# Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System 2018–2019



National Veterinary Assay Laboratory

Ministry of Agriculture, Forestry and Fisheries

2023

## Contents

| 1. Introduction                                                              | 1            |
|------------------------------------------------------------------------------|--------------|
| 2. The Japanese Veterinary Antimicrobial Resistance Monitoring System (JVAR) | M) 2         |
| 2.1 Objectives                                                               | 2            |
| 2.2 Overview                                                                 | 2            |
| (1) Monitoring of Antimicrobial Sales                                        | 2            |
| (2) Monitoring of Antimicrobial-resistant Bacteria                           | §            |
| 2.3 Implementation System                                                    | §            |
| (1) Monitoring System for Farms with Diseased Animals                        |              |
| (2) Monitoring System for Slaughterhouses                                    | 4            |
| (3) Monitoring System for Companion Animals                                  | 4            |
| 2.4 Quality Assurance/Control Systems                                        | 5            |
| 2.5 Publication of Data                                                      | 5            |
| 3. An Overview of the Availability of Veterinary Antimicrobial Products Us   | ed for Anima |
| Treatment or as Antimicrobial Feed Additives in Japan                        | 6            |
| 4. Monitoring of Antimicrobial Resistance in 2018 and 2019                   | 10           |
| 4.1 Healthy Animals in Slaughterhouses                                       | 10           |
| (1) Escherichia coli                                                         | 10           |
| (2) Enterococcus                                                             | 11           |
| (3) Campylobacter                                                            | 12           |
| (4) Salmonella                                                               | 12           |
| 4.2 Diseased Animals on Farms                                                | 19           |
| (1) Salmonella                                                               | 19           |
| (2) Staphylococcus aureus                                                    | 21           |
| (3) Escherichia coli                                                         | 21           |
| 4.3 Companion Animals                                                        | 23           |
| 4.3.1 Healthy Companion Animals                                              | 23           |
| (1) Escherichia coli                                                         | 25           |
| (2) Enterococcus                                                             | 24           |
| 4.3.2 Diseased Companion Animals                                             | 25           |
| (1) Escherichia coli                                                         | 26           |
| (2) Enterococcus                                                             | 27           |
| (3) Staphylococcus pseudintermedius                                          | 28           |
| (4) Klebsiella pneumoniae                                                    | 29           |
| (5) Pseudomonas aeruginosa and Proteus mirabilis                             | 30           |
| 5. JVARM Publications                                                        | 31           |
| 6. Acknowledgments                                                           | 31           |

| 7. Participants in  | the JVARM Program                                                           |
|---------------------|-----------------------------------------------------------------------------|
| 7.1. Data from      | the National Veterinary Assay Laboratory were provided by the following     |
| people:             |                                                                             |
| 7.2. Data from t    | the Food and Agricultural Materials Inspection Center were provided by the  |
| following people    | e:                                                                          |
| 7.3 Data from the   | he Livestock Hygiene Services Centers were kindly provided by the following |
| people:             |                                                                             |
| 8. Materials and M  | Methods                                                                     |
| <b>8.1</b> Sampling |                                                                             |
| 8.2 Isolation and   | d Identification                                                            |
| 8.3 Antimicrobi     | al Susceptibility Testing                                                   |
| 8.4 Resistance B    | Sreakpoints                                                                 |
| 9. References       |                                                                             |
|                     |                                                                             |
|                     |                                                                             |
|                     |                                                                             |
|                     | P43-                                                                        |
| —Table 12.1.        | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Escherichia coli isolates from food-producing animals     |
|                     | (2018-2019)                                                                 |
| —Table 12.2.        | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Enterococcus faecalis isolates from food-producing        |
|                     | animals (2018-2019)                                                         |
| —Table 12.3.        | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Enterococcus faecium isolates from food-producing         |
|                     | animals (2018-2019)                                                         |
| —Table 12.4.        | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Campylobacter jejuni isolates from food-producing         |
|                     | animals (2018-2019)                                                         |
| —Table 12.5.        | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Campylobacter coli isolates from food-producing           |
|                     | animals (2018-2019)                                                         |
| —Table 12.6         | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Salmonella isolates from broilers (2001–2017)             |
| —Table 12.7         | Distribution of minimum inhibitory concentrations (MICs) and                |
|                     | resistance (%) in Salmonella isolates from food-producing animals           |
|                     | (2018-2019)                                                                 |

- —Table 12.8. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Escherichia coli* isolates from healthy companion animals (2018-2019)
- —Table 12.9. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Enterococcus faecalis* isolates from healthy companion animals (2018-2019)
- —Table 12.10. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Escherichia coli* isolates from diseased companion animals (2018-2019)
- —Table 12.11. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Enterococcus faecalis* isolates from diseased companion animals (2018-2019)
- —Table 12.12. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Enterococcus faecium* isolates from diseased companion animals (2018-2019)
- —Table 12.13. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Staphylococcus pseudintermedius* isolates from diseased companion animals (2018-2019)
- —Table 12.14. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Klebsiella pneumoniae* isolates from diseased companion animals (2018-2019)
- —Table 12.15. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Pseudomonas aeruginosa* isolates from diseased companion animals (2018)
- —Table 12.16. Distribution of minimum inhibitory concentrations (MICs) and resistance (%) for *Proteus mirabilis* isolates from diseased companion animals (2019)

#### 1. Introduction

Antimicrobial agents are essential for maintaining the health and welfare of both animals and humans. However, their use has also been linked to the emergence and increasing prevalence of antimicrobial-resistant bacteria. In 1969, Swann reported on the transmission of antimicrobial-resistant bacteria, which had emerged as a consequence of the use of veterinary antimicrobial agents, to humans via food-producing animal products, subsequently reducing the efficacy of these antimicrobial drugs in humans<sup>1)</sup>. In addition, the development of antimicrobial resistance in these bacteria reduces the efficacy of veterinary antimicrobial drugs.

Antimicrobial agents have been used for the prevention, control, and treatment of infectious diseases in animals worldwide, and in some countries have also been used for non-therapeutic purposes in food-producing animals. The Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 in response to international concern regarding the impact of antimicrobial resistance on public and animal health<sup>2)</sup>. Preliminary monitoring for antimicrobial-resistant bacteria was conducted in 1999 and the program has operated continuously since that time. However, although antimicrobial use for veterinary purposes represents a selective force promoting the emergence and increasing prevalence of antimicrobialresistant bacteria in food-producing animals, these bacteria have also evolved in the absence of antimicrobial selective pressures.

In May 2015, the World Health Assembly endorsed the Global Action Plan on Antimicrobial Resistance<sup>3)</sup> and urged all Member States to develop relevant national action plans within 2 years. Japan's "National Action Plan on Antimicrobial Resistance (AMR) 2016-2020" endorses the current status and monitoring of antimicrobial-resistant bacteria and national antimicrobial use as an important strategy for both evaluating the impact of the action plan on antimicrobial resistance and planning future national policy.

According to the national action plan, we have been strengthening our monitoring and have started monitoring among diseased and healthy companion animals. Moreover, in 2017, we also commenced the collection of data on the sales of human antimicrobial for use in animal clinics.

This report outlines the trends in antimicrobial resistance among indicator bacteria isolated from healthy food-producing animals and pathogenic bacteria isolated from diseased animals, including companion animals, as well as the volume antimicrobial sales over the 2-year period from 2018 to 2019, as assessed by the JVARM program.

#### 2. The Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM)

#### 2.1 Objectives

JVARM was set up to monitor the occurrence of antimicrobial-resistant bacteria in food-producing animals and the sales of antimicrobials for animal use. These objectives will contribute to determining the efficacy of antimicrobials in food-producing animals, encourage the prudent use of such antimicrobials, and enable us to ascertain the effects on public health.

#### 2.2 Overview

JVARM includes the following three components. (1) monitoring the volume of the sale of antimicrobials for animal use, (2) monitoring antimicrobial resistance in zoonotic and indicator bacteria isolated from healthy animals, and (3) monitoring antimicrobial resistance in pathogens isolated from diseased animals (see Fig. 2.1.). Until 2011, all bacteria assessed by this program were isolated from food-producing animals on farms. However, since 2012, samples have also been collected from slaughterhouses to increase the breadth of monitoring.

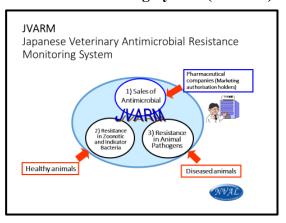



Fig. 2.1. Overview of JVARM.

#### (1) Monitoring of Antimicrobial Sales

The system that is currently used to monitor the volume of antimicrobial sales is shown in Fig. 2.2. Each year, marketing authorization holders of veterinary medical products (VMPs) are required to submit their sales data to the National Veterinary Assay Laboratory (NVAL) in accordance with "The Act on Securing Efficacy, Quality, and Safety Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics (Law No.145, Series of 1960)". NVAL collates, analyzes, and evaluates these data, and then publishes them in an report, "Amount annual titled medicines and quasi-drugs for animal use," its website on (https://www.maff.go.jp/nval/yakuzai/yak uzai p3 6.html).

Data on the weight (in kilograms) of the active ingredients in antimicrobial products that are sold annually for the treatment of animals are collected and then subdivided according to animal species. However, this method of analysis only provides an estimate of the volume of antimicrobial sales for each target species, as a single antimicrobial product is frequently used for multiple animal species.

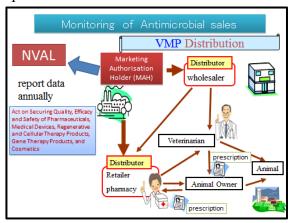



Fig. 2.2. Monitoring of antimicrobial sales

### (2) Monitoring of Antimicrobialresistant Bacteria

Zoonotic and indicator bacteria isolated from healthy animals pathogenic bacteria isolated from diseased animals are continuously collected for antimicrobial susceptibility testing. Zoonotic bacteria include Salmonella species, Campylobacter jejuni, Campylobacter coli; indicator bacteria include Escherichia coli, Enterococcus faecium, and Enterococcus faecalis; and animal pathogens include Salmonella species, Staphylococcus species, E. coli, Mannheimia haemolytica, and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) of antimicrobial agents for target bacteria are then determined using the microdilution method, as described by the Clinical and Laboratory Standards Institute (CLSI)<sup>4)</sup>.

