.9			
	Total	32.0		59.4	52.53-65.93			5.5	15.1	13.2	0.5	1.4	5.0	9.1	8.2	9.1	32.9			
Chloramphenicol	Cattle	8.0	8.0	0.0	0-23.17						14.3	28.6	57.1							
	Pigs	8.0	128.0	48.7	32.41-65.22						5.1	17.9	28.2		7.7	2.6	35.9			2.6
	Broilers	8.0	16.0	10.0	4.67 - 18.14							20.0	63.3	6.7		5.6	4.4			
	Layers	8.0	16.0	5.3	1.45 - 12.94						5.3	31.6	46.1	11.8	2.6	1.3	1.3			
	Total	8.0	64.0	14.6	10.21-20.00						3.7	24.2	50.7	6.8	2.3	3.2	8.7			0.5
Bacitracin	Cattle	256.0	512.0	-	-										14.3		14.3	57.1	14.3	
	Pigs	256.0	512.0	-	-										5.1		12.8	61.5	12.8	
	Broilers	256.0	512.0	-	-										2.2	4.4	25.6	50.0	5.6	
	Layers	256.0	512.0	-	-										3.9	2.6	25.0	55.3	9.2	
	Total	256.0	512.0		-										4.1	2.7	22.4	54.3	8.7	7.8

Table 3.1. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=14), pigs(n=39), broilers(n=90) and layers(n=76) in 2012_Farm

Antimicrobial	Animal	MIC-	MICas	%Rosistant	95% Confidence						D	istribut	ion(%)	of MI	Cs					
agent	species	W11C ₅₀	W11090	/onesistant	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	4.0	8.0	-	-					28.6		57.1	14.3							
5	Pigs	4.0	8.0	-	-				5.1		28.2	56.4	5.1	5.1						
	Broilers	4.0	8.0	-	-					2.2	16.7	68.9	12.2							
	Layers	4.0	8.0	-	-					1.3	21.1	60.5	15.8					1.3		
	Total	4.0	8.0	-	-				0.9	3.2	19.2	63.0	12.3	0.9				0.5		
Erythromycin	Cattle	0.5	2.0	0.0	0-23.17		14.3	14.3	28.6	14.3	28.6									
	Pigs	16.0	>128	53.8	37.18-69.91			2.6	5.1	17.9	20.5		2.6	2.6				48.7		
	Broilers	16.0	>128	53.3	42.51-63.93				8.9	20.0	15.6	2.2	2.2	8.9	1.1	1.1	2.2	37.8		
	Layers	1.0	>128	27.6	17.98-39.11		6.6	5.3	7.9	30.3	22.4		1.3					26.3		
	Total	2.0	>128	41.1	34.51-47.93		3.2	3.2	9.1	22.8	19.6	0.9	1.8	4.1	0.5	0.5	0.9	33.3		
Tylosin	Cattle	2.0	2.0	0.0	0-23.17					14.3	78.6	7.1								
	Pigs	128.0	>256	51.3	34.78-67.59					15.4	17.9	10.3	2.6	2.6			2.6	2.6	46.2	
	Broilers	128.0	>256	55.6	44.69-66.04					5.6	26.7	12.2				1.1	5.6	7.8	41.1	
	Layers	2.0	>256	27.6	17.98-39.11					23.7	32.9	13.2	2.6				1.3		26.3	
	Total	4.0	>256	41.6	34.95-48.39					14.2	30.6	11.9	1.4	0.5		0.5	3.2	3.7	34.2	
Lincomycin	Cattle	32.0	32.0	0.0	0-23.17								21.4	21.4	57.1					
	Pigs	256.0	>256	56.4	39.62-72.19				5.1		2.6			15.4	20.5		2.6	7.7	46.2	
	Broilers	128.0	>256	54.4	43.60-64.99							1.1	2.2	17.8	22.2	2.2	5.6	10.0	38.9	
	Layers	32.0	>256	27.6	17.98-39.11								3.9	23.7	44.7		1.3		26.3	
	Total	32.0	>256	42.0	35.39-48.85				0.9		0.5	0.5	3.7	19.6	32.0	0.9	3.2	5.5	33.3	
Enrofloxacin	Cattle	1.0	1.0	0.0	0-23.17				21.4	78.6										
	Pigs	1.0	2.0	0.0	0-9.03			5.1	41.0	43.6	10.3									
	Broilers	1.0	1.0	0.0	0 - 4.02			2.2	30.0	61.1	6.7									
	Layers	1.0	1.0	2.6	0.32 - 9.19			3.9	44.7	46.1	2.6				2.6					
	Total	1.0	1.0	0.9	0.11 - 3.26			3.2	36.5	53.9	5.5				0.9					
Salinomycin	Cattle	2.0	2.0	-	-				7.1	28.6	64.3									
	Pigs	1.0	2.0	-	-				10.3	53.8	35.9									
	Broilers	2.0	8.0	-	-				2.2	32.2	27.8	16.7	13.3	7.8						
	Layers	1.0	2.0	-	-				10.5	46.1	36.8	1.3	3.9		1.3					
	Total	2.0	8.0		-				6.8	40.6	34.7	7.3	6.8	3.2	0.5					

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

MIC values greater than the highest concentration in the range are presented as one dilution step above the range

Table 3.2. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=3), pigs(n=22), broilers(n=55) and layers(n=67) in 2013_Farm

Antimicrobial	Animal				95%						D:	istrihu	tion(%)	of MIC	ls.					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence							1001100								
	-				interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	1.0	0.0	0-70.76					100										
	Pigs	1.0	1.0	0.0	0-15.44				13.6	81.8	4.5									
	Broilers	1.0	1.0	0.0	0-6.49			1.8	5.5	92.7										
	Layers	1.0	1.0	0.0	0-5.36			1.5	9.0	83.6	6.0									
	Total	1.0	1.0	0.0	0-2.48			1.4	8.2	87.1	3.4									
Dihydrostreptomycin		128.0	512.0	100.0	29.24-100												66.7			33.3
	Pigs	128.0		68.2	45.12-86.14										4.5	27.3	22.7	4.5	9.1	31.8
	Broilers	512.0	512.0	80.0	66.85-89.74										1.8	18.2	27.3	1.8		50.9
	Layers	128.0	512.0	62.7	49.95-74.29										7.5	29.9	46.3	1.5		14.9
	Total	128.0	512.0	70.7	62.68-77.96									•	4.8	24.5	36.1	2.0	1.4	31.3
Gentamicin	Cattle	8.0	16.0	0.0	0-70.76								66.7	33.3						
	Pigs	16.0	32.0	13.6	2.90 - 34.92						13.6	4.5	18.2	50.0	4.5	4.5	4.5			
	Broilers	16.0	32.0	16.4	7.76 - 28.81								21.8	61.8	7.3				9.1	
	Layers	16.0	32.0	13.4	6.33 - 23.98						1.5	4.5	13.4	67.2	11.9				1.5	
	Total	16.0	32.0	14.3	9.06-21.01						2.7	2.7	18.4	61.9	8.8	0.7	0.7		4.1	
Kanamycin	Cattle	64.0		33.3	0.84 - 90.58											66.7				33.3
	Pigs		512.0	27.3	10.72-50.23									13.6		59.1	9.1			18.2
	Broilers	128.0	512.0	50.9	37.07-64.65										7.3	41.8	9.1			41.8
	Layers	64.0	512.0	22.4	13.10-34.23									7.5	3.0	67.2	10.4			11.9
	Total	64.0	512.0	34.0	26.41-42.28									5.4	4.1	56.5	9.5			24.5
Oxytetracycline	Cattle	1.0	32.0	33.3	0.84 - 90.58				33.3	33.3					33.3					
	Pigs	>64	>64	77.3	54.62-92.18					22.7					13.6		63.6			
	Broilers	>64	>64	85.5	73.33-93.51				1.8	7.3			5.5	10.9	9.1	5.5	60.0			
	Layers	8.0	>64	49.3	36.81-61.76			1.5	17.9	28.4			3.0	3.0	13.4	1.5	31.3			
	Total	32.0	>64	66.7	58.42-74.22			0.7	9.5	19.7			3.4	5.4	12.2	2.7	46.3			
Chloramphenicol	Cattle	8.0	8.0	0.0	0-70.76								100.0							
	Pigs	8.0	128.0	31.8	13.86-54.88							9.1	40.9	18.2	9.1	9.1	13.6			
	Broilers	8.0	128.0	21.8	11.81-35.02							7.3	65.5	5.5	1.8	5.5	14.5			
	Layers	8.0	8.0	7.5	2.46 - 16.57							13.4	79.1			1.5	6.0			
	Total	8.0	128.0	16.3	10.74-23.32							10.2	68.7	4.8	2.0	4.1	10.2			
Bacitracin	Cattle	256.0		-	-												33.3	66.7		
	Pigs	256.0	512.0	-	-											9.1	22.7	50.0	18.2	
	Broilers	256.0	512.0	-	-												29.1	50.9	7.3	12.7
	Layers	256.0	512.0	-	-												10.4	68.7	10.4	10.4
	Total	256.0	512.0	-												1.4	19.7	59.2	10.2	9.5

Table 3.2. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=3), pigs(n=22), broilers(n=55) and layers(n=67) in 2013_Farm

Antimicrobial	Animal	MIC.	MICoo	%Rogistant	95% Confidence						Γ	istribut	cion(%)	of MI	Cs					
agent	species	W11050	1111090	/01 (E818(a11)	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	4.0	8.0	-	-							66.7	33.3			-			-	
	Pigs	8.0	8.0	-	-					4.5	9.1	31.8	50.0	4.5						
	Broilers	4.0	8.0	-	-							67.3	29.1	3.6						
	Layers	4.0	8.0	-	-				1.5	1.5	7.5	55.2	34.3							
	Total	4.0	8.0	-	-				0.7	1.4	4.8	56.5	34.7	2.0						
Erythromycin	Cattle	2.0	2.0	0.0	0-70.76				33.3		66.7									
	Pigs	>128	>128	59.1	36.35-79.30				4.5	9.1	18.2	9.1						59.1		
	Broilers	4.0	>128	49.1	35.31-63.01			1.8	9.1	9.1	25.5	5.5	1.8	3.6	3.6			40.0		
	Layers	2.0	>128	23.9	14.30-35.87		1.5	10.4	11.9	16.4	23.9	11.9	1.5					22.4		
	Total	2.0	>128	38.1	30.21-46.47		0.7	5.4	10.2	12.2	24.5	8.8	1.4	1.4	1.4			34.0		
Tylosin	Cattle	2.0	2.0	0.0	0-70.76					33.3	66.7									
	Pigs	>256	>256	54.5	32.21-75.62						22.7	9.1	4.5	9.1					54.5	
	Broilers	4.0		49.1	35.31-63.01						38.2	12.7						3.6	45.5	
	Layers	2.0	>256	22.4	13.10-34.23					3.0	67.2	7.5							22.4	
	Total	2.0	>256	36.7	28.94-45.08					2.0	49.7	9.5	0.7	1.4				1.4	35.4	
Lincomycin	Cattle	32.0	32.0	0.0	0-70.76										100.0					
	Pigs	>256	>256	63.6	40.65-82.81										27.3	9.1			63.6	
	Broilers	128.0		50.9	37.07-64.65										45.5	3.6	1.8	7.3	41.8	
	Layers		>256	22.4	13.10-34.23					1.5		1.5		1.5	64.2	9.0	3.0		19.4	
-	Total		>256	38.8	30.85-47.16					0.7		0.7		0.7	52.4	6.8	2.0	2.7	34.0	
Enrofloxacin	Cattle	0.5		0.0	0-70.76			33.3	33.3	33.3										
	Pigs	1.0	2.0	0.0	0 - 15.44				31.8	50.0	18.2									
	Broilers	1.0	1.0	5.5	1.13-15.13				32.7	60.0	1.8			1.8	3.6					
	Layers	1.0	2.0	1.5	0.03 - 8.04				20.9	68.7	9.0					1.5				
	Total	1.0	2.0	2.7	0.74 - 6.83			0.7	27.2	61.9	7.5			0.7	1.4	0.7				
Salinomycin	Cattle	2.0	2.0	-	-					33.3	66.7									
	Pigs	2.0	2.0	-	-					18.2	72.7	9.1								
	Broilers	2.0	8.0	-	-					20.0	47.3	9.1	23.6							
	Layers	2.0			-					35.8	49.3	9.0	6.0							
White fields repres	Total	2.0			-					27.2	52.4	8.8	11.6							