#### 2.3 Implementation System

## (1) Monitoring System for Farms with Diseased Animals

The JVARM monitoring system for bacterial strains isolated from diseased animals on farms is shown in Fig. 2.3. Animal pathogens that are designated by NVAL as target bacteria for a particular year are collected by Livestock Hygiene Service Centers (LHSCs) in each prefecture. The LHSCs isolate and identify certain types of pathogenic bacteria as part of their regular work, and send the bacteria to NVAL, which conducts MIC measurements and reports the results on its website (https://www.maff.go.jp/nval/yakuzai/yak uzai\_p3.html).

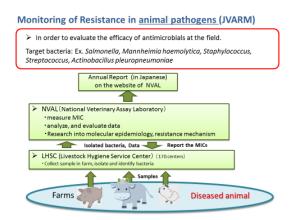



Fig. 2.3. The monitoring system used for diseased animals on farms

# (2) Monitoring System for Slaughterhouses

The JVARM monitoring system employed for slaughterhouses is shown in Fig. 2.4. Ministry of Agriculture, Forestry and Fisheries (MAFF) contracts the isolation, identification, and **MIC** measurement of target bacteria to private research laboratories. These laboratories send the results and tested bacteria to NVAL, which is responsible preserving the bacteria, collating and analyzing all data, and reporting the findings to MAFF headquarters. Data collection and the preservation of E. faecium and E. faecalis are conducted at the Food and Agricultural Materials Inspection Center (FAMIC).

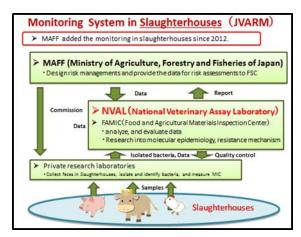



Fig. 2.4. The monitoring system used for slaughterhouses.

## (3) Monitoring System for Companion Animals

Monitoring of healthy companion animals (dogs and cats) was inaugurated in 2018, as one of the measures designed to strengthen surveillance and monitoring

according to the Japanese national action plan on antimicrobial resistance 2016-2020. The JVARM monitoring system for companion animals is shown in Fig. 2.5. This monitoring is conducted collaboration with Japan Veterinary Medical Association (JVMA). The JVMA members are collected a rectal swab from healthy dog and cat visited hospital for health check, vaccination, trimming or so on. Sample numbers were allocated in following with small animal clinic number each prefecture. The research laboratory contracted by MAFF collects samples from JVMA member clinics and isolated E. coli and Enterococcus spp. The contracted laboratory performs MIC determinations, and sends the results and tested bacterial strains to NVAL, which preserves the bacteria, collates and analyzes all the data, and reports the findings to MAFF headquarters.

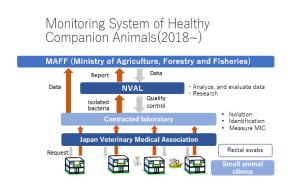



Fig. 2.5. The monitoring system used for healthy companion animals.

Monitoring of diseased companion animals (dogs and cats) was inaugurated in 2017 The JVARM monitoring system for diseased companion animals is shown in Fig. 2.6. The research laboratory contracted by MAFF collects target bacteria from cooperating private clinical laboratories. The contracted laboratory reidentifies the target bacteria, performs MIC determinations, and sends the results and tested bacterial strains to NVAL, which preserves the bacteria, collates and analyzes all the data, and reports the findings to MAFF headquarters.

Monitoring System of Diseased Companion Animals

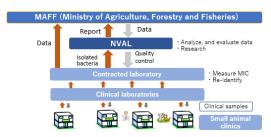



Fig. 2.6. The monitoring system used for diseased companion animals.

#### 2.4 Quality Assurance/Control Systems

Quality control is carried out at the participating laboratories that perform antimicrobial susceptibility testing to assist with monitoring of the precision and accuracy of the testing procedures, the performance of the reagents used, and the training of personnel involved. Strict adherence to standardized techniques is vital to ensure that the data collected are

reliable and reproducible. Quality control reference bacteria are also tested in each participating laboratory to ensure standardization. Moreover, each year, NVAL holds a national training course for LHSC staff on antimicrobial resistance and standardized laboratory methods for the isolation, identification, antimicrobial susceptibility testing of target bacteria. NVAL also undertakes inspections of the private research laboratories.

#### 2.5 Publication of Data

Given antimicrobial that resistance affects both animal and human health, it is of paramount importance that information on antimicrobial resistance is distributed as rapidly as possible. NVAL officially publishes such information in scientific journals and on its website (https://www.maff.go.jp/nval/yakuzai/yak uzai p3.html). Similarly, research conducted by NVAL on the molecular epidemiology and resistance mechanisms of bacteria is published in scientific journals

(https://www.maff.go.jp/nval/yakuzai/pdf/jvarm publications list 20230420.pdf).

## 3. An Overview of the Availability of Veterinary Antimicrobial Products Used for Animal Treatment or as Antimicrobial Feed Additives in Japan

The numbers of animals that were slaughtered for meat in slaughterhouses and poultry slaughtering plants between 2017 and 2019 are shown in Table 3.1. There were no substantial changes in the number of meat-producing animals

produced between 1999 and 2019 (Fig. 3.1.). During this period, however, the number of individual farms underwent a continual reduction, whereas there was an increase in farm scale (data not shown).

Table 3.1. Numbers of animals (1,000 heads/birds) slaughtered in slaughterhouses and poultry slaughtering plants between 2017 and 2019

|      | Cattle  | Calf | Horse | Pig      | Broiler | Fowl*  |
|------|---------|------|-------|----------|---------|--------|
| 2017 | 1,040.0 | 5.2  | 9.8   | 16,336.9 | 688,314 | 81,432 |
| 2018 | 1,051.7 | 4.6  | 9.8   | 16,429.2 | 703,814 | 84,604 |
| 2019 | 1,038.7 | 4.4  | 10.3  | 16,318.6 | 715,656 | 84,523 |

<sup>\*</sup> Most of these birds were old layer chickens.

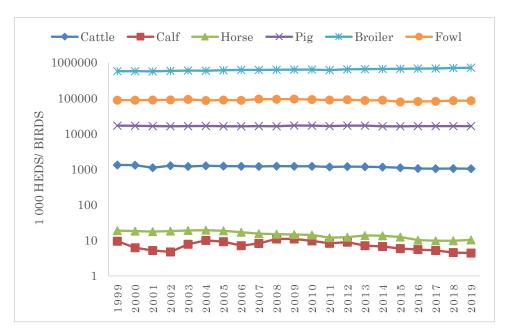



Fig. 3.1. Trends in the numbers of animals (1000 heads/birds) slaughtered in slaughterhouses and poultry slaughtering plants between 1999 and 2019.

Over the period between 2001 and 2019, the total volume of antimicrobial sales for animal use initially decreased and for a number of years fluctuated around 800 tons (Fig. 3.2.).

Antimicrobials have tended to be used more frequently in pigs than in cattle or poultry (data not shown). In 2019, tetracyclines accounted for 37% of the total volume of sales in veterinary antimicrobials, whereas fluoroquinolones and cephalosporins each contributed to less than 1% of the total sales.

Antimicrobial feed additives were first used in Japan in the 1950s. Changes in the amount of feed additives that were manufactured in Japan between 2007 and 2019 are shown in Fig. 3.3. The total volume manufactured between 2007

and 2009 averaged 164 tons, whereas from 2010 to 2019, there was an increase in volume to an average 199 tons, which was mainly attributable to an increase in the production of ionophores. Ionophores are widely used for prevention of coccidiosis in the European Union and USA without prescription and comprised a large proportion of the feed additives [174 tons (86.8%)] used in 2019. In contrast, the amounts of polypeptides manufactured gradually fell to 6.4 tons (3.2%). Colistin included in polypeptides was withdrawn as a feed additive in 2018 and no longer manufactured. Present sold polypeptides enramycin nosiheptide. are and Furthermore, tetracyclines and macrolides are also banned in 2019 and not been manufactured and sold as feed additives.

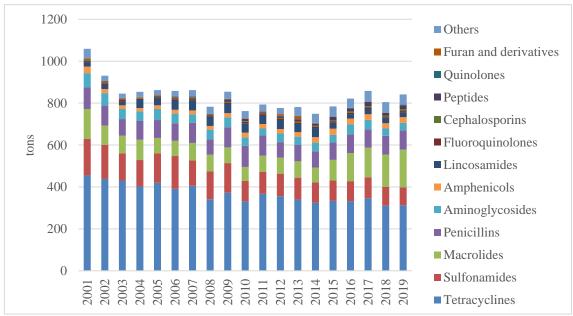



Fig. 3.2. Volumes of veterinary antimicrobials (in tons of active ingredient) sold by pharmaceutical companies in Japan between 2001 and 2019.

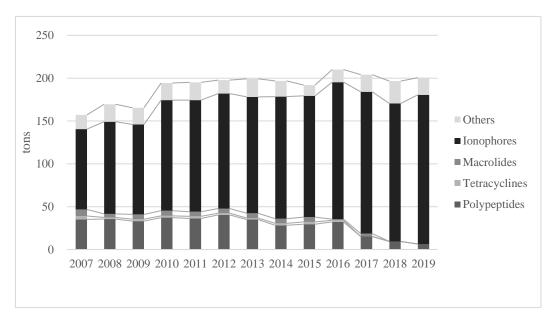



Fig. 3.3. Amounts of antimicrobial feed additives (in tons of active ingredient) manufactured in Japan between 2007 and 2019.

In many countries, veterinarians are permitted to prescribe human medicines, including antimicrobials, for treatment of animals under their responsibility. Human medicines are considered to be used primarily in companion animal hospitals. Accordingly, we started to collect data on human antimicrobials sales from 2016 for small animal clinics. These data were provided by members of the Japan Animal Drug and Instrument Dealers Association Federation and the of Japan Pharmaceutical Wholesalers Association.

During 2018 and 2019, the total amount of antimicrobials sold to small animal clinics was from 5.4 tons to 5.5 tons, which is not substantially different from the sales of veterinary products (6.9 and 8.6 tons). In both human and veterinary medicines, the most frequently sold antimicrobials were cephalosporins and penicillins (Fig. 3.4.). First- and second-generation cephalosporins accounted for 95.5% to 94.8% of total cephalosporins used in human medicine and 92.9% to 94.3% in veterinary medicines, respectively.