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 3.3. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=32), pigs(n=85) and broilers(n=104) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/10	95%						Dia	stribut	ion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	1.0	0.0	0-10.89	0.00	0.13	0.20	34.4	$\frac{1}{65.6}$		4	0	10	02	04	120	200	012	-012
711111111111111111111111111111111111111	Pigs	1.0	1.0	0.0	0-4.25			1.2	23.5	74.1	1.2									
	Broilers	1.0	1.0	0.0	0-3.49				1.9	95.2	1.9		1.0							
	Layers	_,,			-						_,,									
	Total	1.0	1.0	0.0	0-1.66			0.5	14.9	82.8	1.4		0.5							
Dihydrostreptomycin		128.0		90.6	74.97-98.03										3.1	6.3	50.0	28.1	3.1	9.4
1 0	Pigs		512.0	88.2	79.42-94.22										3.5	8.2	41.2	9.4		37.6
	Broilers	128.0		76.9	67.57-84.69											23.1	34.6	3.8		38.5
	Layers				-															
	Total	128.0	512.0	83.3	77.64-87.96										1.8	14.9	39.4	9.5	0.5	33.9
Gentamicin	Cattle	32.0	64.0	68.8	49.99-83.89							3.1		28.1	37.5	25.0			6.3	
	Pigs	32.0	>256	76.5	66.02-85.00							2.4	3.5	17.6	57.6	7.1			11.8	
	Broilers	16.0	>256	35.6	26.43-45.57								4.8	59.6	22.1	1.9			11.5	
	Layers				-															
	Total	32.0	>256	56.1	49.29-62.76							1.4	3.6	38.9	38.0	7.2			10.9	
Kanamycin	Cattle	128.0	256.0	71.9	53.25-86.26									3.1		25.0	59.4	6.3		6.3
	Pigs	128.0	512.0	72.9	62.21-82.02									1.2	3.5	22.4	37.6	7.1		28.2
	Broilers	128.0	512.0	71.2	61.40-79.67										1.0	27.9	26.0	1.0	1.9	42.3
	Layers				-															
	Total		512.0	71.9	65.52-77.77									0.9	1.8	25.3	35.3	4.1	0.9	31.7
Oxytetracycline	Cattle	1.0	64.0	31.3	16.11-50.01			12.5	25.0	31.3				12.5	6.3	6.3	6.3			
	Pigs	32.0		64.7	53.53-74.83				8.2	25.9			1.2	2.4	17.6	2.4	42.4			
	Broilers	>64	>64	75.0	65.55-82.98			1.0	4.8	14.4			4.8	17.3	3.8	2.9	51.0			
	Layers				-															
	Total	32.0		64.7	58.00-71.02			2.3	9.0	21.3			2.7	10.9	9.5		41.2			
Chloramphenicol	Cattle	8.0	16.0	9.4	1.97 - 25.03							6.3	68.8	15.6		9.4				
	Pigs	16.0	128.0	30.6	21.04-41.53							2.4	20.0	47.1		12.9	17.6			
	Broilers	16.0	64.0	17.3	10.59 - 25.97							1.0	27.9	53.8	1.0	10.6	5.8			
	Layers				-															
	Total	16.0	64.0	21.3	16.06-27.26							2.3	30.8	45.7	0.5	11.3	9.5			
Bacitracin	Cattle		512.0	-	-											3.1	3.1	53.1	40.6	
	Pigs		512.0	-	-											1.2	5.9	74.1	17.6	1.2
	Broilers	256.0	512.0	-	-									1.0		1.0	19.2	61.5	6.7	10.6
	Layers	a= :			-													a = -		
	Total	256.0	512.0	-	-									0.5		1.4	11.8	65.2	15.8	5.4

Table 3.3. Distribution of MICs and resistance(%) in *Enterococcus faecalis* from cattle(n=32), pigs(n=85) and broilers(n=104) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Dagistant	95%						Di	istribut	ion(%)	of MI	Cs					
agent	species	MIC_{50}	MHC_{90}	%Resistant	Confidence interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	4.0	8.0	-	-	0.00	0,10	0.20	0.0	9.4	9.4	50.0	31.3	10	<u></u>	01	120		<u> </u>	<u> </u>
8 8	Pigs	4.0	16.0	-	-				1.2	3.5	2.4	48.2	32.9	11.8						
	Broilers	4.0	8.0	-	-					1.0	1.9	48.1	47.1	1.9						
	Layers				-															
	Total	4.0	8.0	-	-				0.5	3.2	3.2	48.4	39.4	5.4						
Erythromycin	Cattle	2.0	16.0	21.9	9.27-39.98			3.1	6.3	15.6	25.0	28.1	9.4	6.3				6.3		
	Pigs	>128	>128	51.8	40.63-62.79			2.4	20.0	5.9	8.2	11.8		1.2				50.6		
	Broilers	16.0	>128	58.7	48.57-68.23			2.9	5.8	13.5	18.3	1.0		10.6	6.7			41.3		
	Layers				-															
	Total	8.0	>128	50.7	43.89-57.45			2.7	11.3	10.9	15.4	9.0	1.4	6.3	3.2			39.8		
Tylosin	Cattle	4.0	8.0	6.3	0.76 - 20.81						12.5	71.9	9.4						6.3	
	Pigs		>256	50.6	39.51-61.62						12.9	30.6	5.9						50.6	
	Broilers	256.0	>256	57.7	47.61-67.33						16.3	24.0	1.0	1.0			1.0	7.7	49.0	
	Layers				-															
	Total		>256	47.5	40.77-54.32						14.5	33.5	4.1	0.5			0.5	3.6		
Lincomycin	Cattle	64.0	256.0	34.4	18.57-53.20										18.8	46.9	18.8	9.4	6.3	
	Pigs	>256	>256	76.5	66.02-85.00									1.2	3.5	18.8	2.4	4.7	69.4	
	Broilers	>256	>256	57.7	47.61-67.33									1.0	25.0	16.3	1.9	3.8	51.9	
	Layers				-															
	Total	>256	>256	61.5	54.76-68.00									0.9	15.8	21.7	4.5	5.0	52.0	
Enrofloxacin	Cattle	1.0	2.0	3.1	0.07 - 16.22				3.1	53.1	40.6	3.1								
	Pigs	1.0	2.0	5.9	1.93-13.20				5.9	61.2	27.1	4.7			1.2					
	Broilers	1.0	1.0	2.9	0.59 - 8.20				9.6	80.8	6.7		1.9		1.0					
	Layers				-															
~	Total	1.0	2.0	4.1	1.87-7.59				7.2	69.2	19.5	2.3	0.9		0.9					
Salinomycin	Cattle	1.0	2.0	-	-		3.1	25.0	9.4	18.8	43.8									
	Pigs	1.0	2.0	-	-			2.4	9.4	43.5	44.7	1.0	20.6	0.6						
	Broilers	2.0	8.0	-	-					35.6	33.7	1.9	26.0	2.9						
	Layers	2.2	0.0		-					0.0.0	00 1	0.6	100							
White fields repres	Total	2.0	8.0	-	-		0.5	4.5	5.0	36.2	39.4	0.9	12.2	1.4						

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 4.1. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=44), pigs (n=33), broilers (n=84) and layers (n=64) in 2012_Farm

Antimicrobial	Animal	MIC ₅₀	MICoo	%Resistant	95% Confidence						Di	istribut	ion(%)	of MI	Cs					
agent	species	50	30		interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	2.0	0.0	0-8.05				18.2	36.4	43.2	2.3								
	Pigs	1.0	4.0	0.0	0 - 10.58			6.1	27.3	18.2	24.2	15.2	9.1							
	Broilers	2.0	8.0	2.4	0.28 - 8.34		3.6	15.5	9.5	20.2	23.8	11.9	13.1		2.4					
	Layers	1.0	4.0	0.0	0 - 5.61			10.9	18.8	25.0	29.7	9.4	6.3							
	Total	1.0	4.0	0.9	0.10 - 3.18		1.3	9.8	16.4	24.4	29.3	9.8	8.0		0.9					
Dihydrostreptomycin	Cattle	32.0	128.0	22.7	11.47-37.85									9.1	45.5	22.7	13.6	2.3		6.8
	Pigs	64.0	512.0	30.3	15.59 - 48.72								3.0	6.1	36.4	24.2			9.1	21.2
	Broilers	64.0	512.0	28.6	19.23-39.47										23.8	47.6	2.4	1.2	9.5	15.5
	Layers	64.0	64.0	6.3	1.72 - 15.24										40.6	53.1				6.3
	Total	64.0	512.0	21.3	16.16-27.28								0.4	2.7	34.7	40.9	3.6	0.9	4.9	12.0
Gentamicin	Cattle	4.0	16.0	2.3	0.05 - 12.03						11.4	52.3	22.7	11.4	2.3					
	Pigs	4.0	8.0	0.0	0 - 10.58					3.0	6.1	54.5	33.3	3.0						
	Broilers	4.0	8.0	3.6	0.74 - 10.09						2.4	47.6	41.7	4.8		1.2			2.4	
	Layers	8.0	8.0	1.6	0.03 - 8.41						9.4	37.5	46.9	4.7	1.6					
	Total	4.0	8.0	2.2	0.72 - 5.11					0.4	6.7	46.7	38.2	5.8	0.9	0.4			0.9	
Kanamycin	Cattle	64.0	128.0	34.1	20.49-49.92									9.1	13.6	43.2	29.5	4.5		
	Pigs	64.0	128.0	30.3	15.59-48.72									9.1	30.3	30.3	24.2			6.1
	Broilers	64.0	512.0	34.5	24.48-45.70							1.2			15.5	48.8	17.9	6.0		10.7
	Layers	64.0	128.0	35.9	24.31-48.91										23.4	40.6	26.6	4.7	3.1	1.6
	Total	64.0	256.0	34.2	28.04-40.83							0.4		3.1	19.6	42.7	23.6	4.4	0.9	5.3
Oxytetracycline	Cattle	0.3	8.0	9.1	2.53 - 21.67			50.0	36.4				4.5		4.5		4.5			
	Pigs		>64	42.4	25.42-60.92		6.1	33.3	12.1	6.1					9.1		33.3			
	Broilers		>64	63.1	51.86-73.38		3.6	20.2	10.7	2.4					13.1	3.6	46.4			
	Layers	0.3	8.0	7.8	2.58 - 17.30		18.8	43.8	17.2	6.3			6.3				7.8			
	Total		>64	33.8	27.62-40.37		7.6	34.7	17.8	3.6			2.7		7.1	1.3	25.3			
Chloramphenicol	Cattle	4.0	4.0	0.0	0-8.05						4.5	93.2	2.3							
	Pigs	4.0	8.0	0.0	0 - 10.58						15.2	63.6	21.2							
	Broilers	4.0	8.0	4.8	1.31 - 11.75						25.0	59.5	8.3	2.4	4.8					
	Layers	4.0	8.0	0.0	0-5.61						26.6	62.5	9.4	1.6						
	Total	4.0	8.0	1.8	0.48-4.49						20.0	67.6	9.3	1.3	1.8					
Bacitracin	Cattle	256.0	512.0	-	-								2.3	2.3	11.4	4.5	9.1	36.4	25.0	9.1
	Pigs	256.0	512.0	-	-										12.1		12.1	54.5	18.2	3.0
	Broilers	256.0	512.0	-	-								6.0	19.0		1.2	7.1	21.4	11.9	33.3
	Layers	256.0	512.0	-	-								4.7	17.2	3.1	6.3	6.3	37.5	18.8	6.3
	Total	256.0	512.0		-								4.0	12.4	4.9	3.1	8.0	33.8	17.3	16.4

Table 4.1. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=44), pigs (n=33), broilers (n=84) and layers (n=64) in 2012_Farm

Antimicrobial	Animal	MIC	MIC	%Rocietant	95% Confidence						D:	istribut	ion(%)	of MI	Cs					
agent	species	W110 ₅₀	WIIC90	/01 tesis taiit	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	2.0	2.0	-	-			2.3	22.7	18.2	56.8									
	Pigs	2.0	2.0	-	-			3.0	18.2	18.2	57.6	3.0								
	Broilers	1.0	2.0	-	-			2.4	26.2	39.3	23.8	6.0	2.4							
	Layers	1.0	2.0	-	-				48.4	25.0	23.4	3.1								
	Total	1.0	2.0	-	-			1.8	30.7	28.0	35.1	3.6	0.9							
Erythromycin	Cattle	1.0	8.0	11.4	3.79-24.56		18.2	13.6	2.3	20.5	15.9	18.2	2.3	2.3				6.8		
	Pigs	2.0	16.0	15.2	5.10-31.90		9.1	9.1		27.3	36.4	3.0	3.0	3.0				9.1		
	Broilers	1.0	>128	32.1	22.36-43.23		34.5	2.4	10.7	9.5	4.8	6.0	6.0	2.4	1.2			22.6		
	Layers	0.5	4.0	6.3	1.72 - 15.24		29.7	6.3	17.2	9.4	17.2	14.1	6.3							
	Total	1.0	>128	18.2	13.40-23.90		26.2	6.7	9.3	14.2	15.1	10.2	4.9	1.8	0.4			11.1		
Tylosin	Cattle	4.0	8.0	9.1	2.53 - 21.67					4.5	38.6	31.8	15.9					2.3	6.8	
	Pigs	4.0	256.0	12.1	3.40 - 28.21				3.0	6.1	36.4	39.4	3.0					3.0	9.1	
	Broilers	2.0	>256	26.2	17.19-36.93					11.9	38.1	15.5	4.8	1.2	2.4			2.4	23.8	
	Layers	2.0	8.0	1.6	0.03 - 8.41					21.9	37.5	20.3	14.1	4.7		1.6				
	Total	2.0	>256	13.8	9.55 - 18.99				0.4	12.4	37.8	23.6	9.3	1.8	0.9	0.4		1.8	11.6	
Lincomycin	Cattle	16.0	32.0	9.1	2.53 - 21.67			2.3	22.7				2.3	40.9	22.7				9.1	
	Pigs		>256	39.4	22.90-57.87			6.1	15.2		3.0		15.2	18.2	3.0		6.1	6.1	27.3	
	Broilers		>256	31.0	21.31-41.98			4.8	15.5	10.7			10.7	22.6	2.4	2.4	4.8	7.1	19.0	
	Layers	1.0	16.0	0.0	0 - 5.61			15.6	20.3	17.2	1.6		4.7	31.3	6.3	3.1				
	Total		>256	19.1	14.18-24.87			7.6	18.2	8.9	0.9	•	8.0	28.0	7.6	1.8	2.7	3.6	12.9	
Enrofloxacin	Cattle	1.0	16.0	36.4	22.40-52.23				13.6	36.4	13.6	20.5	4.5	11.4						
	Pigs	2.0	16.0	45.5	28.10-63.65				6.1	21.2	27.3	9.1	24.2	9.1	3.0					
	Broilers	4.0	8.0	65.5	54.30-75.52				2.4	16.7	15.5	32.1	27.4		3.6	2.4				
	Layers	4.0	16.0	56.3	43.27-68.63				7.8	14.1	21.9	20.3	23.4	6.3	6.3					
	Total	4.0	8.0	54.2	47.46-60.87				6.7	20.4	18.7		21.3	5.3	3.6	0.9				
Salinomycin	Cattle	2.0	2.0	-	-				4.5	31.8	59.1	4.5								
	Pigs	2.0	2.0	-	-				3.0	39.4	57.6									
	Broilers	2.0	8.0	-	-					26.2	34.5	21.4	11.9	6.0						
	Layers	2.0	2.0	-	-					48.4	42.2	7.8				1.6				
White fields repre-	Total	2.0	4.0	-	-				1.3	35.6	44.9	11.1	4.4	2.2		0.4				