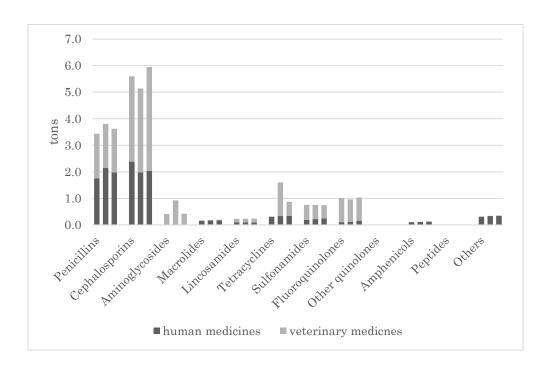



Fig. 3.4. Amounts of human and veterinary antimicrobial medicines (in tons of active ingredient) sold for use in companion animals in 2017 (left bar), 2018 (central bar) and 2019 (right bar).

#### 4. Monitoring of Antimicrobial Resistance in 2018 and 2019

#### 4.1 Healthy Animals in Slaughterhouses

The total numbers of bacteria isolated from food-producing animals in slaughterhouses are shown in Table 4.1. All isolates were subjected to antimicrobial susceptibility testing.

#### (1) Escherichia coli

A total of 923 isolates of *E. coli* (477 from cattle, 163 from pigs, and 283 from broilers) collected in 2018 and 2019 were available for antimicrobial susceptibility testing. The resistant rates are shown in Table 4.2. and the MIC distributions are shown in Tables 12.1.1. and 12.1.2., respectively.

Among these isolates, there were high rates of resistance to streptomycin and tetracycline (18.5%–49.4% and 22.9%–62.5%, respectively).

In contrast, there were low rates of resistance to cefazolin, cefotaxime, gentamicin, ciprofloxacin, and colistin (0.5%–7.7%, 0.0%–3.2%, 0.0%–6.3%, 0.0%–2.5%, and 0.0%–6.0%, respectively); rates of resistance to meropenem are 0.0%, one exception being ciprofloxacin-resistant *E. coli* isolated from chickens (12.3%–12.5%).

In general, E. coli isolates from pigs and broilers exhibited higher rates of resistance, which was most commonly against tetracycline (resistance rates in pigs and broilers of 47.5%-55.4% and 49.0%-62.5%, respectively), streptomycin (41.3%-49.4% and 40.6%-48.4%, respectively), ampicillin (32.5%– 34.9% and 36.1%–36.7%, respectively), kanamycin (8.4%–10.0% and 37.5%– 43.9%, respectively), nalidixic (11.3%–12.0% and 36.7%–40.6%, respectively), chloramphenicol (22.5%-25.3% and 15.6%–17.4%, respectively), and sulfamethoxazole/trimethoprim (23.8%-32.5% 30.5%-33.5%, and respectively).

The resistance rates of *E. coli* from healthy food-producing animals to third-generation cephalosporins and fluoroquinolones, an outcome indices for the Action Plan, have been maintained at a low level and are expected to meet their targets (The same level as in other G7 nations). On the other hand, resistance rate to that of tetracyclines was higher than its outcome indicator target (Average of resistance rates of three food-producing animal species 33%) (Figs 4.1. and 4.2.).

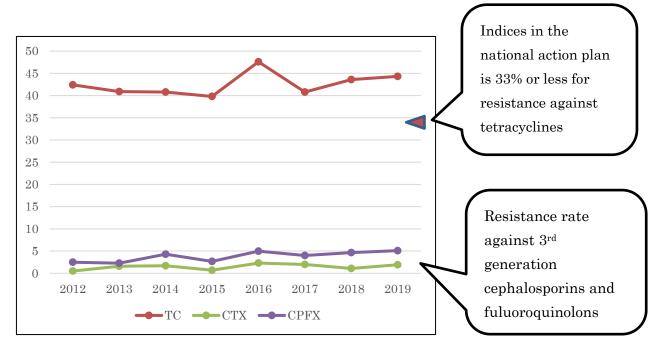



Fig 4.1. Indices for the Action Plan: proportion (%) of *Escherichia coli* isolate from healthy animal—Average of resistance rates of three animal species

TC: tetracycline, CT: cefotaxime, CPFX: ciprofloxacin

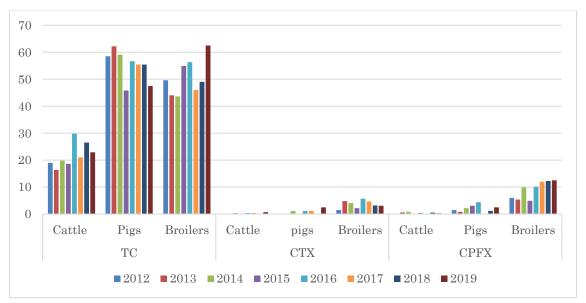



Fig. 4.2. Indices for the Action Plan: proportion (%) of *Escherichia coli* isolate from healthy animal—Resistance rate of each food-producing animal species

#### (2) Enterococcus

A total of 248 isolates (*E. faecalis*: 228 isolates, *E. faecium*:20 isolates) were collected in 2018 and 2019. The resistant rates are shown in Tables 4.3.1. and 4.3.2.

and the MIC distributions are shown in Tables 12.2.1., 12.2.2. and 12.3.1., 12.3.2., respectively.

Only *E. faecalis* from broilers was able to collect more than 30 isolates, so only

those resistance rates are described.

Among these isolates, there were high rates of resistance to tetracycline, kanamycin erythromycin, tylosin and lincomycin (66.7%–70.8%, 51.7%–66.0%, 43.4%-53.3%, 43.4%-55.0% and 43.4%-55.0%, respectively).

In contrast, there were low rates of resistance to gentamicin, chloramphenicol and ciprofloxacin (15.0%–15.1%, 11.3%–20.0%, 2.8%–3.3%, respectively). And also rates of resistance to vancomycin is 0%.

#### (3) Campylobacter

A total of 231 *C. jejuni* (149 from cattle and 82 from broilers) and 89 *C. coli* from pigs collected in 2018 and 2019 were subjected to antimicrobial susceptibility testing. The resistant rates are shown in Tables 4.4.1. and 4.4.2. and the MIC distributions are shown in Tables 12.4.1., 12.4.2. and 12.5.1. ,12.5.2., respectively.

The rates of resistance varied between bacterial species, and the resistance of *C. coli* against almost all antimicrobials tested was found to higher than that of *C. jejuni* isolates. Rates of resistance also tended to vary among animal species, with the highest levels of resistance against streptomycin, and tetracycline being detected in *C. coli* isolated from pigs.

For both *C. coli* and *C. jejuni*, resistance was most frequently observed against tetracycline (78.3%–86.2% and 23.4%–67.5%, respectively). Isolates also

exhibited resistance against ampicillin (resistance rates in C. jejuni and C. coli of 17.2%-26.7%, 8.6%-14.9% and respectively), streptomycin (0.0%–8.6% 68.3%-69.0%, and respectively), chloramphenicol (0.0%-6.1% and 3.3%-3.4%, respectively), nalidixic acid (31.4%-60.5% and 45.0%-58.6%, respectively), ciprofloxacin (31.4% -59.6% and 40.0%–58.6%, respectively).

In addition, erythromycin and azithromycin resistance was frequently detected in *C. coli* isolated from pigs (20.7%–33.3% and 20.7%–31.7%, respectively), but for *C. jejuni* was detected only in isolates from cattle.

#### (4) Salmonella

A total of 224 *Salmonella* isolates collected from broilers in 2018 and 2019 were available for antimicrobial susceptibility testing, the MIC distributions of which are shown in Tables 12.6.1. and 12.6.2.

The predominant serovars isolated from broilers were *S.* Schwarzengrund (74-72 isolates, 63.2%-67.3%), *S.* Infantis (29-30 isolates, 24.8%-28.0%), and *S.* Typhimurium (5-0 isolates, 4.3%-0.0%) (Fig 4.3.).

The highest rates of resistance were observed for tetracycline (76.9%–69.2%), followed by kanamycin (68.4%–75.7%), streptomycin (77.3%–33.6%), trimethoprim/sulfamethoxazole (53.0%–52.3%), nalidixic acid (18.8%–8.4%), and ampicillin (6.8%–5.6%). In contrast, <5%

of the isolates exhibited resistance against 4.5.) cefotaxime and chloramphenicol. (Table

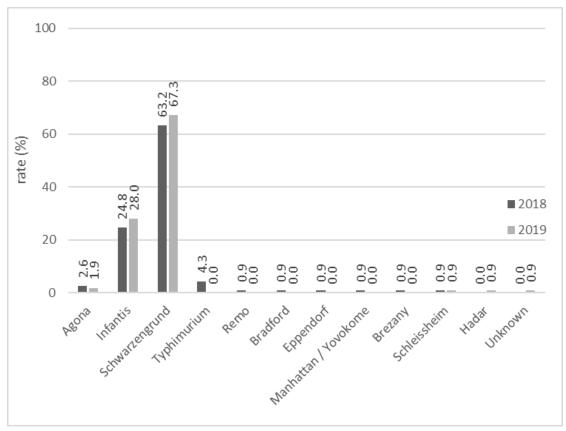



Fig 4.3. Proportion (%) of *Salmonella* spp. isolate from healthy broilers—Isolate rate of predominant serovars.

Table 4.1. Total numbers of bacteria isolated from food-producing animals in slaughterhouses between 2012 and 2019

| Year  | E.coli | Enterococcus | *Campylobacter | Salmonella |
|-------|--------|--------------|----------------|------------|
| 2012  | 576    | 528          | 282            | 94         |
| 2013  | 634    | ND           | 330            | 118        |
| 2013  | 528    | 529          | 282            | 128        |
| 2015  | 554    | 546          | 316            | 123        |
| 2016  | 506    | 487          | 188            | 104        |
| 2017  | 485    | 472          | 225            | 112        |
| 2018  | 427    | 400          | 111            | 117        |
| 2019  | 496    | 461          | 209            | 107        |
| Total | 2073   | 2034         | 1011           | 467        |

<sup>\*\*</sup>C. jejuni isolates from cattle and broiler. C. coli isolates from pigs

Table 4.2. Antimicrobial resistance rates of *Escherichia coli* isolated from food-producing animals in slaughterhouses between 2012 and 2019

| Agent             | BP           | Animal species | 2012 | 2013 | 2014 | 2015 | 2016            | 2017                | 2018                | 2019           |
|-------------------|--------------|----------------|------|------|------|------|-----------------|---------------------|---------------------|----------------|
|                   |              | Cattle         | 2.4  | 6.5  | 3.0  | 5.5  | 7.4             | 4.8                 | 11.6                | 6.3            |
| Ampicillin        | 32*          | Pigs           | 32.3 | 26.0 | 43.0 | 34.4 | 36.7            | 33.7                | 34.9                | 32.5           |
|                   |              | Broilers       | 30.8 | 35.5 | 40.1 | 43.5 | 36.1            | 39.3                | 36.1                | 36.7           |
|                   | 8*           | Cattle         | 0.4  | 0.3  | 0.0  | 0.0  | 1.9             | 0.8                 | 0.5                 | 1.0            |
| Cefazolin         | (32          | Pigs           | 1.0  | 0.8  | 1.1  | 1.0  | 6.7             | 1.2                 | 2.4                 | 3.8            |
|                   | before 2015) | Broilers       | 3.0  | 7.8  | 5.8  | 3.8  | $10.8^{\S_{1}}$ | $6.7^{\S_{1}}$      | $7.7^{\S_{1}}$      | $4.7^{\S_{1}}$ |
|                   |              | Cattle         | 0.0  | 0.0  | 0.4  | 0.0  | 0.4             | 0.4                 | 0.0                 | 0.7            |
| Cefotaxime        | 4*           | Pigs           | 0.0  | 0.0  | 1.1  | 0.0  | 1.1             | 1.2                 | 0.0                 | 2.5            |
|                   |              | Broilers       | 1.5  | 4.8  | 4.1  | 2.2  | 5.7             | 4.7                 | 3.2                 | 3.1            |
|                   |              | Cattle         | -    | -    | -    | -    | -               | -                   | 0.0                 | 0.0            |
| Meropenem         | 4*           | Pigs           | -    | -    | -    | -    | -               | -                   | 0.0                 | 0.0            |
|                   |              | Broilers       | -    | -    | -    | -    | -               | -                   | 0.0                 | 0.0            |
|                   |              | Cattle         | 14.9 | 12.3 | 17.1 | 12.4 | 22.1            | 19.0                | 18.5                | 19.8           |
| Streptomycin      | 32           | Pigs           | 44.1 | 44.9 | 52.7 | 39.6 | 50.0            | 41.0                | 49.4                | 41.3           |
|                   |              | Broilers       | 39.1 | 38.6 | 44.8 | 41.8 | 51.3            | 41.3                | 48.4                | 40.6           |
|                   |              | Cattle         | 0.0  | 0.3  | 0.0  | 0.0  | 0.8             | 0.0                 | 0.0                 | 0.0            |
| Gentamicin        | 16*          | Pigs           | 0.5  | 2.4  | 6.5  | 2.1  | 3.3             | 3.6                 | 3.6                 | 2.5            |
|                   |              | Broilers       | 1.5  | 1.8  | 2.9  | 2.2  | 5.1             | 6.0                 | 5.2                 | 6.3            |
|                   |              | Cattle         | 1.2  | 1.5  | 0.4  | 0.7  | 4.3             | 1.2                 | 0.0                 | 0.7            |
| Kanamycin         | 64*          | Pigs           | 9.7  | 7.9  | 9.7  | 8.3  | 10.0            | 10.8                | 8.4                 | 10.0           |
|                   |              | Broilers       | 24.1 | 24.1 | 33.1 | 37.5 | 43.7            | 36.7                | 43.9                | 37.5           |
|                   | 16*          | Cattle         | 19.0 | 16.4 | 19.8 | 18.6 | 29.8            | 21.0                | 26.5                | 22.9           |
| Tetracycline      |              | Pigs           | 58.5 | 62.2 | 59.1 | 45.8 | 56.7            | 55.4                | 55.4                | 47.5           |
|                   |              | Broilers       | 49.6 | 44.0 | 43.6 | 54.9 | 56.3            | 46.0                | 49.0                | 62.5           |
|                   |              | Cattle         | 2.4  | 1.8  | 2.3  | 2.6  | 2.3             | 2.0                 | 2.1                 | 1.4            |
| Nalidixic acid    | 32*          | Pigs           | 4.1  | 11.0 | 9.7  | 5.2  | 15.6            | 12.0                | 12.0                | 11.3           |
|                   |              | Broilers       | 39.8 | 36.1 | 45.3 | 35.9 | 35.4            | 39.3                | 40.6                | 36.7           |
|                   |              | Cattle         | 0.0  | 0.6  | 0.8  | 0.0  | 0.4             | 0.0                 | 0.5                 | 0.3            |
| Ciprofloxacin     | 4*           | Pigs           | 1.5  | 0.8  | 2.2  | 3.1  | 4.4             | 0.0                 | 1.2                 | 2.5            |
|                   |              | Broilers       | 6.0  | 5.4  | 9.9  | 4.9  | 10.1            | 12.0                | 12.3                | 12.5           |
|                   | 4* (16       | Cattle         | 0.0  | 0.0  | 0.8  | 0.0  | 0.4             | 1.2                 | 0.0                 | 0.3            |
| Colistin          | before       | Pigs           | 0.0  | 0.0  | 0.0  | 0.0  | $4.4^{\S_{2}}$  | $2.4^{\frac{9}{2}}$ | $6.0^{\frac{9}{2}}$ | $2.5^{\S_{2}}$ |
|                   | 2015)        | Broilers       | 0.8  | 0.6  | 0.0  | 0.5  | 2.5             | 3.3                 | 0.0                 | 0.0            |
|                   |              | Cattle         | 5.2  | 2.3  | 3.8  | 2.9  | 2.3             | 2.8                 | 4.8                 | 4.2            |
| Chloramphenicol   | 32*          | Pigs           | 23.6 | 23.6 | 34.4 | 25.0 | 25.6            | 21.7                | 25.3                | 22.5           |
| •                 |              | Broilers       | 11.3 | 11.4 | 15.1 | 9.8  | 19.6            | 11.3                | 17.4                | 15.6           |
| G 10              |              | Cattle         | 2.0  | 2.9  | 5.3  | 2.9  | 0.4             | 2.0                 | 5.3                 | 2.8            |
| Sulfamethoxazole  | 76/4*        | Pigs           | 23.6 | 26.8 | 34.4 | 30.2 | 4.4             | 26.5                | 32.5                | 23.8           |
| /Trimethoprim     |              | Broilers       | 24.8 | 31.9 | 30.2 | 28.3 | 10.1            | 34.7                | 33.5                | 30.5           |
|                   |              | Cattle         | 248  | 341  | 263  | 274  | 258             | 252                 | 189                 | 288            |
| Number of isolate | s tested     | Pigs           | 195  | 127  | 93   | 96   | 90              | 83                  | 83                  | 80             |
| (n)               |              | Broilers       | 133  | 166  | 172  | 184  | 158             | 150                 | 155                 | 128            |
| -                 |              | 1011010        | 100  | 100  | 114  | 101  | 100             | 100                 | 100                 | 120            |

The unit of BP is µg/mL.

<sup>\*</sup> BP follows CLSI Criteria.

<sup>§ 1</sup> If the BP of 32 used until 2015 is applied, CEZ resistance rate in chicken-derived strains was 7.0% in 2016, 4.7% in 2017, and 3.2% in 2018, and 3.5% in 2019.

<sup>§ 2</sup> If the BP of 16 used until 2015 is applied, CL resistance rate in pigs-derived strains was 1.1% in 2016, 0.0% in 2017, and 0.0% in 2018, and 0.0% in 2018.

Table 4.3.1. Antimicrobial resistance rates of *Enterococcus faecalis* isolated from food-producing animals in slaughterhouses between 2012 and 2019