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 4.2. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=10), pigs (n=18), broilers (n=46) and layers (n=22) in 2013_Farm

Antimicrobial	Animal	MICEO	MICoo	%Resistant	95% Confidence						D	istribut	ion(%)	of MI	Cs					
agent	species	1.11 0 50	1.11 0 90	7010031304110	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	2.0	0.0	0-30.85				20.0	30.0	50.0									
	Pigs	2.0	2.0	0.0	0 - 18.54			5.6	5.6	22.2	61.1	5.6								
	Broilers	4.0	8.0	2.2	0.05 - 11.53		2.2	6.5	15.2	4.3	6.5	26.1	37.0		2.2					
	Layers	0.5	1.0	0.0	0 - 15.44		9.1	31.8	36.4	18.2		4.5								
	Total	2.0	8.0	1.0	0.02 - 5.67		3.1	11.5	18.8	13.5	19.8	14.6	17.7		1.0					
Dihydrostreptomycin	Cattle	64.0	128.0	20.0	2.52-55.61										30.0	50.0	20.0			
	Pigs	64.0	512.0	22.2	6.40 - 47.64										33.3	44.4	5.6			16.7
	Broilers	64.0	512.0	23.9	12.58-38.77										19.6	56.5	2.2	2.2	2.2	17.4
	Layers	64.0	64.0	0.0	0 - 15.44										18.2	81.8				
	Total	64.0	512.0	17.7	10.66-26.84										22.9	59.4	4.2	1.0	1.0	11.5
Gentamicin	Cattle	8.0	16.0	0.0	0-30.85							10.0	70.0	20.0						
	Pigs	8.0	16.0	0.0	0 - 18.54							33.3	44.4	22.2						
	Broilers	8.0	16.0	2.2	0.05 - 11.53							15.2	60.9	21.7	2.2					
	Layers	8.0	8.0	0.0	0 - 15.44							22.7	68.2	9.1						
	Total	8.0	16.0	1.0	0.02 - 5.67							19.8	60.4	18.8	1.0					
Kanamycin	Cattle	128.0	256.0	60.0	26.23-87.85										20.0	20.0	30.0	30.0		
	Pigs	128.0	512.0	61.1	35.49-83.23										5.6	33.3	22.2	27.8		11.1
	Broilers	128.0	512.0	73.9	58.86-85.74										2.2	23.9	37.0	17.4		19.6
	Layers	128.0	256.0	54.5	32.21-75.62									9.1	4.5	31.8	40.9	9.1	4.5	
	Total	128.0	512.0	65.6	55.23-75.03									2.1	5.2	27.1	34.4	18.8	1.0	11.5
Oxytetracycline	Cattle	0.3	0.5	0.0	0-30.85			60.0	30.0	10.0										
	Pigs	1.0	>64	50.0	26.01-73.99			22.2	22.2	5.6				11.1	11.1		27.8			
	Broilers	>64	>64	67.4	51.98-80.47			21.7	4.3	2.2		2.2	2.2	2.2	4.3	4.3	56.5			
	Layers	0.3	64.0	22.7	7.82-45.38		9.1	45.5	22.7						9.1	4.5	9.1			
	Total			46.9	36.61-57.34		2.1	31.3	14.6	3.1		1.0	1.0	3.1	6.3	3.1	34.4			
Chloramphenicol	Cattle	4.0	8.0	0.0	0-30.85							70.0	30.0							
	Pigs	8.0	32.0	16.7	3.57 - 41.42							33.3	50.0		16.7					
	Broilers	4.0	8.0	2.2	0.05 - 11.53						4.3	78.3	8.7	6.5	2.2					
	Layers	4.0	4.0	0.0	0 - 15.44						9.1	90.9								
	Total	4.0	8.0	4.2	1.14-10.33						4.2	71.9	16.7	3.1	4.2					
Bacitracin	Cattle	128.0	512.0	-	-												50.0	30.0	20.0	
	Pigs	512.0	512.0	-	-												16.7	22.2	33.3	
	Broilers	256.0	512.0	-	-						2.2	2.2	10.9	10.9			4.3	19.6	8.7	41.3
	Layers	128.0	256.0	-	-							4.5	13.6	18.2		4.5	9.1	45.5	4.5	
	Total	256.0	512.0		<u>-</u>						1.0	2.1	8.3	9.4		1.0	12.5	27.1	13.5	25.0

Table 4.2. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=10), pigs (n=18), broilers (n=46) and layers (n=22) in 2013_Farm

Antimicrobial	Animal	MIC	MIC	%Registent	95% Confidence						D:	istribut	ion(%)	of MI	Cs					
agent	species	WIIC50	WIIC90	/01 tesis taiit	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	1.0	2.0	-	-	- 5,755	0,10		30.0	50.0	20.0									
	Pigs	2.0	2.0	-	-				5.6	27.8	61.1	5.6								
	Broilers	1.0	2.0	-	-				28.3	47.8	21.7		2.2							
	Layers	0.5	1.0	-	-			13.6	50.0	27.3	9.1									
	Total	1.0	2.0	-	-			3.1	29.2	39.6	26.0	1.0	1.0							
Erythromycin	Cattle	4.0	8.0	30.0	6.67-65.25					20.0	20.0	30.0	30.0							
	Pigs	4.0	>128	50.0	26.01-73.99		5.6	16.7			11.1	16.7	5.6	11.1				33.3		
	Broilers	0.5	>128	23.9	12.58-38.77		47.8		10.9	10.9	2.2	4.3	8.7		2.2		2.2	10.9		
	Layers	0.5	4.0	9.1	1.12 - 29.17		40.9	4.5	18.2	13.6		13.6	9.1							
	Total	1.0	>128	26.0	17.61-36.00		33.3	4.2	9.4	10.4	5.2	11.5	10.4	2.1	1.0		1.0	11.5		
Tylosin	Cattle	2.0	4.0	0.0	0-30.85						50.0	40.0	10.0							
	Pigs	4.0	>256	33.3	13.34-59.01						11.1	44.4	11.1						33.3	
	Broilers	2.0	>256	15.2	6.34 - 28.87					10.9	50.0	23.9					2.2		13.0	
	Layers	1.0	2.0	0.0	0 - 15.44					54.5	36.4	4.5	4.5							
	Total	2.0	>256	13.5	7.41 - 22.05					17.7	39.6	25.0	4.2				1.0		12.5	
Lincomycin	Cattle	4.0	16.0	0.0	0-30.85				10.0	20.0	10.0	10.0		50.0						
	Pigs		>256	38.9	17.29-64.26					5.6			16.7	38.9					38.9	
	Broilers		>256	28.3	15.98-43.47				17.4	6.5		2.2	6.5	39.1			8.7	2.2	17.4	
	Layers	0.5	16.0	0.0	0 - 15.44			13.6	45.5	4.5				36.4						
	Total		>256	20.8	13.21-30.33			3.1	19.8	7.3	1.0	2.1	6.3	39.6			4.2	1.0	15.6	
Enrofloxacin	Cattle	1.0	4.0	30.0	6.67 - 65.25				30.0	20.0	20.0	20.0	10.0							
	Pigs	2.0	16.0	38.9	17.29-64.26					22.2	38.9	11.1	11.1	11.1	5.6					
	Broilers	4.0	8.0	87.0	73.74-95.06					4.3	8.7	56.5	30.4							
	Layers	4.0	8.0	54.5	32.21-75.62				4.5	9.1	31.8	22.7	31.8							
	Total	4.0	8.0	64.6	54.16-74.08				4.2	10.4	20.8	36.5	25.0	2.1	1.0					
Salinomycin	Cattle	1.0	2.0	-	-					50.0	50.0									
	Pigs	2.0	2.0	-	-					11.1	83.3	5.6								
	Broilers	4.0	8.0	-	-					6.5	19.6	37.0	34.8	2.2						
	Layers	1.0	2.0	-	-					50.0	50.0									
White fields repres	Total	2.0	8.0	-	-					21.9	41.7	18.8	16.7	1.0						

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 4.3. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=6), pigs (n=20) and broilers (n=12) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Posistant	95% Confidence						D	istribut	ion(%)	of MI	Cs					
agent	species	10110_{50}	WIIC ₉₀	mesistant	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	Cattle	1.0	2.0	0.0	0-45.93	0.00	0.10	0.20	33.3	16.7	50.0			10	- 02	01	120	200	012	. 012
r	Pigs	1.0	4.0	0.0	0-16.85		5.0		5.0	45.0	30.0	15.0								
	Broilers	2.0	4.0	0.0	0-26.47				16.7	16.7	41.7	16.7	8.3							
	Layers				-															
	Total	2.0	4.0	0.0	0-9.26		2.6		13.2	31.6	36.8	13.2	2.6							
Dihydrostreptomycin	Cattle	64.0	128.0	33.3	4.32-77.73											66.7	33.3			
J · · · · · · · · · · · · · · · · · · ·	Pigs	128.0	512.0	75.0	50.89-91.35								5.0			20.0	25.0	15.0		35.0
	Broilers		512.0	50.0	21.09-78.91										8.3	41.7	33.3			16.7
	Layers				-															
	Total	128.0	512.0	60.5	43.38-75.97								2.6		2.6	34.2	28.9	7.9		23.7
Gentamicin	Cattle	16.0	32.0	33.3	4.32-77.73								16.7	50.0	33.3					
	Pigs	16.0	32.0	40.0	19.11-63.95						5.0		25.0	30.0	30.0	10.0				
	Broilers	8.0	16.0	8.3	0.21-38.48								66.7	25.0	8.3					
	Layers				-															
	Total	16.0	32.0	28.9	15.42-45.91						2.6		36.8	31.6	23.7	5.3				
Kanamycin	Cattle	128.0	512.0	83.3	34.12-99.99										•	16.7	33.3	33.3	16.7	
· ·	Pigs	256.0	512.0	90.0	67.08-99.26											10.0		25.0	10.0	
	Broilers	256.0	512.0	100.0	73.53-100												25.0	41.7	16.7	
	Layers				-															
	Total	256.0	512.0	92.1	78.62-98.35											7.9	21.1	31.6	13.2	26.3
Oxytetracycline	Cattle	0.5	1.0	0.0	0-45.93			16.7	50.0	33.3										
	Pigs	0.5	>64	35.0	15.39-59.22			20.0	40.0				5.0		5.0	5.0	25.0			
	Broilers	64.0	>64	83.3	50.33-98.74				8.3	8.3				8.3	8.3	25.0	41.7			
	Layers				-															
	Total	1.0	>64	44.7	28.57-61.82			13.2	31.6	7.9			2.6	2.6	5.3	10.5	26.3			
Chloramphenicol	Cattle	8.0	16.0	0.0	0-45.93								83.3	16.7						
	Pigs	8.0	32.0	15.0	3.20-37.90							5.0	65.0	15.0	15.0					
	Broilers	4.0	8.0	0.0	0-26.47							50.0	41.7	8.3						
	Layers				-															
	Total	8.0	16.0	7.9	1.65 - 21.38							18.4	60.5	13.2	7.9					
Bacitracin	Cattle	512.0	512.0	-	-				_	•				•	_			33.3	66.7	
	Pigs	512.0	512.0	-	-							5.0					10.0	15.0	40.0	30.0
	Broilers	256.0	512.0	-	-									16.7			16.7	25.0	16.7	25.0
	Layers				-															
	Total	512.0	512.0		<u>-</u>							2.6		5.3			10.5	21.1	36.8	23.7

Table 4.3. Distribution of MICs and resistance (%) in *Enterococcus faecium* from cattle (n=6), pigs (n=20) and broilers (n=12) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Pagistant	95% Confidence						D	istribut	ion(%)	of MI	Cs					
agent	species	WIIC ₅₀	W11C ₉₀	701tesistant	interval	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Virginiamycin	Cattle	0.5	2.0	-	-	0,00	0,10	0,20	50.0	33.3	16.7				<u> </u>	0 1	120		<u> </u>	
	Pigs	2.0	2.0	-	-			5.0	30.0	10.0	45.0	10.0								
	Broilers	0.5	2.0	-	-				58.3	16.7	25.0									
	Layers				-															
	Total	1.0	2.0	-	-			2.6	42.1	15.8	34.2	5.3								
Erythromycin	Cattle	4.0	8.0	16.7	0.42-64.13				33.3			50.0	16.7							
	Pigs	8.0	>128	60.0	36.05-80.89			5.0	5.0	10.0	10.0	10.0	25.0	10.0	5.0			20.0		
	Broilers	1.0	>128	25.0	5.48 - 57.19		25.0	16.7		16.7	8.3	8.3						25.0		
	Layers				-															
	Total	4.0	>128	42.1	26.30-59.18		7.9	7.9	7.9	10.5	7.9	15.8	15.8	5.3	2.6			18.4		
Tylosin	Cattle	8.0	16.0	0.0	0-45.93							33.3	33.3	33.3						
	Pigs	16.0	>256	20.0	5.73 - 43.67								40.0	40.0					20.0	
	Broilers	4.0	>256	25.0	5.48 - 57.19						25.0	25.0	16.7	8.3					25.0	
	Layers				-															
	Total	8.0	>256	18.4	7.74-34.33						7.9	13.2	31.6	28.9			_		18.4	
Lincomycin	Cattle	4.0	64.0	0.0	0-45.93					33.3		16.7			33.3	16.7				
	Pigs		>256	30.0	11.89-54.28					5.0	15.0	15.0			20.0	15.0			30.0	
	Broilers	32.0	>256	50.0	21.09-78.91				8.3	8.3	16.7				16.7		16.7		33.3	
	Layers				-															
	Total		>256	31.6	17.50-48.66				2.6	10.5	13.2	10.5			21.1	10.5	5.3		26.3	
Enrofloxacin	Cattle	8.0	32.0	83.3	34.12-99.99						16.7	16.7	16.7	16.7	33.3					
	Pigs	4.0	16.0	65.0	40.78-84.61			5.0	5.0	5.0	20.0	25.0	20.0	10.0	5.0	5.0				
	Broilers	4.0	32.0	66.7	34.88-90.08						33.3	25.0	8.3	8.3	25.0					
	Layers				-															
	Total	4.0	32.0	68.4	51.34-82.50			2.6	2.6	2.6	23.7		15.8	10.5	15.8	2.6				
Salinomycin	Cattle	2.0	4.0	-	-				16.7		66.7	16.7								
	Pigs	1.0	2.0	-	-			5.0	30.0	15.0	50.0									
	Broilers	2.0	4.0	-	-					8.3	50.0	33.3	8.3							
	Layers				-															
White fields repre	Total	2.0	4.0	-	-			2.6	18.4	10.5	52.6	13.2	2.6							

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 5.1. Distribution of MICs and resistance(%) in Campylobacter jejuni from cattle(n=47), pigs(n=2), broilers(n=32) and layers(n=37) in 2012_Farm

Antimicrobial	Animal	200 0110	2 1 0 0 1 0 0	(, 0, 111	95%	or joju		11 00001	0(11 1)	/, p-g≈		Distribu				3 17 111				
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	8.0	6.4	1.33-17.54				4.3	6.4	17.0	19.1	19.1	27.7		4.3				2.1
	Pigs	256.0	256.0	100.0	15.81-100						0.1	0.1	05.0	40.0	01.0		0.1	0.1	100.0	
	Broilers	8.0 8.0	16.0	$6.3 \\ 29.7$	0.76-20.81				9.7	10.0	3.1	$\frac{3.1}{10.8}$	$25.0 \\ 16.2$	$40.6 \\ 10.8$	21.9	0 1	3.1	3.1		E 1
	Layers Total	8.0	$128.0 \\ 64.0$	$\frac{29.7}{15.3}$	15.85-47.06 9.29-23.04				$\begin{array}{c} 2.7 \\ 2.5 \end{array}$	$10.8 \\ 5.9$	$\begin{array}{c} 5.4 \\ 9.3 \end{array}$	10.8	19.5	25.4	$13.5 \\ 10.2$	8.1 4.2	$10.8 \\ 4.2$	$5.4 \\ 2.5$	1.7	$5.4 \\ 2.5$
Gentamicin	Cattle	0.3	1.0	-	-			10.6	42.6	31.9	14.9	11.0	10.0	20.1	10.2	1,2	1.2	2.0	1.,	2.0
5, 5 5, 5 5 5	Pigs	0.3	0.5	-	-				50.0	50.0										
	Broilers	0.5	1.0	-	-			6.3	34.4	43.8	15.6									
	Layers	0.5	0.5	-	-			8.1	27.0	56.8	5.4	2.7								
	Total	0.5	1.0	-	-			8.5	35.6	43.2	11.9	0.8								
Streptomycin	Cattle	1.0	2.0	4.3	0.51 - 14.55				10.6	23.4	46.8	10.6	4.3					2.1	2.1	
	Pigs	1.0	1.0	0.0	0-84.19						100									
	Broilers	1.0	2.0	0.0	0-10.89					28.1	50.0	21.9								
	Layers	1.0	2.0	0.0	0-9.49				10.8	16.2	56.8	13.5	2.7						0.0	
D 11	Total	1.0	2.0	1.7	0.20-5.99			4.0	7.6	22.0	51.7	14.4	2.5					0.8	0.8	
Erythromycin	Cattle	0.5	1.0	0.0	-			4.3	36.2	42.6	8.5	4.3	4.3							
	Pigs	0.5	1.0	0.0	_			0.1	12.5	$50.0 \\ 53.1$	$50.0 \\ 15.6$	1 F C								
	Broilers Layers	$0.5 \\ 0.5$	$\frac{2.0}{2.0}$	$0.0 \\ 0.0$	_			$\frac{3.1}{5.4}$	$\frac{12.5}{35.1}$	21.6	27.0	$15.6 \\ 8.1$	2.7							
	Total	$0.5 \\ 0.5$	$\frac{2.0}{2.0}$	0.0	_			$\frac{3.4}{4.2}$	28.8	39.0	16.9	8.5	$\frac{2.7}{2.5}$							
Tetracycline	Cattle	16.0	128.0	55.3	40.11-69.83			27.7	10.6	2.1	4.3	0.0	2.0		10.6	10.6	10.6	19.1	4.3	
100100, 011110	Pigs	0.3	0.5	0.0	0-84.19				50.0	50.0	1.0				10.0	10.0	10.0	1011	1.0	
	Broilers	0.3	128.0	28.1	13.74-46.75			31.3	21.9	12.5	6.3					9.4	6.3	9.4	3.1	
	Layers	≤ 0.12	128.0	21.6	9.82-38.22			51.4		8.1	5.4	5.4	5.4	2.7		8.1		5.4	8.1	
	Total	0.5	128.0	36.4	27.77-45.81			35.6	11.0	7.6	5.1	1.7	1.7	0.8	4.2	9.3	5.9	11.9	5.1	
Nalidixic acid	Cattle			61.7	46.37-75.50							17.0	12.8	8.5		2.1	12.8	12.8	34.0	
	Pigs	128.0	128.0	100.0	15.81-100													100.0		
	Broilers	8.0	128.0	28.1	13.74-46.75							3.1	37.5	28.1	3.1	3.1	6.3	12.5	6.3	
	Layers	8.0	32.0	10.8	3.02-25.42							2.7	37.8	37.8	10.8	2.7	2.7	5.4		
<u> </u>	Total		>128	37.3	28.56-46.67	0.1	100	110	0.1	0.1	0.1	8.5	27.1	22.9	4.2	2.5	7.6	11.9	15.3	
Ciprofloxacin	Cattle	8.0	16.0	57.4	42.10-71.86	2.1	12.8	14.9	6.4	2.1	2.1	2.1	4.3	21.3	27.7		4.3			
	Pigs	8.0	8.0	100.0	15.81-100			00 1	00 1	91.0	0.1		0.1	100.0	C O		C O			
	Broilers	$0.3 \\ 0.3$	16.0	18.8	7.20-36.44 0.66-18.20			28.1	$28.1 \\ 32.4$	21.9	$\frac{3.1}{2.7}$		$\begin{array}{ c c c } 3.1 \\ 2.7 \end{array}$	3.1	$\frac{6.3}{2.7}$		6.3			
	Layers Total	$0.3 \\ 0.3$	$0.5 \\ 16.0$	$5.4 \\ 31.4$	23.13-40.55	0.8	5.1		$\frac{32.4}{20.3}$		$\frac{2.7}{2.5}$	0.8	3.4	11.0	13.6		3.4			
Chloramphenicol	Cattle	1.0	4.0	0.0	0-7.55	0.0	J. I	20.0	40.0	10.6	$\frac{2.5}{46.8}$	31.9	10.6	11.0	10.0		0.4			
	Pigs	$\frac{1.0}{2.0}$	$\frac{4.0}{2.0}$	0.0	0-84.19					10.0	10.0	100.0	10.0							
	Broilers	$\frac{2.0}{2.0}$	$\frac{2.0}{4.0}$	0.0	0-10.89					6.3	9.4	71.9	9.4	3.1						
	Layers	$\frac{2.0}{2.0}$	4.0	2.7	0.06-14.17				2.7	5.4	27.0	45.9	10.8	5.4	2.7					
	Total	$\frac{1}{2.0}$	4.0		0.02-4.64				0.8	7.6	$\frac{29.7}{2}$	48.3	10.2	2.5	0.8					
White fields repre		10.10.00																		

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 5.2. Distribution of MICs and resistance(%) in Campylobacter jejuni from cattle(n=71), pigs(n=2), broilers(n=56) and layers(n=79) in 2013_Farm

Antimionabial		100 411	<u>u 100100</u>	<u>ance (70) in</u>	95%	oci jeje	<i>4111</i> 11 01	in cauci	Z(II 1)	, pigo(istributi		of MICs		10/ 111 2	2010_1	41111		
Antimicrobial agent	Animal species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle	4.0	8.0	1.4	0.03-7.60				1.4	16.9	4.2	19.7	40.8	15.5		1.4				
	Pigs	1.0	1.0	0.0	0-84.19					0.0	100.0	10 5	050	101	7 1	10.5	140			
	Broilers	4.0	64.0	26.8	15.83-40.31				0.5	3.6	8.9	12.5	25.0	16.1	$7.1 \\ 3.8$	12.5	14.3	2.0		
	Layers Total	$\frac{4.0}{4.0}$	$64.0 \\ 32.0$	$25.3 \\ 17.3$	16.20-36.36 12.42-23.15				$\frac{2.5}{1.4}$	$\frac{3.8}{8.2}$	$7.6 \\ 7.7$	17.7 16.8	$22.8 \\ 29.3$	$16.5 \\ 15.9$	3.6	15.2 9.6	$6.3 \\ 6.3$	$\frac{3.8}{1.4}$		
Gentamicin	Cattle	0.5	1.0	-	-			2.8	14.1	66.2	15.5	1.4	29.0	10.5	0.4	3.0	0.5	1.4		
O, OII OGIII OIII	Pigs	1.0	1.0	-	-					00.2	100.0									
	Broilers	0.5	1.0	-	-			1.8	44.6	39.3	12.5	1.8								
	Layers	0.5	1.0	-	-			5.1	30.4	53.2	11.4									
	Total	0.5	1.0	-	-			3.4	28.4	53.4	13.9	1.0								
Streptomycin	Cattle	1.0	2.0	5.6	1.55-13.81				2.8	11.3	53.5	23.9	2.8			1.4	4.2			
	Pigs	2.0	2.0	0.0	0-84.19							100.0								
	Broilers	1.0	2.0	0.0	0-6.38				3.6	42.9	39.3	14.3								
	Layers	1.0	2.0	0.0	0 - 4.57				8.9	32.9	40.5	16.5	1.3							
	<u>Total</u>	1.0	2.0	1.9	0.52 - 4.86				5.3	27.9	44.2	19.2	1.4			0.5	1.4			
Erythromycin	Cattle	0.5	1.0	0.0	-				25.4	45.1	23.9	5.6								
	Pigs	0.5	0.5	0.0	-				44 4	#####	10.5	140								
	Broilers	0.5	2.0	0.0	-			~ 1	41.1	33.9	10.7	$\frac{14.3}{7.6}$	0.5							
	Layers	$0.5 \\ 0.5$	2.0	0.0	-			$\frac{5.1}{1.9}$	26.6	49.4	8.9	$7.6 \\ 8.7$	$\frac{2.5}{1.0}$							
Tetracycline	Total Cattle		1.0 >128	$\frac{0.0}{52.1}$	39.92-64.13			$\frac{1.9}{36.6}$	29.8 7.0	44.2	$\frac{14.4}{1.4}$	0.1	1.0	2.8		19.7	14.1	7.0	11.3	
Tetracycline	Pigs		≤ 0.12	0.0	0-84.19			100.0	7.0		1.4			2.0		13.1	14.1	7.0	11.0	
	Broilers	0.5	64.0	41.1	28.09-55.03			37.5	7.1	7.1	7.1				5.4	12.5	17.9		5.4	
	Layers	0.5	128.0	44.3	33.12-55.93			36.7	10.1	3.8	2.5	2.5			2.5	7.6	22.8	3.8	7.6	
	Total	1.0	128.0	45.7	38.76-52.71			37.5	8.2	3.4	3.4	1.0		1.0	2.4	13.0	18.3	3.8	8.2	
Nalidixic acid	Cattle		>128	32.4	21.76-44.55							23.9	38.0	5.6	•		5.6	12.7	14.1	
	Pigs	4.0	4.0	0.0	0-84.19								100.0							
	Broilers	4.0	128.0	19.6	10.23-32.44							25.0	35.7	14.3	5.4	1.8	3.6	10.7	3.6	
	Layers	4.0	128.0	16.5	9.06 - 26.50							12.7	53.2	16.5	1.3		2.5	6.3	7.6	
	Total	4.0	128.0	22.6	17.10-28.90							19.7	43.8	12.0	1.9	0.5	3.8	9.6	8.7	
Ciprofloxacin	Cattle	0.1	16.0	32.4	21.76-44.55		19.7	35.2	12.7					11.3	16.9	4.2				
	Pigs	0.1	0.1	0.0	0-84.19		100	100.0	4.40	4.0	• 0			0.0		0.0				
	Broilers	0.1	16.0	17.9	8.91-30.40		19.6	32.1	14.3		1.8	0		3.6	5.4	8.9	0.0			
	Layers		16.0		9.06-26.50			36.7	22.8		0.5	2.5			10.1		3.8			
Chloramphenicol	Total Cattle	0.1	$\frac{16.0}{2.0}$	$\frac{22.1}{2.8}$	16.66-28.38 0.34-9.81		16.3	35.6	16.8	$\frac{7.7}{1.4}$	$\frac{0.5}{54.9}$	$\frac{1.0}{38.0}$	2.8	5.3	11.1	$\frac{4.3}{2.8}$	1.4			
Omoramphemicol	Pigs	1.0 1.0	$\frac{2.0}{1.0}$	0.0	0.34-9.81					1.4	100.0	JO.U	4.0			4.0				
	Broilers	1.0 1.0	$\frac{1.0}{2.0}$	0.0	0-84.19					8.9	48.2	33.9	7.1	1.8						
	Layers	1.0	$\frac{2.0}{4.0}$	0.0	$0.38 \\ 0.4.57$				2.5	1.3	50.6	34.2	10.1	1.3						
	Total	1.0	$\frac{4.0}{2.0}$	1.0	0.11-3.44				$\frac{2.0}{1.0}$	$\frac{1.5}{3.4}$	$50.0 \\ 51.9$	35.1	6.7	1.0		1.0				
White fields repr					U.11 U.11				1.0	0.1	01.0	00.1	0.1	1.0		1.0				