| Agent*              | BP        | Animal species | 2012 | 2014 <sup>†</sup> | 2015  | 2016 | 2017 | 2018 | 2019 |
|---------------------|-----------|----------------|------|-------------------|-------|------|------|------|------|
|                     |           | Cattle         | 0.0  | 0.0               | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
| Ampicillin          | 16§       | Pigs           | 0.0  | 0.0               | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
|                     |           | Chickens       | 0.0  | 0.6               | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
|                     |           | Cattle         | 90.6 | 36.4              | 35.7  | 12.5 | 0.0  | -    | -    |
| Dihydrostreptomycin | 128       | Pigs           | 88.2 | 62.5              | 100.0 | 43.5 | 38.5 | -    | -    |
|                     |           | Chickens       | 76.9 | 53.8              | 72.4  | 40.6 | 38.8 | -    | -    |
|                     |           | Cattle         | 68.8 | 27.3              | 0.0   | 0.0  | 0.0  | 40.0 | 0.0  |
| Gentamicin          | 32        | Pigs           | 76.5 | 12.5              | 15.4  | 8.7  | 7.7  | 31.0 | 35.7 |
|                     |           | Chickens       | 35.6 | 9.9               | 14.3  | 6.3  | 3.5  | 15.1 | 15.0 |
|                     |           | Cattle         | 71.9 | 9.1               | 14.3  | 0.0  | 0.0  | 46.7 | 0.0  |
| Kanamycin           | 128       | Pigs           | 72.9 | 12.5              | 69.2  | 30.4 | 30.8 | 51.7 | 42.9 |
| v                   |           | Chickens       | 71.2 | 57.1              | 66.3  | 55.2 | 58.8 | 66.0 | 51.7 |
|                     |           | Cattle         | 31.3 | 27.3              | 28.6  | 37.5 | 10.0 | -    | -    |
| Oxytetracycline     | 16        | Pigs           | 64.7 | 87.5              | 92.3  | 73.9 | 84.6 | -    | -    |
| v v                 |           | Chickens       | 75.0 | 67.0              | 70.4  | 83.3 | 65.9 | -    | -    |
|                     |           | Cattle         | -    | -                 | -     | -    | -    | 26.7 | 25.0 |
| Tetracycline        | 16§       | Pigs           | -    | -                 | -     | -    | -    | 65.5 | 57.1 |
| ·                   |           | Chickens       | -    | -                 | -     | -    | -    | 70.8 | 66.7 |
|                     |           | Cattle         | 9.4  | 0.0               | 0.0   | 12.5 | 10.0 | 6.7  | 25.0 |
| Chloramphenicol     | $32^{\S}$ | Pigs           | 30.6 | 62.5              | 53.8  | 39.1 | 38.5 | 27.6 | 35.7 |
| <b>.</b>            |           | Chickens       | 17.3 | 13.2              | 9.2   | 15.6 | 12.9 | 11.3 | 20.0 |
|                     |           | Cattle         | 21.9 | 9.1               | 0.0   | 0.0  | 10.0 | 0.0  | 25.0 |
| Erythromycin        | 8§        | Pigs           | 51.8 | 62.5              | 69.2  | 52.2 | 61.5 | 44.8 | 50.0 |
|                     |           | Chickens       | 58.7 | 64.8              | 60.2  | 59.4 | 58.8 | 43.4 | 53.3 |
|                     |           | Cattle         | 34.4 | 9.1               | 0.0   | 0.0  | 10.0 | 0.0  | 25.0 |
| Lincomycin          | 128       | Pigs           | 76.5 | 75.0              | 92.3  | 56.5 | 61.5 | 51.7 | 50.0 |
| <i>y</i> -          |           | Chickens       | 57.7 | 45.1              | 54.1  | 59.4 | 55.3 | 43.4 | 55.0 |
|                     |           | Cattle         | 3.1  | 0.0               | 0.0   | 0.0  | 0.0  | -    | -    |
| Enrofloxacin        | 4         | Pigs           | 5.9  | 0.0               | 7.7   | 0.0  | 0.0  | -    | -    |
|                     |           | Chickens       | 2.9  | 1.1               | 0.0   | 2.1  | 0.0  | -    | -    |
|                     |           | Cattle         | -    | -                 | -     | -    | -    | 0.0  | 0.0  |
| Ciprofloxacin       | 4 §       | Pigs           | -    | -                 | -     | -    | -    | 3.4  | 7.1  |
| · ·                 |           | Chickens       | -    | -                 | -     | -    | -    | 2.8  | 3.3  |
|                     |           | Cattle         | 6.3  | 0.0               | 0.0   | 0.0  | 10.0 | 0.0  | 25.0 |
| Tylosin             | 64        | Pigs           | 50.6 | 62.4              | 69.2  | 52.2 | 61.5 | 44.8 | 50.0 |
| v                   |           | Chickens       | 57.7 | 65.9              | 53.1  | 59.4 | 60.0 | 43.4 | 55.0 |
|                     |           | Cattle         | -    | -                 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
| Vancomycin          | 32        | Pigs           | -    | -                 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
| <b>V</b>            |           | Chickens       | -    | -                 | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  |
|                     |           | Cattle         | 32   | 11                | 14    | 8    | 10   | 15   | 4    |
| Strains tested (n   | )         | Pigs           | 85   | 8                 | 13    | 23   | 13   | 29   | 14   |
|                     |           | Chickens       | 104  | 91                | 98    | 96   | 85   | 106  | 60   |
|                     |           | CIIIONCIIO     | 101  | 01                | 00    |      | 00   | 100  | - 50 |

The unit of BP is  $\mu g/mL$ 

<sup>\*</sup> While AZM, SM, NA, BC and SNM were also included in the scope of the survey, the resistance rates were not listed because BP could not be established.

<sup>†</sup> The monitoring was not conducted on Enterococcus spp. derived from animal slaughterhouses in FY2013. § BP follows CLSI Criteria.

<sup>-:</sup> Not under surveillance.

Table 4.3.2. Antimicrobial resistance rates of *Enterococcus faecium* isolated from food-producing animals in slaughterhouses between 2012 and 2019

| <u> </u>            |          |                |      |                  |      |      |      |       |      |
|---------------------|----------|----------------|------|------------------|------|------|------|-------|------|
| Agent*              | BP       | Animal species | 2012 | $2014^{\dagger}$ | 2015 | 2016 | 2017 | 2018  | 2019 |
|                     |          | Cattle         | 0.0  | 0.0              | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Ampicillin          | 16§      | Pigs           | 0.0  | 0.0              | 0.0  | 0.0  | 0.0  | 0.0   | -    |
|                     |          | Chickens       | 2.4  | 0.0              | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
|                     |          | Cattle         | 22.7 | 33.3             | 0.0  | 25.0 | 0.0  | -     | -    |
| Dihydrostreptomycin | 128      | Pigs           | 30.3 | 58.3             | 0.0  | 28.6 | 27.3 | -     | -    |
| J J.                |          | Chickens       | 28.6 | 13.9             | 16.1 | 30.0 | 18.2 | -     | -    |
|                     |          | Cattle         | 2.3  | 0.0              | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Gentamicin          | 32       | Pigs           | 0.0  | 0.0              | 0.0  | 0.0  | 0.0  | 50.0  | -    |
|                     |          | Chickens       | 3.6  | 2.8              | 3.2  | 10.0 | 9.1  | 0.0   | 0.0  |
|                     |          | Cattle         | 34.1 | 33.3             | 16.7 | 0.0  | 50.0 | -     | 0.0  |
| Kanamycin           | 128      | Pigs           | 30.3 | 25.0             | 72.7 | 28.6 | 72.7 | 100.0 | -    |
|                     |          | Chickens       | 34.5 | 33.3             | 35.5 | 40.0 | 45.5 | 90.0  | 85.7 |
|                     |          | Cattle         | 9.1  | 0.0              | 16.7 | 0.0  | 0.0  | -     | -    |
| Oxytetracycline     | 16       | Pigs           | 42.4 | 41.7             | 9.1  | 42.9 | 54.5 | -     | -    |
|                     |          | Chickens       | 63.1 | 58.3             | 64.5 | 60.0 | 31.8 | -     | -    |
|                     |          | Cattle         | -    | -                | -    | -    | -    | -     | 0.0  |
| Tetracycline        | 16§      | Pigs           | -    | -                | -    | -    | -    | 50.0  | -    |
|                     |          | Chickens       | -    | -                | -    | -    | -    | 60.0  | 57.1 |
|                     |          | Cattle         | 0.0  | 0.0              | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Chloramphenicol     | 32 §     | Pigs           | 0.0  | 25.0             | 0.0  | 0.0  | 9.1  | 0.0   | -    |
|                     |          | Chickens       | 4.8  | 8.3              | 6.5  | 0.0  | 9.1  | 10.0  | 28.6 |
|                     |          | Cattle         | 11.4 | 0.0              | 33.3 | 25.0 | 0.0  | -     | 0.0  |
| Erythromycin        | 8§       | Pigs           | 15.2 | 58.3             | 54.5 | 57.1 | 45.5 | 0.0   | -    |
|                     |          | Chickens       | 32.1 | 30.6             | 35.5 | 20.0 | 27.3 | 40.0  | 28.6 |
|                     |          | Cattle         | 9.1  | 0.0              | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Lincomycin          | 128      | Pigs           | 39.4 | 50.0             | 9.1  | 28.6 | 27.3 | 0.0   | -    |
|                     |          | Chickens       | 31.0 | 19.4             | 29.0 | 20.0 | 27.3 | 20.0  | 28.6 |
|                     |          | Cattle         | 36.4 | 0.0              | 16.7 | 25.0 | 0.0  | -     | -    |
| Enrofloxacin        | 4        | Pigs           | 45.5 | 25.0             | 0.0  | 0.0  | 27.3 | -     | -    |
|                     |          | Chickens       | 65.5 | 13.9             | 71.0 | 30.0 | 18.2 | -     | -    |
|                     |          | Cattle         | -    | -                | -    | -    | -    | -     | 0.0  |
| Ciprofloxacin       | $4^{\S}$ | Pigs           | -    | -                | -    | -    | -    | 0.0   | -    |
|                     |          | Chickens       | -    | -                | -    | -    | -    | 20.0  | 42.9 |
|                     |          | Cattle         | 9.1  | 0.0              | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Tylosin             | 64       | Pigs           | 12.1 | 16.7             | 0.0  | 28.6 | 18.2 | 0.0   | -    |
|                     |          | Chickens       | 26.2 | 19.4             | 22.6 | 20.0 | 27.3 | 20.0  | 28.6 |
|                     |          | Cattle         | -    | -                | 0.0  | 0.0  | 0.0  | -     | 0.0  |
| Vancomycin          | 32       | Pigs           | -    | -                | 0.0  | 0.0  | 0.0  | 0.0   | -    |
|                     |          | Chickens       | -    | -                | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
|                     |          | Cattle         | 44   | 6                | 6    | 4    | 4    | 0     | 1    |
| Strains tested (n   | )        | Pigs           | 84   | 12               | 11   | 7    | 11   | 2     | 0    |
|                     |          | Chickens       | 64   | 36               | 31   | 10   | 22   | 10    | 7    |
|                     |          |                |      |                  |      |      |      |       |      |

The unit of BP is  $\mu g/mL$ 

<sup>\*</sup> While AZM, SM, NA, BC and SNM were also included in the scope of the survey, the resistance rates were not listed because BP could not be established.

 $<sup>\</sup>dagger$  The monitoring was not conducted on Enterococcus spp. derived from animal slaughterhouses in FY2013.

<sup>§</sup> BP follows CLSI Criteria.

<sup>-:</sup> Not under surveillance.