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 5.3. Distribution of MICs and resistance(%) in Campylobacter jejuni from cattle(n=82) and broilers(n=71) in 2012_Slaughterhouse

A	A1				95%						D	istribu	tion(%)	of MI	Cs					
Antimicrobial agent	Animal species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs	4.0	8.0	0.0	0-4.40				1.2	3.7	4.9	20.7	45.1	23.2	1.2					
	Broilers	4.0	32.0	19.7	11.22-30.87					2.8	9.9	7.0	42.3	15.5	2.8	14.1	5.6			
	Layers Total	4.0	16.0	9.2	5.09-14.88				0.7	3.3	7.2	14.4	43.8	19.6	2.0	6.5	2.6			
Gentamicin	Cattle	0.5	1.0	-	-			1.2	12.2	63.4	22.0	1.2				•				
	Pigs Broilers	0.5	0.5	-	- -			15.5	31.0	47.9	4.2		1.4							
	Layers	0.5	1.0	_	-			7 0	20.0	EC 9	197	0.7	0.7							
Streptomycin	Total Cattle Pigs	1.0	1.0 4.0	2.4	0.29-8.54			7.8	20.9 1.2	56.2 8.5	13.7 48.8	30.5	0.7 6.1	2.4					2.4	
	Broilers Layers	1.0	1.0	1.4	0.03-7.60			1.4	9.9	31.0	47.9	8.5							1.4	
	Total	1.0	2.0	2.0	0.40-5.63			0.7	5.2	19.0	48.4	20.3	3.3	1.3					2.0	
Erythromycin	Cattle Pigs	0.5	2.0	0.0	- -			2.4	13.4	40.2	28.0	13.4	2.4							
	Broilers Layers	0.5	1.0	0.0	- -			2.8	16.9	46.5	26.8	7.0								
	Total	0.5	2.0	0.0	-			2.6	15.0	43.1	27.5	10.5	1.3							
Tetracycline	Cattle	0.3	>64	45.1	34.10-56.51	2.4	18.3	18.3	11.0	1.2		1.2		2.4	7.3	7.3	15.9	14.6		
	Pigs Broilers Layers	0.3	64.0	38.0	26.76-50.33	2.8	29.6	11.3	15.5	2.8					5.6	7.0	15.5	9.9		
	Total	0.3	>64	41.8	33.90-50.08	2.6	23.5	15.0	13.1	2.0		0.7		1.3	6.5	7.2	15.7	12.4		
Nalidixic acid	Cattle Pigs		128.0		24.01-45.48							8.5	45.1	8.5	3.7	2.4	13.4	15.9	2.4	
	Broilers Layers	8.0		39.4	28.03-51.75						1.4	12.7	32.4	12.7	1.4	8.5	21.1	4.2	5.6	
	Total		128.0	36.6	28.97-44.77						0.7	10.5	39.2		2.6	5.2	17.0	10.5	3.9	
Ciprofloxacin	Cattle Pigs	0.3	16.0	34.1	24.01-45.48		4.9	31.7	24.4	4.9				12.2	17.1	3.7	1.2			
	Broilers Layers	0.3	32.0	39.4	28.03-51.75		1.4	36.6	14.1	7.0	1.4			8.5	19.7	11.3				
	Total	0.3	16.0		28.97-44.77		3.3	34.0	19.6	5.9	0.7				18.3	7.2	0.7			
Chloramphenicol	Cattle	1.0	2.0	0.0	0-4.40					6.1	50.0	39.0	3.7	1.2						
	Pigs Broilers	1.0	2.0	0.0	0-5.07				2.8	11.3	47.9	28.2	9.9							
	Layers Total	1.0	2.0	0.0	0-2.39				1.3	8.5	49.0	34.0	6.5	0.7						

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 5.4. Distribution of MICs and resistance(%) in Campylobacter jejuni from cattle(n=143) and broilers(n=81) in 2013_Slaughterhouse

Antimicrobial	Animal				95%						Di	stribut	ion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs	2.0	16.0	9.1	4.92-15.05					0.7	12.6	41.3	29.4	4.9	2.1	3.5	4.2	0.7	0.7	
	Broilers Layers	8.0	32.0	19.8	11.73-30.09					1.2	9.9	18.5	18.5	17.3	14.8	9.9	6.2	3.7		
	Total	4.0	32.0	12.9	8.84-18.07					0.9	11.6	33.0	25.4	9.4	6.7	5.8	4.9	1.8	0.4	
Gentamicin	Cattle Pigs	0.5	1.0	-	-			7.0	27.3	48.3	16.8	0.7								
	Broilers	0.5	1.0	-	-				19.8	53.1	24.7	2.5								
	Layers	0.5	1.0		-			4 ~	04.0	5 0.0	10.0	1.0								
Streptomycin	Total Cattle	0.5 1.0	$\frac{1.0}{2.0}$	3.5	1.14-7.98			$\frac{4.5}{1.4}$	$\frac{24.6}{2.8}$	50.0 39.9	19.6 39.9	1.3 11.9		0.7		1.4	1.4		0.7	
Streptomycm	Pigs				-			1.4						0.7		1.4	1.4		0.7	
	Broilers Layers	0.5	1.0	0.0	0-4.46				12.3	50.6	30.9	6.2								
	Total	0.5	2.0	2.2	0.72 - 5.14			0.9	6.3	43.8	36.6	9.8		0.4		0.9	0.9		0.4	
Erythromycin	Cattle Pigs	0.5	1.0	0.7	-			0.7	14.0	55.9	19.6	4.9	2.8	1.4				0.7		
	Broilers Layers	0.3	1.0	0.0	-			3.7	51.9	29.6	13.6			1.2						
	Total	0.5	1.0	0.4	-			1.8	27.7	46.4	17.4	3.1	1.8	1.3				0.4		
Tetracycline	Cattle Pigs	16.0		52.4	43.93-60.86		9.1	27.3	7.7	2.1	0.7	0.7			3.5	14.0	10.5	24.5		
	Broilers Layers	2.0	>64	44.4	33.39-55.92		7.4	19.8	11.1	7.4	3.7	2.5		3.7	6.2	8.6	6.2	23.5		
	Total	8.0	>64	49.6	42.82-56.30		8.5	24.6	8.9	4.0	1.8	1.3		1.3	4.5	12.1	8.9	24.1		
Nalidixic acid	Cattle Pigs		128.0	33.6	25.89-41.94		0.0	21.0	0.0	1.0	1.0	7.7	32.2	23.1	3.5	4.2	9.8	12.6	7.0	
	Broilers	16.0	>128	48.1	36.90-59.54							6.2	22.2	19.8	3.7	4.9	11.1	13.6	18.5	
	Layers Total	8.0	>128	38.8	32.41-45.56							7.1	28.6	21.9	3.6	4.5	10.3	12.9	11.2	
Ciprofloxacin	Cattle Pigs	0.3	16.0	29.4	22.05-37.57	0.7	7.7	34.3	21.0	4.9	1.4	0.7	2.8	7.0	14.0	2.1	2.1	1.4		
	Broilers	1.0	16.0	39.5	28.81-50.99			27.2	12.3	7.4	6.2	7.4	7.4	8.6	16.0	6.2	1.2			
	Layers Total	0.3	16.0	33.0	26.91-39.62	0.4	49	31.7	17.9	5.8	3.1	3.1	4.5	7.6	14.7	3.6	1.8	0.9		
Chloramphenicol	Cattle	$\frac{0.3}{2.0}$	4.0	6.3	2.91-11.62	U.T	1.0	01.1	1.4	$\frac{5.6}{5.6}$	$\frac{3.1}{42.7}$	37.1	$\frac{4.0}{7.0}$	1.0	0.7	$\frac{3.0}{2.8}$	1.4	1.4		
p	Pigs Broilers	2.0		0.0	0-4.46				•-	7.4	40.7			1.2			• -	•-		
	Layers Total	2.0		4.0	1.85-7.49				0.9	6.3			9.4		0.4	1.8	0.9	0.9		

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 6.1. Distribution of MICs and resistance (%) in Campylobacter coli from cattle (n=6), pigs (n=57), broilers (n=3) and layers (n=11) in 2012_Farm

			212001100	3(, 0) 111 0411	95%	011 110		(11 0)	,, p-1g≈ (22 0 1,7,		istribut		of MI				-		
Antimicrobial agent	Animal species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs Broilers	8.0 4.0 2.0	16.0 16.0 8.0	0.0 3.5 0.0	0-45.93 0.42-12.11 0-70.76				1.8		16.7 15.8 33.3	24.6 33.3	16.7 24.6	50.0 12.3 33.3	16.7 17.5		1.8			1.8
	Layers Total	16.0 4.0	$32.0 \\ 16.0$	$27.3 \\ 6.5$	6.02-60.98 2.14-14.51				1.3		14.3	19.5	19.5	36.4 19.5	36.4 19.5	18.2 2.6	1.3	9.1 1.3		1.3
Gentamicin	Cattle	0.5	1.0	-	-			0.5	1.0	66.7	33.3									
	Pigs Broilers	1.0 0.3	1.0 1.0	-	-			3.5	$\frac{1.8}{66.7}$	19.3	66.7 33.3	8.8								
	Layers Total	$0.5 \\ 1.0$	1.0 1.0	-	-			2.6	3.9	$81.8 \\ 31.2$	$18.2 \\ 55.8$	6.5								
Streptomycin	Cattle Pigs	2.0 128.0	128.0 >128	16.7 63.2	0.42-64.13 49.34-75.56				1.8		1.8	50.0 10.5	33.3 21.1	1.8			8.8	16.7 17.5	36.8	
	Broilers Layers	1.0	>128	33.3 18.2	0.84-90.58 2.28-51.78				1.0		66.7 54.5	27.3	100	1.0			a v	18.2	33.3	
Erythromycin	<u>Total</u> Cattle		>128 >128	51.9 16.7	40.25-63.49				1.3	33.3	$\frac{11.7}{16.7}$	15.6 33.3	18.2	1.3			6.5	16.9	$\frac{28.6}{16.7}$	
Erythromyem	Pigs Broilers	4.0	>128 >128 >128	42.1 33.3	-				1.8	8.8 66.7	22.8	10.5	14.0					5.3	36.8 33.3	
	Layers Total	0.3	2.0 >128	0.0 33.8	-			9.1 1.3	$54.5 \\ 9.1$	11.7	9.1 19.5	$27.3 \\ 14.3$	10.4					3.9	29.9	
Tetracycline	Cattle Pigs	$0.5 \\ 64.0$	>128 >128	50.0 71.9	11.81-88.19 58.45-83.03			5.3	33.3 7.0	16.7 3.5	5.3			7.0		16.7 7.0	19.3	28.1	33.3 17.5	
	Layers	0.3	128.0	33.3 27.3	0.84-90.58 6.02-60.98			66.7 18.2	45.5	2.0	9.1			F 0		33.3	9.1	18.2	150	
Nalidixic acid	<u>Total</u> Cattle		>128 >128	62.3 33.3	50.56-73.14 4.32-77.73			9.1	14.3	3.9	5.2			$\frac{5.2}{66.7}$		7.8 16.7	15.6	23.4	$\frac{15.6}{16.7}$	
	Pigs Broilers		128.0 64.0	29.8 100.0	18.42-43.41 29.24-100							1.8	12.3	45.6	10.5	3.5 66.7	$7.0 \\ 33.3$	12.3	7.0	
	Layers Total	8.0	$128.0 \\ 128.0$	$27.3 \\ 32.5$	6.02-60.98 22.23-44.10							1.3	9.1 10.4	54.5 46.8	9.1 9.1	6.5	6.5	27.3 13.0	6.5	
Ciprofloxacin	Cattle Pigs Broilers	0.3	32.0 32.0	33.3 26.3	4.32-77.73 15.53-39.67		3.5	38.6	$66.7 \\ 24.6$	22.2	1.8	5.3	22.2	5.3	$16.7 \\ 5.3$	$16.7 \\ 12.3$	3.5			
	Layers Total	4.0 0.3 0.3	8.0 8.0 32.0	$66.7 \\ 27.3 \\ 28.6$	9.42-99.16 6.02-60.98 18.84-40.01		9.1 3.9	9.1 29.9	45.5 29.9	33.3 9.1 2.6	1.3	3.9	33.3	33.3 18.2 7.8	$9.1 \\ 6.5$	10.4	2.6			
Chloramphenicol	Cattle Pigs	$\frac{2.0}{4.0}$	$\frac{4.0}{32.0}$	0.0 29.8	0-45.93 18.42-43.41		0.0	20.0	1.8	1.8	16.7 10.5	33.3 29.8	50.0 21.1	5.3	1.8	21.1	3.5	1.8	1.8	
	Broilers Layers Total	1.0 2.0 2.0	4.0 2.0 32.0	$0.0 \\ 0.0 \\ 22.1$	0-70.76 0-28.50 13.41-32.98				1.3	1.3	66.7 27.3 15.6	63.6 33.8	33.3 9.1 22.1	3.9	1.3	15.6	2.6	1.3	1.3	

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 6.2. Distribution of MICs and resistance (%) in Campylobacter coli from cattle (n=4), pigs (n=42), broilers (n=5) and layers (n=10) in 2013_Farm

Antimionabial					95%				-/) F-8	<u> </u>		Distribut								
Antimicrobial agent	Animal species	MIC_{50}	MIC_{90}	%Resistan	t Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs	4.0	8.0 16.0	0.0 4.8	0-60.24 0.58-16.17						7.1	21.4	$75.0 \\ 21.4$	25.0 28.6	16.7	2.4		2.4		
	Broilers Layers Total	8.0 2.0 4.0	16.0 16.0 16.0	$0.0 \\ 10.0 \\ 4.9$	0-52.19 $0.25-44.51$ $1.02-13.71$						10.0 6.6	40.0 40.0 24.6	20.0 23.0	20.0 10.0 24.6	40.0 10.0 16.4	10.0 3.3		1.6		
Gentamicin	Cattle	0.5	2.0	-	-					50.0	25.0	25.0	20.0	21.0	10.1	0.0		1.0		
	Pigs	1.0	2.0	-	-					4.8	76.2	19.0								
	Broilers	1.0	1.0	-	-					20.0	80.0									
	Layers	0.5	1.0	-	-					60.0	40.0									
<u> </u>	Total	1.0	2.0	-	- 0.00.04					18.0	67.2	14.8	0 7 0	25.0		F				
Streptomycin	Cattle	1.0	8.0	0.0	0-60.24						50.0	0.4	25.0	25.0			- 1	00.0	01.4	
	Pigs	64.0		57.1	40.96-72.28						40.0	2.4	31.0	9.5			7.1	28.6	21.4	
	Broilers	2.0	4.0	0.0	0-52.19					10.0	40.0	20.0	40.0							
	Layers	1.0	2.0	0.0	0-30.85					10.0	60.0	20.0	10.0	0.0			4.0	10.7	140	
Erythromycin	Total Cattle	1.0	>128	39.3 0.0	27.07-52.69					$\frac{1.6}{25.0}$	$\frac{16.4}{25.0}$	$\frac{6.6}{25.0}$	$\frac{27.9}{25.0}$	8.2		-	4.9	19.7	14.8	
Erythromyth	Pigs		>128	42.9	_				2.4	$\frac{25.0}{4.8}$	19.0	23.8	$\frac{25.0}{7.1}$						42.9	
	Broilers	1.0	$\frac{2.0}{2.0}$	0.0	_				$\frac{2.4}{20.0}$	$\frac{4.6}{20.0}$	20.0	40.0	1.1						42.9	
	Layers	0.3	$\frac{2.0}{1.0}$	0.0	_			30.0	30.0	20.0	20.0	40.0								
	Total		>128	29.5	_			4.9	8.2	9.8	19.7	21.3	6.6						29.5	
Tetracycline	Cattle		>128	$\frac{25.0}{75.0}$	19.41-99.37			1.0	$\frac{0.2}{25.0}$	<i>9.</i> 0	10.1	21.0	0.0				50.0		$\frac{25.0}{25.0}$	
Tetracycline	Pigs		>128	78.6	63.18-89.71			2.4	7.1	7.1	4.8				2.4	11.9	23.8	16.7	23.8	
	Broilers		>128	60.0	14.66-94.73			40.0	***	•••	1.0					20.0	20.0	20.0	20.0	
	Layers	0.5	64.0	40.0	12.15-73.77			20.0	20.0	20.0						20.0	20.0	20.0	20.0	
	Total		>128	70.5	57.43-81.49			8.2	9.8	8.2	3.3				1.6	$\frac{-3.5}{13.1}$	$\frac{23.0}{23.0}$	13.1	19.7	
Nalidixic acid	Cattle	64.0		100.0	39.76-100											1	75.0	25.0		
	Pigs	16.0	128.0	47.6	32.00-63.59							2.4	16.7	26.2	7.1	4.8	16.7	16.7	9.5	
	Broilers	4.0	128.0	40.0	5.27-85.34								60.0				20.0	20.0		
	Layers	4.0	32.0	30.0	6.67 - 65.25							10.0	50.0	10.0		30.0				
	Total	16.0	128.0	47.5	34.59-60.74							3.3	24.6	19.7	4.9	8.2	18.0	14.8	6.6	
Ciprofloxacin	Cattle	16.0	16.0	100.0	39.76-100										100.0					
	Pigs	0.3	32.0	42.9	27.72-59.04			23.8	28.6	2.4	2.4			11.9	19.0	4.8	2.4	4.8		
	Broilers	0.5	8.0	40.0	5.27 - 85.34					60.0				40.0						
	Layers	0.3	4.0		2.52 - 55.61				30.0				10.0							
-	Total	0.5	16.0		30.04-55.95		1.6	19.7	24.6	8.2	3.3		1.6	13.1	19.7	3.3	1.6	3.3		
Chloramphenicol	Cattle	2.0	2.0	0.0	0-60.24							100.0								
	Pigs	2.0	32.0	19.0	8.60-34.12						9.5	50.0	21.4		4.8	11.9	2.4			
	Broilers	2.0	2.0	0.0	0-52.19						20.0	80.0								
	Layers	2.0	2.0	0.0	0-30.85						40.0	50.0	10.0							
White fields were	Total	2.0	16.0	13.1	5.83 - 24.22						14.8	55.7	16.4		3.3	8.2	1.6			

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 6.3. Distribution of MICs and resistance(%) in Campylobacter coli from cattle (n=68), pigs(n=129) and broilers (n=10) in 2012_Slaughterhouse

Antimicrobial	Animal				95%						D	istribu	tion(%)	of MI	Cs					
agent	Animal species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs Broilers Layers	8.0 8.0 4.0	16.0 128.0 32.0	1.5 23.3 20.0	0.03-7.93 16.27-31.51 2.52-55.61					3.1 10.0	1.6 10.0	2.9 7.0 10.0	16.2 17.1 30.0	64.7 32.6 20.0	14.7 15.5	2.3 10.0	1.5 7.0	12.4 10.0		1.6
	Total	8.0	64.0	15.9	11.23-21.66					2.4	1.4	5.8	17.4	42.5	14.5	1.9	4.8	8.2		1.0
Gentamicin	Cattle Pigs Broilers Layers	1.0 2.0 0.5	2.0 2.0 1.0	- - -	- - -				10.0	23.5 11.6 60.0	27.9 38.0 20.0	48.5 48.1 10.0	1.6	0.8						
	Total	1.0	2.0	-	-				0.5	17.9	33.8	46.4	1.0	0.5						
Streptomycin	Cattle Pigs Broilers Layers	8.0 >128 1.0	>128 >128 16.0	26.5 67.4 10.0	16.50-38.58 58.63-75.43 0.25-44.51					10.0	4.4 0.8 50.0	29.4 3.1 20.0	5.9 12.4	27.9 15.5	5.9 0.8 10.0		1.5 4.7	5.9 7.8	19.1 55.0 10.0	
	Total	64.0	>128	51.2	44.17-58.21					0.5	4.3	12.6	9.7	18.8	2.9		3.4	6.8	41.1	
Erythromycin	Cattle Pigs Broilers Layers		>64 >64 2.0	19.1 32.6 10.0	- - -				40.0	2.9 1.6	20.6 15.5 40.0	39.7 23.3 10.0	14.7 13.2	2.9 11.6	2.3		0.8	19.1 31.8 10.0		
	Total	2.0	>64	27.1	-				1.9	1.9	18.4	28.0	13.0	8.2	1.4		0.5	26.6		
Tetracycline	Cattle Pigs Broilers Layers	64.0 64.0 0.1	>64	85.3 84.5 30.0	74.61-92.72 77.07-90.27 6.67-65.25		1.5 0.8 10.0	4.4 2.3 50.0	1.5 4.7 10.0	5.9 2.3	2.3	1.6	1.5 0.8	0.8	6.2	19.1 14.0 10.0	33.8 30.2 10.0	32.4 34.1		
	Total	64.0		82.1	76.21-87.10		1.4	5.3	3.9	3.4	1.4	1.0	1.0	0.5	4.3	15.5	30.4	31.9		
Nalidixic acid	Cattle Pigs Broilers Layers	64.0 16.0 16.0	128.0 128.0 64.0	60.3 46.5 50.0	47.69-71.97 37.68-55.50 18.70-81.30							0.8	4.4 7.0 30.0	27.9 34.1 10.0	7.4 11.6 10.0	7.4 3.1	25.0 14.0 50.0	22.1 24.8	5.9 4.7	
	Total	32.0	128.0	51.2	44.17-58.21							0.5	7.2	30.9	10.1	4.3	19.3	22.7	4.8	
Ciprofloxacin	Cattle Pigs Broilers Layers	16.0 0.5 0.5	32.0 32.0 16.0	60.3 46.5 50.0	47.69-71.97 37.68-55.50 18.70-81.30		1.6	1.5 5.4 30.0	17.6 24.0 10.0	20.6 19.4 10.0	2.3	0.8	1.6	4.4 2.3 10.0	32.4 14.7 40.0	22.1 19.4	1.5 7.8	0.8		
	Total	8.0	32.0	51.2	44.17-58.21		1.0	5.3	21.3	19.3	1.4	0.5	1.0	3.4	21.7	19.3	5.3	0.5		
Chloramphenicol	Cattle Pigs Broilers	2.0 4.0 2.0	4.0 16.0 2.0	1.5 10.9 0.0	0.03-7.93 6.06-17.54 0-30.85				·	-	23.5 9.3 20.0	47.1 33.3 80.0	20.6	$7.4 \\ 12.4$	3.1	6.2	1.5 1.6			
White fields represe	Layers Total	2.0	8.0		4.11-11.68						14.5	40.1	28.0	10.1	1.9	3.9	1.4			

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 6.4. Distribution of MICs and resistance (%) in Campylobacter coli from cattle (n=37), pigs(n=106) and broilers (n=18) in 2013_Slaughterhouse

Antimiorabial		CATTON TO	313041100	, , , III	95%	011 110	ar care	0 (11 0	***, P-8*	3(11 10		istribut		of MI		corganio de	2110 010 0			
Antimicrobial agent	Animal species	MIC_{50}	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle Pigs Broilers Layers	8.0 8.0 8.0	16.0 128.0 16.0	5.4 25.5 5.6	0.66-18.20 17.50-34.86 0.14-27.30						1.9	6.6 16.7	8.1 23.6 22.2	70.3 20.8 27.8	16.2 21.7 27.8	1.9	5.4 8.5 5.6	14.2		0.9
	Total	8.0	64.0	18.6	12.93-25.52						1.2	6.2	19.9	32.9	21.1	1.2	7.5	9.3		0.6
Gentamicin	Cattle Pigs Broilers	1.0 1.0 1.0	2.0 2.0 2.0	- - -	- - -				5.6	8.1 4.7 27.8	67.6 51.9 55.6	24.3 35.8 5.6	7.5 5.6							
	Layers Total	1.0	2.0	-	-				0.6	8.1	55.9	29.8	5.6			ī				
Streptomycin	Cattle Pigs Broilers Layers	1.0 64.0 1.0	$ \begin{array}{r} 4.0 \\ 128.0 \\ 2.0 \end{array} $	2.9 58.2 0.0	0.07-14.92 44.10-71.35 0-18.54					14.3 16.7	51.4 72.2	22.9 9.1 5.6	8.6 30.9 5.6		1.8	1.8	25.5	2.9 30.9		
	Total	4.0	128.0	30.6	22.05-40.16					7.4	28.7	13.0	19.4		0.9	0.9	13.0	16.7		
Erythromycin	Cattle Pigs Broilers	2.0 4.0 1.0	4.0 >64 2.0	$5.4 \\ 44.3 \\ 0.0$	- - -			11.1	16.7	4.7 16.7	24.3 16.0 33.3	40.5 24.5 16.7	27.0 9.4 5.6	2.7	0.9	0.9	0.9	5.4 42.5		
	Layers Total	2.0	>64	30.4	-			1.2	1.9	5.0	19.9	27.3	13.0	0.6	0.6	0.6	0.6	29.2		
Tetracycline		>64 >64 16.0	>64 >64	56.8 93.4 55.6	39.48-72.91 86.68-97.42 30.75-78.47		0.9 5.6	10.8 0.9 11.1	27.0 1.9 11.1	5.4 1.9 5.6	11.1	21.0	10.0	0.9	1.9 5.6	13.2 5.6	2.7 16.0 16.7	54.1 62.3 27.8		
		>64	>64	80.7	73.79-86.53		1.2	4.3	8.7	3.1	1.2			0.6	1.9	9.3	13.0	56.5		
Nalidixic acid	Cattle Pigs Broilers Layers	32.0	128.0 >128 128.0	70.3 53.8 55.6	52.84-84.36 43.82-63.51 30.75-78.47								$5.4 \\ 4.7 \\ 16.7$	16.2 28.3 27.8	8.1 13.2	5.4 3.8 11.1	10.8 5.7 16.7	$45.9 \\ 14.2 \\ 22.2$	8.1 30.2 5.6	
	Total	64.0	>128	57.8	49.74-65.50								6.2	25.5	10.6	5.0	8.1	22.4	22.4	
Ciprofloxacin	Cattle Pigs Broilers Layers	16.0 1.0 2.0	32.0 32.0 32.0	70.3 46.2 50.0	52.84-84.36 36.49-56.18 26.01-73.99			5.4 12.3 16.7	21.6 17.9	2.7 15.1 27.8	7.5	0.9 5.6	2.7 0.9 11.1	5.7 22.2	45.9 16.0 5.6	18.9 19.8 11.1	2.7 3.8			
	Total	4.0	32.0	52.2	44.16-60.10			11.2	16.8	13.7	5.0	1.2	2.5	6.2	21.7	18.6	3.1			
Chloramphenicol	Cattle Pigs Broilers	4.0 2.0 2.0	4.0 4.0 8.0	2.7 3.8 0.0	0.06-14.17 1.03-9.39 0-18.54			·		0.9	2.7 3.8 5.6	32.4 50.9 55.6	56.8 38.7 27.8	5.4 1.9	2.7	0.9	0.9			
White fields represe	Layers Total	2.0	4.0	3.1	1.01-7.10					0.6	3.7	47.2	41.6	3.7	1.9	0.6	0.6			