Table 4.4.1. Antimicrobial resistance rates of *Campylobacter jejuni* isolated from food-producing animals in slaughterhouses between 2012 and 2019

| Agents*            | BP             | Animal species | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|--------------------|----------------|----------------|------|------|------|------|------|------|------|------|
| Ampicillin         | 32             | Cattle         | 0.0  | 9.1  | 12.9 | 8.9  | 7.4  | 8.2  | 8.6  | 11.4 |
| Ampiciiin          | 34             | Chickens       | 19.7 | 19.8 | 17.5 | 19.1 | 16.2 | 28.4 | 14.9 | 14.3 |
| Streptomycin       | 32             | Cattle         | 2.4  | 3.5  | 3.8  | 3.2  | 6.2  | 4.1  | 8.6  | 1.8  |
| Streptomycin       | 34             | Chickens       | 1.4  | 0.0  | 3.5  | 2.1  | 8.8  | 1.5  | 0.0  | 0.0  |
| Etli               | $32^{\dagger}$ | Cattle         | 0.0  | 0.7  | 0.0  | 1.3  | 0.0  | 0.0  | 5.7  | 0.0  |
| Erythromycin       | 32             | Chickens       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 1.5  | 0.0  | 0.0  |
| A -: 41            | 4              | Cattle         | -    | -    | -    | -    | -    | 0.0  | 5.7  | 0.0  |
| Azithromycin       | 4              | Chickens       | -    | -    | -    | -    | -    | 1.5  | 0.0  | 0.0  |
| Tetracycline       | $16^{\dagger}$ | Cattle         | 45.1 | 52.4 | 49.2 | 52.2 | 63.0 | 72.2 | 65.7 | 67.5 |
| Tetracycline       | 10             | Chickens       | 38.0 | 44.4 | 38.6 | 28.7 | 33.8 | 46.3 | 23.4 | 34.3 |
| Chlonomohonical    | 1.0            | Cattle         | 0.0  | 6.3  | 0.0  | 1.3  | 1.2  | 6.2  | 2.9  | 6.1  |
| Chloramphenicol    | 16             | Chickens       | 0.0  | 0.0  | 1.8  | 0.0  | 2.9  | 0.0  | 2.1  | 0.0  |
| Nalidixic acid     | 32             | Cattle         | 34.1 | 33.6 | 50.8 | 42.7 | 44.4 | 48.5 | 31.4 | 60.5 |
| Nandixic acid      | 32             | Chickens       | 39.4 | 48.1 | 29.8 | 27.7 | 57.4 | 46.3 | 31.9 | 37.1 |
| C:                 | 4 <sup>†</sup> | Cattle         | 34.1 | 29.4 | 49.2 | 40.8 | 44.4 | 50.5 | 31.4 | 59.6 |
| Ciprofloxacin      | 4 '            | Chickens       | 39.4 | 39.5 | 29.8 | 26.6 | 51.5 | 44.8 | 29.8 | 34.3 |
| Strains tested (n) |                | Cattle         | 82   | 143  | 132  | 157  | 81   | 97   | 35   | 114  |
|                    |                | Chickens       | 71   | 81   | 57   | 94   | 68   | 67   | 47   | 35   |

The unit of BP is  $\mu g/mL$ .

While GM was also included in the scope of monitoring, the proportion of GM-resistant strains were not listed because BP could not be established.

† BP follows CLSI Criteria.

Table 4.4.2. Antimicrobial resistance rates of *Campylobacter coli* isolated from food-producing animals in slaughterhouses between 2012 and 2019

| Agent*             | ВР              | Animal species | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|--------------------|-----------------|----------------|------|------|------|------|------|------|------|------|
| Ampicillin         | 32              | Pigs           | 23.3 | 25.5 | 36.6 | 24.6 | 15.4 | 29.5 | 17.2 | 26.7 |
| Streptomycin       | 32              | Pigs           | 67.4 | 78.3 | 69.9 | 72.3 | 64.1 | 68.9 | 69.0 | 68.3 |
| Erythromycin       | 32 <sup>†</sup> | Pigs           | 32.6 | 44.3 | 43.0 | 26.2 | 38.5 | 31.1 | 20.7 | 33.3 |
| Azithromycin       | 4               | Pigs           | -    | -    | -    | -    | -    | 31.1 | 20.7 | 31.7 |
| Tetracycline       | $16^{\dagger}$  | Pigs           | 84.5 | 93.4 | 80.6 | 87.7 | 89.7 | 83.6 | 86.2 | 78.3 |
| Chloramphenicol    | 16              | Pigs           | 10.9 | 3.8  | 7.5  | 9.2  | 15.4 | 1.6  | 3.4  | 3.3  |
| Nalidixic acid     | 32              | Pigs           | 46.5 | 53.8 | 52.7 | 47.7 | 61.5 | 50.8 | 58.6 | 45.0 |
| Ciprofloxacin      | $4^{\dagger}$   | Pigs           | 46.5 | 46.2 | 50.5 | 47.7 | 59.0 | 54.1 | 58.6 | 40.0 |
| Strains tested (n) |                 | Pigs           | 129  | 106  | 93   | 65   | 39   | 61   | 29   | 60   |

The unit of BP is  $\mu g/mL$ .

<sup>\*</sup> While GM was also included in the scope of monitoring, the proportion of GM-resistant strains were not listed because BP could not be established.

<sup>†</sup> BP follows CLSI Criteria.

 $Table \ 4.5. \ Antimicrobial \ resistance \ rates \ of \ \textit{Salmonella} \ species \ isolated \ from \ food-producing$  animals in slaughterhouses between 2012 and 2019

| Agent                          | ВР                        | Animal species | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
|--------------------------------|---------------------------|----------------|------|------|------|------|------|------|------|------|
| Ampicillin                     | 32*                       | Broilers       | 31.9 | 22.9 | 17.2 | 13.0 | 13.5 | 8.0  | 6.8  | 5.6  |
| Cefazolin                      | 8*<br>(32 before<br>2015) | Broilers       | 7.4  | 5.9  | 3.1  | 1.6  | 7.7  | 3.6  | 3.4  | 3.7  |
| Cefotaxime                     | 4*                        | Broilers       | 7.4  | 5.1  | 2.3  | 1.6  | 1.9  | 1.8  | 2.6  | 1.9  |
| Meropenem                      | 4*                        | Broilers       | -    | -    | -    | -    | -    | -    | -    | 0.0  |
| Streptomycin                   | 32                        | Broilers       | 77.7 | 84.7 | 85.9 | 76.4 | 77.9 | 60.7 | 73.3 | 33.6 |
| Gentamicin                     | 16*                       | Broilers       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Kanamycin                      | 64*                       | Broilers       | 31.9 | 42.4 | 57.8 | 69.1 | 72.1 | 73.2 | 68.4 | 75.7 |
| Tetracycline                   | 16*                       | Broilers       | 74.5 | 82.2 | 85.2 | 83.7 | 82.7 | 77.7 | 76.9 | 69.2 |
| Chloramphenicol                | 32*                       | Broilers       | 0.0  | 0.8  | 1.6  | 1.6  | 0.0  | 0.9  | 1.7  | 0.9  |
| Colistin                       | 4*<br>(16 before<br>2015) | Broilers       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.9  | 1.9  |
| Nalidixic acid                 | 32*                       | Broilers       | 29.8 | 19.5 | 17.2 | 15.4 | 12.5 | 17.0 | 18.8 | 8.4  |
| Ciprofloxacin                  | 1*<br>(4 before 2015)     | Broilers       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.9  |
| Sulfamethoxazole /Trimethoprim | 76/4*                     | Broilers       | 31.9 | 48.3 | 51.6 | 57.7 | 56.7 | 55.4 | 53.0 | 52.3 |
| Number of isolate              | es tested (n)             | Broilers       | 94   | 118  | 128  | 123  | 104  | 112  | 117  | 107  |

The unit of BP is  $\mu g/mL$ .

<sup>\*</sup> BP follows CLSI Criteria.

#### **4.2 Diseased Animals on Farms**

#### (1) Salmonella

A total of 143 *Salmonella* isolates (57 from cattle, 64 from pigs and 22 from chicken or broilers) were collected in 2018, and a total of 142 isolates (57 from cattle, 69 from pigs and 16 from chicken or broiler) were collected in 2019. MIC distributions of which are shown in Tables 12.7.1. and 12.7.2., respectively.

The predominant serovars isolated from cattle were *S.* Typhimurium (12-10 isolates, 21.1%-17.5%), O4:i:- (24-24 isolates, 42.1%-42.1%), Thompson (4-4

isolates, 7.0%-7.0%) (Fig 4.4.). The predominant serovars isolated from pig were *S.* Typhimurium (26-26 isolates, 40.6%-37.7%), O4:i:- (19-17 isolates, 29.7%-24.6%), Choleraesuis (2-9 isolates, 3.1%-13.0%) (Fig 4.5)..

In general, *Salmonella* isolated from cattle and pigs had the highest rates of resistance, which was most commonly against tetracycline (resistance rates in cattle and pigs of 33.3%–63.2% and 50.0%–37.7%, respectively) and ampicillin (36.8%–61.4% and 50.0%–44.9%, respectively). (Table 4.6.)

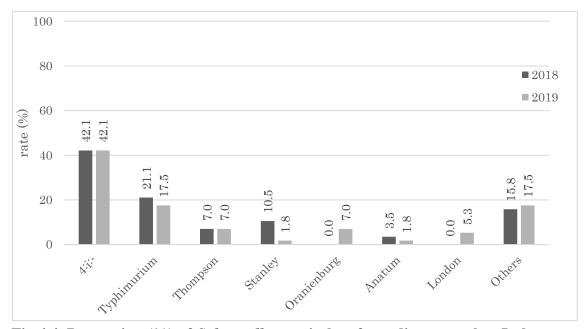



Fig 4.4. Proportion (%) of *Salmonella* spp. isolate from disease cattle—Isolate rate of predominant serovars.

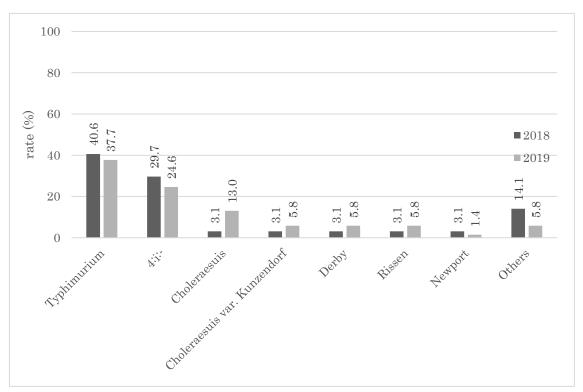



Fig 4.5. Proportion (%) of Salmonella spp. isolate from disease pig—Isolate rate of predominant serovars.