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 7.1. Distribution of MICs and resistance (%) in Salmonella from cattle (n=84), pigs (n=83) and chickens (n=32) in 2012_Farm

Antimicrobial	Animal MICS and resis			95%	carrie	(11 0 17,	pigo(ii	2 00, u	114 01110		stributi								
agent	$\frac{\text{Allmal}}{\text{species}}$ $\frac{\text{MIC}_{50}}{\text{N}}$	MIC_{90}	%Resistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle 2.0 >	128	34.5	24.48-45.70						32.1	31.0	2.4						34.5	
		128	25.3	16.39-36.04						51.8	20.5	2.4						25.3	
	Chickens ≤ 1	2.0	9.4	1.97-25.03						68.8	21.9							9.4	
	Total 2.0 >	128	26.6	20.63-33.35						46.2	25.1	2.0						26.6	
Cefazolin	Cattle ≤ 1	4.0	1.2	0.03- 6.46						54.8	19.0	21.4	3.6					1.2	
	$Pigs \leq 1$	4.0	0.0	0 - 4.35						62.7	24.1	8.4	3.6	1.2					
	Chickens ≤ 1	2.0	3.1	0.07-16.22						71.9	25.0							3.1	
	Total ≤ 1	4.0	1.0	0.12-3.59						60.8	22.1	12.6	3.0	0.5				1.0	
Cefotaxime		≤ 0.5	1.2	0.03- 6.46					98.8							1.2			
	2	≤ 0.5	0.0	0 - 4.35					100.0										
	Chickens $\leq 0.5 \leq$	≤ 0.5	0.0	0-10.89					96.9	3.1									
<u>. </u>	Total $\leq 0.5 \leq$	≤ 0.5	0.5	0.01-2.77					99.0	0.5						0.5			
Streptomycin	Cattle			-															
	Pigs			-															
	Chickens			-															
	Total			-															
Gentamicin		€0.5	0.0	0-4.30					91.7	8.3					•				
	Pigs $\leq 0.5 \leq$	≤ 0.5	3.6	0.75 - 10.21					92.8	3.6				2.4	1.2				
	Chickens $\leq 0.5 \leq$	≤ 0.5	0.0	0-10.89					96.9	3.1									
	Total $\leq 0.5 \leq$	≤ 0.5	1.5	0.31-4.35					93.0	5.5				1.0	0.5				
Kanamycin	Cattle 4.0	4.0	3.6	0.74-10.09						1.2	44.0	46.4	4.8					3.6	
U	Pigs 4.0 >	128	12.0	5.93-21.05							36.1	47.0	3.6	1.2				12.0	
	Chickens 4.0 >		15.6	5.27-32.79						3.1	34.4	43.8	3.1					15.6	
	Total 4.0	8.0	9.0	- 5.44 ⁻ 13.92						1.0	39.2	46.2	4.0	0.5				9.0	

Table 7.1. Distribution of MICs and resistance (%) in Salmonella from cattle (n=84), pigs (n=83) and chickens (n=32) in 2012_Farm

Antimicrobial	Animal	MIC	MIC	0/ D '-44	95%						Di	stributi	ion(%)	of MIC	Cs					
agent	species	MIC_{50}	MIC_{90}	%Kesistant	Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	2.0	>64	34.5	24.48-45.70						4.8	54.8	4.8	1.2		2.4	8.3	23.8		
	Pigs	>64	>64	53.0	41.73-64.07					2.4	2.4	37.3	4.8				2.4	50.6		
	Chickens	2.0	64.0	34.4	18.57-53.20					3.1	15.6	43.8	3.1			3.1	21.9	9.4		
	Total	2.0	>64	42.2	35.25-49.41					1.5	5.5	45.7	4.5	0.5		1.5	8.0	32.7		
Nalidixic acid	Cattle	8.0	16.0	7.1	2.66-14.91								36.9	51.2	4.8			1.2	6.0	
	Pigs	8.0	>128	21.7	13.38-32.10							1.2	32.5	42.2	2.4	3.6	1.2		16.9	
	Chickens	4.0	8.0	6.3	0.76-20.81								50.0	43.8			3.1		3.1	
	Total	8.0	>128	13.1	8.71-18.56							0.5	37.2	46.2	3.0	1.5	1.0	0.5	10.1	
Ciprofloxacin			≦0.03	0.0	0-4.30	91.7	1.2		3.6	2.4	1.2									
		≤ 0.03		0.0	0 - 4.35	74.7	2.4	1.2	15.7	1.2	4.8									
	Chickens	≤ 0.03	≤ 0.03	0.0	0-10.89	93.8		3.1	3.1											
	Total	≤ 0.03	0.3	0.0	0-1.84	84.9	1.5	1.0	8.5	1.5	2.5									
Colistin	Cattle	0.5	1.0	0.0	0-4.30				35.7	42.9	21.4									
	Pigs	0.5	1.0	0.0	0 - 4.35				31.3	50.6	15.7		2.4							
	Chickens	0.5	1.0	3.1	0.07-16.22				21.9	37.5	37.5					3.1				
	Total	0.5	1.0	0.5	0.01-2.77				31.7	45.2	21.6		1.0			0.5				
Chloramphenicol	Cattle	16.0	>128	11.9	5.85-20.81								1.2	46.4	40.5	1.2			10.7	
	Pigs	8.0	>128	13.3	6.80 - 22.48								27.7	43.4	15.7			2.4	10.8	
	Chickens	8.0	16.0	6.3	0.76-20.81							3.1	9.4	62.5	18.8				6.3	
	Total	8.0	>128	11.6	7.46-16.84							0.5	13.6	47.7	26.6	0.5		1.0	10.1	
Trimethoprim	Cattle	0.5	0.5	1.2	0.03-6.46				33.3	60.7	4.8					1.2				
-	Pigs	≤ 0.25	>16	21.7	13.38-32.10				53.0	24.1	1.2					21.7				
	Chickens	0.5	>16	15.6	5.27-32.79				18.8	56.3	6.3	3.1				15.6				
	Total	0.5	>16	12.1	7.88-17.42				39.2	44.7	3.5	0.5				12.1				

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 7.2. Distribution of MICs and resistance(%) in Salmonella from cattle(n=56), pigs(n=60) and chickens(n=50) in 2013_Farm

Antimicrobial	Animal MIC MIC	\mathbb{C}_{90} %Resistant	95%						D	istribu	tion(%)	of MI	Cs					
agent	species MIC_{50} MIC	90 %Kesistant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle >128 >12	8 60.7	46.75-73.51						23.2	16.1						1.8	58.9	
	Pigs 4.0 >12		32.12-58.39						20.0	26.7	6.7	1.7		1.7			43.3	
	Chickens 2.0 2	.0 4.0	0.48 - 13.72						46.0	46.0	4.0						4.0	
	Total 2.0 >12	8 38.0	- 30.53-45.81						28.9	28.9	3.6	0.6		0.6		0.6	36.7	
Cefazolin		.0 8.9	2.96-19.62						32.1	16.1	39.3	3.6					8.9	
		.0 0.0	0 - 5.97						26.7	48.3	18.3	6.7						
		.0 4.0	0.48 - 13.72						50.0	42.0	4.0			2.0			2.0	
	Total 2.0 4	.0 4.2	- 1.71-8.50						35.5	35.5	21.1	3.6		0.6			3.6	
Cefotaxime	Cattle $\leq 0.5 \leq 0$		2.96-19.62					91.1	00.0	55.5	21.1	0.0	3.6	3.6	1.8		0.0	
	$Pigs \qquad \leq 0.5 \leq 0$		0-5.97					98.3	1.7									
	Chickens $\leq 0.5 \leq 0$		0.48 - 13.72					96.0			2.0				2.0			
	Total $\leq 0.5 \leq 0$	5 4.2	- 1.71-8.50					95.2	0.6		0.6		1.2	1.2	1.2			
Streptomycin	Cattle >128 >12		-					00.2	0.0		0.0	8.9	23.2	3.6		1.8	62.5	
1 0	Pigs >128 >12	8 -	-									13.3	16.7	3.3		5.0	61.7	
		.0 -	-								4.0	12.0	40.0	28.0	12.0	2.0	2.0	
	Total 64.0 >12	8 -	-								1.2	11.4	25.9	10.8	3.6	3.0	44.0	
Gentamicin	Cattle $\leq 0.5 \leq 0$		0-6.38					94.6	5.4					10.0	3.3	3.0	11.0	
	Pigs ≤ 0.5 16		7.09-26.58					73.3	11.7				6.7	6.7	1.7			
	Chickens $\leq 0.5 \leq 0.5$	$5 \qquad 2.0$	0.05 - 10.65					90.0	8.0				2.0					
	Total ≤ 0.5 1	.0 6.0	- 2.92-10.80					85.5	8.4				3.0	2.4	0.6			
Kanamycin	$\begin{array}{ccc} & & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		14.39-38.38					30.0	0,1	48.2	25.0		0.0	1.8	1		25.0	
		.0 6.7	1.84-16.20							56.7	35.0	1.7					6.7	
	Chickens 2.0 >12		11.52-35.97						6.0	48.0	18.0	6.0					22.0	
	Total 2.0 >12	8 17.5	- 12.02-24.12						1.8	51.2	26.5	2.4		0.6			17.5	

Table 7.2. Distribution of MICs and resistance(%) in Salmonella from cattle(n=56), pigs(n=60) and chickens(n=50) in 2013_Farm

Antimicrobial	Animal	MIC	MIC	0/Posistant	95% Confidence						D	istribut	tion(%)	of MI	Cs					
agent	species	MIC_{50}	M1C ₉₀	%Kesistant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle	>64	>64	66.1	52.18-78.19						5.4	26.8	1.8				3.6	62.5		
	Pigs	64.0	>64	66.7	53.31-78.32							30.0	3.3				18.3	48.3		
	Chickens	s = 2.0	64.0	30.0	17.86-44.61						22.0	48.0					26.0	4.0		
	Total	64.0	>64	55.4	- 47.52-63.13						8.4	34.3	1.8				15.7	39.8		
Nalidixic acid	Cattle	4.0	8.0	1.8	0.04-9.56								53.6	44.6					1.8	
	Pigs	4.0	16.0	5.0	1.04-13.93								50.0	36.7	8.3	1.7			3.3	
	Chickens		8.0	8.0	2.22-19.24							6.0	62.0	22.0	2.0			4.0	4.0	
	Total	4.0	8.0	4.8	- 2.10-9.28							1.8	54.8	34.9	3.6	0.6		1.2	3.0	
Ciprofloxacin	Cattle		6.0	0.0	0-6.38	98.2				1.8		1.0	04.0	54.5	5.0	0.0		1.4	5.0	
Cipionoxacin	Pigs		0.03		0.5.97	90.0	6.7		3.3	1.0										
	Chickens				0-7.12	90.0	6.0	2.0	0.0	2.0										
					-															
	Total	≤ 0.03	≤ 0.03	0.0	0-2.20	92.8	4.2	0.6	1.2	1.2										
Colistin	Cattle	0.5	1.0	0.0	0-6.38				30.4	53.6	10.7	3.6	1.8							
	Pigs	0.5	1.0	1.7	0.04 - 8.94				43.3	41.7	11.7		1.7			1.7				
	Chickens	s = 0.5	1.0	2.0	0.05 - 10.65				28.0	60.0	8.0		2.0			2.0				
	Total	0.5	1.0	1.2	- 0.14-4.29				34.3	51.2	10.9	1.2	1.8			1.2				
Chloramphenicol	Cattle	8.0		10.7	4.03-21.88				04.0	01.2	10.2	1,4	8.9	76.8	3.6	1.4		1.8	8.9	
Cinoramphenicor	Pigs	8.0	64.0	11.7	4.82-22.58								33.3	48.3	6.7		1.7	1.7	8.3	
	Chickens		8.0	6.0	1.25-16.55							4.0	16.0	70.0	4.0			±.•	6.0	
					-															
	Total	8.0	16.0	9.6	5.61-15.19							1.2	19.9	64.5	4.8		0.6	1.2	7.8	
Trimethoprim	Cattle	≤ 0.25		1.8	0.04 - 9.56				75.0	21.4	1.8					1.8				
	Pigs		>16	36.7	24.59-50.11				43.3	18.3	1.7					36.7				
	Chickens	s = 0.5	>16	14.0	5.81-26.74				26.0	54.0	4.0		2.0			14.0				
	Total	0.5	>16	18.1	- 12.53-24.79				48.8	30.1	2.4		0.6			18.1				

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 7.3. Distribution of MICs and resistance(%) in Salmonella from broilers(n=94) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Posistant	95% Confidence						D	istribu	tion(%)	of MI	ICs					
agent	species	MIC_{50}	, MIC ₉₀	%Resistant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle				-															
	Pigs				-															
	Broilers	≦1	>128	31.9	22.67-42.34						64.9	3.2						6.4	25.5	
	Layers				-															
	Total	≦1	>128	31.9	22.67-42.34						64.9	3.2						6.4	25.5	
Cefazolin	Cattle				-															
	$_{ m Pigs}$				-															
	Broilers	≦1	8.0	7.4	3.04-14.75						57.4	10.6	14.9	9.6			1.1		6.4	
	Layers				-							100								
G 0	Total	≦1	8.0	7.4	3.04-14.75						57.4	10.6	14.9	9.6			1.1		6.4	
Cefotaxime	Cattle				-															
	Pigs	<0 F	<0 F	7.4	2041475					00.0				C 1	1 1					
	Broilers	≥0.0	\geq 0.5	7.4	3.04-14.75					92.6				6.4	1.1					
	Layers Total	<0.5	≤ 0.5	7.4	3.04-14.75					92.6				6.4	1.1					
Streptomycin	Cattle	=0.0	=0.0	7,4	-					52.0				0.4	1.1					
Streptomyem	Pigs				-															
	Broilers	64.0	64.0	77.7	67.90-85.61									4.3	18.1	16.0	53.2	8.5		
	Layers	0 1.0	0 1.0		-									1.0	1011	10.0	00.2	0.0		
	Total	64.0	64.0	77.7	67.90-85.61									4.3	18.1	16.0	53.2	8.5		
Gentamicin	Cattle				-															
	Pigs				-															
	Broilers	≤ 0.5	1.0	0.0	0 - 3.85					80.9	19.1									
	Layers				-															
	Total	≤ 0.5	1.0	0.0	0-3.85					80.9	19.1									
Kanamycin	Cattle				-															
	Pigs				-															
	Broilers	4.0	>128	31.9	22.67-42.34							37.2	21.3		7.4	2.1			31.9	
	Layers		400	0.1.0	-							a - -							0.4.6	
	Total	4.0	>128	31.9	22.67-42.34							37.2	21.3		7.4	2.1			31.9	

Table 7.3. Distribution of MICs and resistance(%) in Salmonella from broilers(n=94) in 2012_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Desistent	95%						D	istribu	tion(%)	of MI	[Cs					
agent	species	MHC_{50}	MIC_{90}	%Kesistani	t Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle				-															
	Pigs				-															
	Broilers	32.0	64.0	74.5	64.43-82.91					6.4	18.1			1.1		37.2	34.0	3.2		
	Layers				-															
	Total	32.0	64.0	74.5	64.43-82.91					6.4	18.1			1.1		37.2	34.0	3.2		
Nalidixic acid	Cattle				-															
	Pigs				-															
	Broilers	4.0	>128	29.8	20.79-40.1							38.3	29.8	2.1		1.1			28.7	
	Layers				-															
	Total	4.0	>128	29.8	20.79-40.1							38.3	29.8	2.1		1.1			28.7	
Ciprofloxacin	Cattle				-															
	Pigs	.			-	00.4			100											
	Broilers	≤ 0.03	0.3	0.0	0-3.85	69.1	1.1	14.9	10.6	4.3										
	Layers	/ 0.00	0.0	0.0	-	00.1		4.40	100	4.0										
O 1: .:	Total	≤ 0.03	0.3	0.0	0-3.85	69.1	1.1	14.9	10.6	4.3			ļ		1					
Colistin	Cattle				-															
	Pigs	0.5	1.0	0.0				0.0	150	41 -	0 7 1	0.0								
	Broilers	0.5	1.0	0.0	0-3.85			3.2	17.0	41.5	35.1	3.2								
	Layers Total	0.5	1.0	0.0				2.0	17.0	41 5	9F 1	2.0								
Chloramphenicol	Cattle	0.5	1.0	0.0	0-3.85			3.2	17.0	41.5	35.1	3.2			<u> </u>					
Chioramphenicol					-															
	Pigs Broilers	4.0	8.0	0.0	0-3.85							7.4	70.9	12.8						
		4.0	0.0	0.0	0-5.69							1.4	19.0	12.0						
	Layers Total	4.0	8.0	0.0	0-3.85							7.4	70.8	12.8						
	IUtai	4.0	0.0	0.0	0 5.05							1.4	13.0	12.0						
A 2 . 3	4				95%						n	ictrih	tion(%)	of MI	Ce					
Antimicrobial	Animal	MIC_{50}	MIC_{90}	%Resistant	Confidence						ъ	13111111	01011(70)	OI WII	.08					
agent	species	50	30		interval			2.38/0.12	4.75/0.25	9.5/0.5	19/1	38/2	76/4	152/8	>152/8	3				
Sulfamethoxazole	Cattle				-															
/Trimethoprim	Pigs				-															
•	Broilers	≤ 0.12	>8	31.9	22.67-42.34			51.1	9.6	3.2	3.2	1.1	1.1		30.9					
	Layers				-															
	Total	≤ 0.12	>8	31.9	22.67-42.34			51.1	9.6	3.2	3.2	1.1	1.1		30.9					

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 7.4. Distribution of MICs and resistance(%) in Salmonella from broilers(n=118) in 2013_Slaughterhouse

Antimicrobial	Animal	MIC	MIC	0/Pasistant	95% Confidence						D	istribut	ion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	Cattle				-															
	Pigs				-															
	Broilers	≦1	>128	22.9	15.65 - 31.52						59.3	12.7	3.4	0.8	0.8	0.8	0.8		21.2	
	Layers				-															
	Total	≦1	>128	22.9	15.65-31.52						59.3	12.7	3.4	0.8	0.8	0.8	0.8		21.2	
Cefazolin	Cattle				-															
	Pigs				-															
	Broilers	≤ 1	8.0	5.9	2.41 - 11.85						50.0	29.7	5.9	8.5		0.8		0.8	4.2	
	Layers				-															
	Total	≦1	8.0	5.9	2.41-11.85						50.0	29.7	5.9	8.5		0.8		0.8	4.2	
Cefotaxime	Cattle				-															
	Pigs				- -															
	Broilers	≤ 0.5	≤ 0.5	5.1	1.88-10.74					94.9				2.5	0.8	0.8		0.8		
	Layers	- a =	-		-															
<u> </u>	Total	≤ 0.5	≤ 0.5	5.1	1.88-10.74					94.9				2.5	0.8	0.8		0.8		
Streptomycin	Cattle				-															
	Pigs	0.4.0	. 0.4	0.4.	-						0.0		0.0	5 0	- 0	20.0	44.4	11.0		
	Broilers	64.0	>64	84.7	76.96-90.71						0.8		0.8	7.6	5.9	28.8	44.1	11.9		
	Layers Total	C4 0	> C 1	84.7	76.96-90.71						0.8		0.8	7.6	F 0	90.0	44.1	11.0		
Gentamicin	Cattle	64.0	>64	04.7	76.96-90.71 -						0.8		0.8	7.6	5.9	20.0	44.1	11.9		
Gentamicin	Pigs				_															
	Broilers	< 0.5	2.0	0.0	0-3.08					61.0	28.0	11.0								
	Layers	≡0.0	2.0	0.0	-					01.0	20.0	11.0								
	Total	≤ 0.5	2.0	0.0	0-3.08					61.0	28.0	11.0								
Kanamycin	Cattle	= 0.0		0.0	-					01.0	20.0	11.0			1					
114114111111111111111111111111111111111	Pigs				-															
	Broilers	8.0	>128	42.4	33.32-51.81						5.9	26.3	14.4	5.1	3.4	2.5	0.8		41.5	
	Layers	0.0	120	12.1	-						0.0	_0.0	11,1	0.1	0.1		"."		11.0	
	Total	8.0	>128	42.4	33.32-51.81						5.9	26.3	14.4	5.1	3.4	2.5	0.8		41.5	

Table 7.4. Distribution of MICs and resistance(%) in Salmonella from broilers(n=118) in 2013_Slaughterhouse

Antimicrobial	Animal	MIC			95%							istribut	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	t Confidence interval	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Tetracycline	Cattle				-															
	Pigs				-															
	Broilers	64.0	64.0	82.2	74.02-88.70						5.9	11.9				10.2	66.9	5.1		
	Layers				-															
	Total	64.0	64.0	82.2	74.02-88.70						5.9	11.9				10.2	66.9	5.1		
Nalidixic acid	Cattle				-															
	Pigs				-															
	Broilers	4.0	>128	19.5	12.77-27.80							15.3	55.1	9.3	0.8	1.7		2.5	15.3	
	Layers				<u>-</u>															
	Total	4.0	>128	19.5	12.77-27.80							15.3	55.1	9.3	0.8	1.7		2.5	15.3	
Ciprofloxacin	Cattle				-															
	Pigs	/ 0.00	0.1	0.0	-	5 0.0	o -	0.0	0.0	2 -										
	Broilers	≥ 0.03	0.1	0.0	0-3.08	78.8	2.5	9.3	6.8	2.5										
	Layers	- 0.00	0.1	0.0	-	7 0.0	o -	0.0	0.0	0.										
Colistin	Total Cattle	≤ 0.03	0.1	0.0	0-3.08	78.8	2.5	9.3	6.8	2.5					1					
Collstin	Pigs				- -															
	Broilers	1.0	2.0	0.0	0-3.08				6.8	20.3	34.7	33.1	5.1							
	Layers	1.0	2.0	0.0	0 3.00				0.0	20.5	9 4 .7	55.1	5.1							
	Total	1.0	2.0	0.0	0-3.08				6.8	20.3	34.7	33.1	5.1							
Chloramphenicol	Cattle	1.0	2.0	0.0	-				0.0	20.0	94.1	55.1	0.1							
Cinoramphemeor	Pigs				_															
	Broilers	4.0	8.0	0.8	0.02-4.64						2.5	17.8	50.8	26.3	1.7			0.8		
	Layers	1.0	0.0	0.0	-						2.0	11.0	00.0	20.0	±••			0.0		
	Total	4.0	8.0	0.8	0.02-4.64						2.5	17.8	50.8	26.3	1.7			0.8		
Antimicrobial	Animal	MIC	MIC	0/D : :	95%						D	istribut	tion(%)	of MI	Cs					
agent	species	MIC_{50}	MIC_{90}	%Resistant	t Confidence interval			2.38/0.12	4.75/0.25	9.5/0.5	19/1	38/2	76/4	152/8	>152/8					
Sulfamethoxazole	Cattle				-															
/Trimethoprim	Pigs				-															
F	Broilers	1.0	>8	48.3	38.99-57.71			18.6	21.2	8.5	3.4		0.8	1.7	45.8					
	Layers		=		-															
	Total	1.0	>8	48.3	38.99-57.71			18.6	21.2	8.5	3.4		0.8	1.7	45.8					

White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 8 Salmonella serovars isolated from food-producing animals 2012 and 2013

					Fai	rm							Slaugh	terhouse	е
		Cattle	9		Pigs			Chicken	s	_		Chic	kens	_	
Serovar	2012	2013	subtotal	2012	2013	subtotal	2012	2013	subtotal	Total	Rate(%)	2012	2013	Total	Rate(%)
Typhimurium	34	25	59	35	23	58	1	1	2	119	37.5	18	15	33	16.3
O4:i:-	16	15	31	3	8	11				42	13.2			0	0.0
Choleraesuis		3	3	19	18	37				40	12.6			0	0.0
Infantis				2		2	10	7	17	19	6.0	47	57	104	51.2
Schwarzengrund							2	6	8	8	2.5	12	24	36	17.7
Manhattan										0	0.0	12	12	24	11.8
Derby				7	2	9				9	2.8			0	0.0
Give	9		9							9	2.8			0	0.0
Mbandaka	2		2					6	6	8	2.5			0	0.0
Rissen	6		6	1	1	2				8	2.5			0	0.0
Newport	1	2	3	1		1	1	2	3	7	2.2			0	0.0
Bareilly	3		3					3	3	6	1.9			0	0.0
Braenderup	1	1	2				2	2	4	6	1.9			0	0.0
Livingstone							2	2	4	4	1.3	1	1	2	1.0
Tennessee							4	2	6	6	1.9			0	0.0
Thompson		1	1				1	3	4	5	1.6		1	1	0.5
Stanley	1	1	2		2	2				4	1.3			0	0.0
II (Sofia)										0	0.0	3		3	1.5
Enteritidis	1		1					2	2	3	0.9			0	0.0
Blockley								2	2	2	0.6			0	0.0
Cerro								2	2	2	0.6			0	0.0
Dublin		2	2							2	0.6			0	0.0
Montevideo	2		2							2	0.6			0	0.0
Oranienburg		2	2							2	0.6			0	0.0
Othmarschen							2		2	2	0.6			0	0.0
Senftenberg					1	1		1	1	2	0.6			0	0.0

Editors:

Ryoji Koike

Section Leader of AMR

Assay Division II

National Veterinary Assay Laboratory

Ministry of Agriculture, Forestry and Fisheries

1-15-1 Tokura Kokubunji, Tokyo 185-8511 Japan

E-mail; ryoji_koike860@maff.go.jp

Michiko Kawanishi (DVM.PhD)

Chief Researcher of AMR

E-mail; michiko_kawanishi700@maff.go.jp

Authors:

- · Ryoji Koike
- Manao Ozawa (Chief Researcher of AMR)
- · Michiko Kawanishi
- Mariko Uchiyama (Chief Inspector)

Contributors:

- · Mototaka Hiki
- · Mai Tsuyuki
- · Yuriko Sugawara
- · Hitoshi Abo

This report includes data gathered between 2012 and 2013, in part to data from 1999. This report is published by JVARM-Japanese Veterinary Antimicrobial Resistance Monitoring System