Table 4.6. Proportion (%) of antimicrobial-resistant Salmonella spp. isolated from diseased animals in 2018 and 2019

|                                |      |        | 2018 |         |        | 2019 |         |  |  |
|--------------------------------|------|--------|------|---------|--------|------|---------|--|--|
| Antimicrobials                 | BP   | Cattle | Pig  | Chicken | Cattle | Pig  | Chicken |  |  |
|                                |      | n=57   | n=64 | n=22    | n=57   | n=69 | n=16    |  |  |
| Ampicillin                     | 32   | 36.8   | 50.0 | 4.5     | 61.4   | 44.9 | 25.0    |  |  |
| Cefazolin                      | 8    | 1.8    | 9.4  | 0.0     | 5.3    | 17.4 | 0.0     |  |  |
| Cefotaxime                     | 4    | 0.0    | 0.0  | 0.0     | 1.8    | 0.0  | 0.0     |  |  |
| Gentamicin                     | 16   | 1.8    | 4.7  | 0.0     | 7.0    | 5.8  | 18.8    |  |  |
| Kanamycin                      | 64   | 0.0    | 4.7  | 63.6    | 12.3   | 14.5 | 68.8    |  |  |
| Tetracycline                   | 16   | 33.3   | 50.0 | 77.3    | 63.2   | 37.7 | 75.0    |  |  |
| Meropenem                      | 4    | -      | -    | -       | 0.0    | 0.0  | 0.0     |  |  |
| Nalidixic acid                 | 32   | 1.8    | 20.3 | 0.0     | 3.5    | 21.7 | 50.0    |  |  |
| Ciprofloxacin                  | 4    | 0.0    | 0.0  | 0.0     |        |      |         |  |  |
| Cipronoxaciii                  | 1    |        |      |         | 1.8    | 1.4  | 18.8    |  |  |
| Colistin                       | 4    | 0.0    | 4.7  | 18.2    | 1.8    | 8.7  | 18.8    |  |  |
| Chloramphenicol                | 32   | 3.5    | 21.9 | 0.0     | 29.8   | 8.7  | 0.0     |  |  |
| Sulfamethoxazole /Trimethoprim | 76/4 | 2.7    | 12.5 | 59.1    | 29.8   | 18.8 | 56.3    |  |  |

The unit of BP is  $\mu g/mL.$  BP follows CLSI Criteria.

#### (2) Staphylococcus aureus

Among *S. aureus* isolates, the highest rates of resistance were observed for ampicillin (8.0%–82.4%) and benzyl penicillin (0.0%–87.5%) followed by tetracycline (0.6%–77.5%), erythromycin (4.0%–52.9%), and chloramphenicol (0.0%–43.1%) (Table 4.7).

#### (3) Escherichia coli

Among *E. coli* isolates, the highest rates of resistance were observed for tetracycline (58.6%–72.5%) followed by streptomycin (51.0%–65.3%), ampicillin (47.5%–68.3%) and sulfamethoxazole and trimethoprim (19.6%–57.4%) (Table 4.8)

Table 4.7. Proportion (%) of antimicrobial-resistant *Staphylococcus aureus* isolated from diseased animals in 2018 and 2019

|                  |      |        | 2018 |         |        | 2019 |         |
|------------------|------|--------|------|---------|--------|------|---------|
| Antimicrobials   | BP   | Cattle | Pig  | Chicken | Cattle | Pig  | Chicken |
|                  |      | n=172  | n=51 | n=25    | n=125  | n=40 | n=17    |
| Ampicillin       | 0.5  | 9.3    | 82.4 | 8.0     | -      | -    | -       |
| Benzylpenicillin | 0.25 | -      | -    | -       | 6.4    | 87.5 | 0.0     |
| Oxacillin        | 4    | -      | -    | -       | 2.4    | 15   | 0.0     |
| Streptomycin     | 64   | 5.8    | 39.2 | 0.0     | 8.0    | 17.5 | 0.0     |
| Gentamicin       | 16   | 0.0    | 11.8 | 4.0     | 0.0    | 7.5  | 0.0     |
| Erythromycin     | 8    | 5.8    | 52.9 | 4.0     | 4.8    | 52.5 | 17.6    |
| Tetracycline     | 16   | 0.6    | 60.8 | 20.0    | 2.4    | 77.5 | 17.6    |
| Chloramphenicol  | 32   | 0.6    | 43.1 | 8.0     | 1.6    | 37.5 | 0.0     |
| Ciprofloxacin    | 4    | 0.0    | 23.5 | 2.8     | 1.6    | 5.0  | 0.0     |

The unit of BP is  $\mu g/mL$ . BP follows CLSI Criteria.

Table 4.8. Proportion (%) of antimicrobial-resistant *Escherichia coli* isolated from diseased animals in 2018 and 2019

|                   |      |        | 2018  |         |        | 2019  |         |
|-------------------|------|--------|-------|---------|--------|-------|---------|
| Antimicrobials    | BP   | Cattle | Pig   | Chicken | Cattle | Pig   | Chicken |
|                   |      | n=87   | n=121 | n=51    | n=94   | n=101 | n=54    |
| Ampicillin        | 32   | 51.7   | 62.8  | 52.9    | 62.8   | 68.3  | 47.5    |
| Cefazolin         | 8    | 17.2   | 21.5  | 17.6    | 28.7   | 23.8  | 20.0    |
| Cefotaxime        | 4    | 9.2    | 3.3   | 11.8    | 14.9   | 5.0   | 7.5     |
| Streptomycin      | 32   | 57.5   | 54.5  | 51.0    | 63.8   | 65.3  | 65.0    |
| Gentamicin        | 16   | 10.3   | 13.2  | 2.0     | 8.5    | 12.9  | 5.0     |
| Kanamycin         | 64   | 28.7   | 32.2  | 27.5    | 31.9   | 27.7  | 25.0    |
| Tetracycline      | 16   | 58.6   | 70.2  | 72.5    | 66.0   | 69.3  | 60.0    |
| Meropenem         | 4    | -      | -     | -       | 0.0    | 0.0   | 0.0     |
| Nalidixic acid    | 32   | 33.3   | 33.1  | 35.3    | 36.2   | 27.7  | 60.0    |
| Cinroflovacin     | 4    | 21.8   | 11.6  | 5.9     | 25.5   | 12.7  | 22.5    |
| Ciprofloxacin     | 1    | 21.8   | 22.3  | 11.8    | 28.7   | 15.8  | 35.0    |
| Colistin          | 4    | 11.5   | 35.5  | 2.0     | 11.7   | 27.7  | 10.0    |
| Chloramphenicol   | 32   | 31.0   | 57.0  | 21.6    | 38.3   | 55.4  | 15.0    |
| Sulfamethoxazole/ | 76/1 | 40.5   | 52.0  | 10.6    | 41.5   | 57 A  | 25.0    |
| Trimethoprim      | 76/4 | 42.5   | 52.9  | 19.6    | 41.5   | 57.4  | 35.0    |

The unit of BP is  $\mu g/mL$ . BP follows CLSI Criteria.

#### 4.3 Companion Animals

#### 4.3.1 Healthy Companion Animals

The monitoring of healthy companion animals (dogs and cats) was commenced in 2018, with *E. coli* and *Enterococcus* spp. samples being collected from small animal clinics. The total numbers of bacteria isolated from companion animals are shown in Table 4.9. and 4.10. All isolates were subjected to antimicrobial susceptibility testing.

#### (1) Escherichia coli

A total of 309 *E. coli* isolates (151 from dogs and 158 from cats) were collected in 2018, and a total of 381 isolates (192 from dogs and 188 from cats) were collected in 2019. MIC distributions of which are shown in Tables 12.8.1. and 12.8.2., respectively.

The resistance of *E. coli* isolated from dogs and cats were found to show a similar pattern (Table. 4.9.).

Table.4.9. Resistant rates (%) of *E. coli* from healthy dogs and cats in 2018-2019

|                               |      | 20      | 18      | 2019    |         |  |
|-------------------------------|------|---------|---------|---------|---------|--|
| Antimicrobials                | BP   | Dogs    | Cats    | Dogs    | Cats    |  |
|                               |      | n = 151 | n = 158 | n = 192 | n = 188 |  |
| Ampicillin                    | 32   | 33.8    | 28.5    | 22.9    | 27.1    |  |
| Cefazolin                     | 32   | 17.2    | 17.1    | 13.0    | 11.7    |  |
| Cefalexin                     | 32   | 17.9    | 18.4    | 10.9    | 13.3    |  |
| Cefotaxime                    | 4    | 13.2    | 10.8    | 8.9     | 6.4     |  |
| Meropenem                     | 4    | 0.0     | 0.0     | 0.0     | 0.0     |  |
| Streptomycin                  | 32   | 19.2    | 11.4    | 13.0    | 11.7    |  |
| Gentamicin                    | 16   | 3.3     | 2.5     | 2.6     | 4.3     |  |
| Kanamycin                     | 64   | 5.3     | 1.9     | 3.6     | 3.2     |  |
| Tetracycline                  | 16   | 16.6    | 10.8    | 13.0    | 10.1    |  |
| Chloramphenicol               | 32   | 4.6     | 1.3     | 5.7     | 3.7     |  |
| Colistin                      | 4    | 0.0     | 0.0     | 0.5     | 0.0     |  |
| Nalidixic acid                | 32   | 27.8    | 24.7    | 20.8    | 28.7    |  |
| Ciprofloxacin                 | 1    | 18.5    | 12.0    | 8.9     | 13.3    |  |
| Sulfamethoxazole/Trimethoprim | 76/4 | 13.2    | 12.0    | 7.8     | 9.6     |  |

For both species, there were high rates of resistance against ampicillin and nalidixic acid. In other antimicrobials, resistance rates were less than 20% and resistance rates against meropenem were 0.0% in both dogs and cats.

#### (2) Enterococcus

A total of 236 *Enterococcus* spp. isolates (146 from dogs and 90 from cats) were collected in 2018, and a total of 247 *Enterococcus* spp. isolates (158 from dogs and 89 from cats) were collected in 2019. The species and isolated strain numbers are shown in Table 4.10. Among the

Enterococcus spp. isolated from dogs and cats, E. faecalis was the most frequently encountered. Other than E. faecalis, E. faecium, E. gallinarum, E. durans, E. avium, E. hirae, E. casselifravus and E. raffinosus were obtained.

Table 4.10. Number of bacteria isolated from healthy companion animals in 2018 and 2019

| Species          | 2018 |      |       | 2019 |      |       |  |
|------------------|------|------|-------|------|------|-------|--|
|                  | Dogs | Cats | Total | Dogs | Cats | Total |  |
| E. faecalis      | 102  | 64   | 166   | 123  | 76   | 199   |  |
| E. faecium       | 24   | 7    | 31    | 3    | 1    | 4     |  |
| E. gallinarum    | 1    | 2    | 3     | 16   | 5    | 21    |  |
| E. durans        | 13   | 8    | 21    | 0    | 0    | 0     |  |
| E. avium         | 2    | 6    | 8     | 3    | 1    | 4     |  |
| E. hirae         | 3    | 0    | 3     | 6    | 5    | 11    |  |
| E. casselifravus | 1    | 2    | 3     | 7    | 1    | 8     |  |
| E. raffinosus    | 0    | 1    | 1     | 0    | 0    | 0     |  |
| Total            | 146  | 90   | 236   | 158  | 89   | 247   |  |

The resistant rates of *E. faecalis* were shown in Table 4.11. The MIC distributions of *E. faecalis* isolates are

shown in Tables 12.9.1. and 12.9.2, respectively.

Table.4.11. Resistant rates (%) of *E. faecalis* from healthy dogs and cats in 2018-2019

|                 |    | 20      | 2018   |         | 19     |
|-----------------|----|---------|--------|---------|--------|
| Antimicrobials  | BP | Dogs    | Cats   | Dogs    | Cats   |
|                 |    | n = 101 | n = 64 | n = 123 | n = 76 |
| Ampicillin      | 16 | 1.0     | 0.0    | 0.0     | 0.0    |
| Gentamicin      | 32 | 13.9    | 14.1   | 8.9     | 14.5   |
| Tetracycline    | 16 | 66.3    | 56.3   | 47.2    | 68.4   |
| Chloramphenicol | 32 | 22.8    | 14.1   | 13.0    | 15.8   |
| Erythromycin    | 8  | 39.6    | 39.1   | 24.4    | 35.5   |
| Ciprofloxacin   | 4  | 5.9     | 17.2   | 3.3     | 10.5   |
| Vancomycin      | 32 | 0.0     | 0.0    | 0.0     | 0.0    |

The resistance of *E. faecalis* isolated from dogs and cats were found to show a similar pattern. There was only a single ampicillin-resistant strain from dogs in 2018. In contrast, high rates of resistance to tetracycline were detected, followed erythromycin, whereas for other

antimicrobials (chloramphenicol, ciprofloxacin, and gentamicin) rates of resistance were less than 30% among strains isolated from dogs and cats (excluding rates of resistance to chloramphenicol for dog-derived strains in 2018).

#### **4.3.2 Diseased Companion Animals**

In 2018 and 2019 the monitoring of diseased companion animals (dogs and cats) was implemented with *E. coli*, *Enterococcus* spp., coagulase-positive *Staphylococcus* spp., *Klebsiella* spp.,

Pseudomonas aeruginosa spp. and Proteus mirabilis samples being collected from clinical laboratories. The total numbers of bacteria isolated are shown in Table 4.12. All isolates were subjected to antimicrobial susceptibility testing.

Table 4.12. Number of bacteria isolated from diseased companion animals in 2018 and 2019

| Species                       | Do   | gs   | Cats |      |  |
|-------------------------------|------|------|------|------|--|
| Species                       | 2018 | 2019 | 2018 | 2019 |  |
| E. coli                       | 154  | 93   | 178  | 128  |  |
| Enterococcus                  | 78   | 57   | 135  | 103  |  |
| E. faecalis                   | 57   | 39   | 100  | 62   |  |
| E. faecium                    | 15   | 18   | 30   | 35   |  |
| E. gallinarum                 | 3    | 0    | 2    | 2    |  |
| E. durans                     | 0    | 0    | 0    | 1    |  |
| E. avium                      | 1    | 0    | 2    | 2    |  |
| E. hirae                      | 0    | 0    | 0    | 0    |  |
| E. casselifravus              | 1    | 0    | 1    | 1    |  |
| E. raffinosus                 | 1    | 0    | 0    | 0    |  |
| Staphylococcus                | 93   | 41   | 82   | 72   |  |
| S. pseudintermedius           | 83   | 22   | 78   | 42   |  |
| S. aureus                     | 3    | 17   | 2    | 30   |  |
| S. shreiferi subsp. Coagulans | 7    | 2    | 2    | 0    |  |
| Klebsiella                    | 49   | 20   | 81   | 37   |  |
| K. pneumoniae                 | 45   | 18   | 72   | 32   |  |
| K. oxytoca                    | 4    | 2    | 8    | 5    |  |
| K. aerogenes                  | 0    | 0    | 1    | 0    |  |

| Pseudomonas aeruginosa | 78 | 18 | -  | -  |
|------------------------|----|----|----|----|
| Proteus mirabilis      | -  | -  | 81 | 17 |

#### (1) Escherichia coli

A total of 247 *E. coli* isolates (154 from dogs and 93 from cats) were collected in 2018 and 306 *E. coli* isolates (178 from dogs and 128 from cats) were collected in 2019, the MIC distributions of which are shown in Tables 12.10.1 and 12.10.2.

The resistance of *E. coli* isolated from dogs and cats were found to show a similar pattern (Table 4.13.). For both species, there were high rates of resistance against ampicillin and quinolones

(nalidixic acid and ciprofloxacin) (dogs: 51.1%-63.0%, 56.2%-72.7%, and 38.8%-55.2%; cats: 60.2%-65.6%, 46.9%-68.8%, and 37.5%-50.5%, respectively). In contrast, resistance to kanamycin (5.1%-7.8% and 7.0%-12.9%, respectively) was relatively low, only a few isolates were resistance to colistin (0.0% and 0.0%-1.1%, respectively) and no strains showing resistance against meropenem were isolated.

Table 4.13. Antimicrobial resistance rates (%) of *Escherichia coli* isolated from diseased companion animals in 2018 and 2019

|                               |      | 201   | 8    | 2019  |       |  |
|-------------------------------|------|-------|------|-------|-------|--|
| Antimicrobials                | BP   | Dogs  | Cats | Dogs  | Cats  |  |
|                               |      | n=154 | n=93 | n=178 | n=128 |  |
| Ampicillin                    | 32   | 63.0  | 65.6 | 51.1  | 60.2  |  |
| Cefazolin                     | 32   | 44.2  | 44.1 | 30.3  | 32.0  |  |
| Cefalexin                     | 32   | 42.9  | 47.3 | 31.5  | 31.3  |  |
| Cefotaxime                    | 4    | 41.6  | 39.8 | 26.4  | 26.6  |  |
| Meropenem                     | 4    | 0.0   | 0.0  | 0.0   | 0.0   |  |
| Streptomycin                  | 32   | 29.9  | 34.4 | 20.2  | 28.9  |  |
| Gentamicin                    | 16   | 18.8  | 15.1 | 12.9  | 9.4   |  |
| Kanamycin                     | 64   | 7.8   | 12.9 | 5.1   | 7.0   |  |
| Tetracycline                  | 16   | 27.9  | 29.0 | 21.3  | 26.6  |  |
| Chloramphenicol               | 32   | 16.2  | 15.1 | 11.8  | 7.8   |  |
| Colistin                      | 4    | 0.0   | 1.1  | 0.0   | 0.0   |  |
| Nalidixic acid                | 32   | 72.7  | 68.8 | 56.2  | 46.9  |  |
| Ciprofloxacin                 | 1    | 55.2  | 50.5 | 38.8  | 37.5  |  |
| Sulfamethoxazole/Trimethoprim | 76/4 | 27.9  | 34.4 | 17.4  | 22.7  |  |

#### (2) Enterococcus

A total of 135 *Enterococcus* spp. isolates (78 from dogs and 57 from cats) were collected in 2018 and 238 *Enterococcus* spp. isolates (135 from dogs and 103 from cats) were collected in 2019. The species and strain numbers of which are shown in Table 4.12. The MIC distributions of *E. faecalis* and *E. faecium* isolates are shown in Tables 12.11.1., 12.11.2. and 12.12.1., 12.12.2., respectively.

Among the *Enterococcus* spp. isolated from dogs and cats, *E. faecalis* was the most frequently encountered (57-100 from

dogs and 39-62 from cats). There was a similar tendency with respect to the isolates obtained from dogs and cats (Tables 4.14.). For both animal species, there were no ampicillin-resistant strain. In contrast, high rates of resistance to tetracycline were detected (65.0%-66.7% in dogs and 67.7%-76.9% in cats), followed erythromycin (36.0%-36.8% in dogs and 33.9%-46.2% in cats), whereas for other antimicrobials (chloramphenicol, ciprofloxacin and gentamicin) rates of resistance of 8.8%-25.6% were detected among strains isolated from dogs and cats.

Table 4.14. Antimicrobial resistance rates (%) of *Enterococcus faecalis* isolated from diseased companion animals in 2018 and 2019

|                 |    | 20   | 18   | 2019  |      |  |
|-----------------|----|------|------|-------|------|--|
| Antimicrobials  | BP | Dogs | Cats | Dogs  | Cats |  |
|                 |    | n=57 | n=39 | n=100 | n=62 |  |
| Ampicillin      | 16 | 0.0  | 0.0  | 0.0   | 0.0  |  |
| Gentamicin      | 32 | 8.8  | 15.4 | 22.0  | 14.5 |  |
| Tetracycline    | 16 | 66.7 | 76.9 | 65.0  | 67.7 |  |
| Chloramphenicol | 32 | 15.8 | 23.1 | 24.0  | 14.5 |  |
| Erythromycin    | 8  | 36.8 | 46.2 | 36.0  | 33.9 |  |
| Ciprofloxacin   | 4  | 8.8  | 25.6 | 11.0  | 14.5 |  |
| Vancomycin      | 32 | -    | -    | 0.0   | 0.0  |  |

E. faecium strains isolated from dogs and cats were also found to show similar resistance tendencies, although these differed from those identified for E. faecalis (Tables 4.14.–4.15.). The rates of resistance against ciprofloxacin (96.7%-100.0% in dogs and 94.3%-100.0% in cats). In contrast to E. faecalis, there were

also high rates of resistance for ampicillin (90.0%-100.0% in dogs and 94.3%-100.0% in cats), and there were also relatively high rates of resistance against erythromycin, tetracycline, and gentamicin, whereas resistance rates for chloramphenicol were typically low (3.3%-6.7% in dogs and 0.0% in cats). No

Table 4.15. Antimicrobial resistance rates (%) of *Enterococcus faecium* isolated from diseased companion animals in 2018 and 2019

|                 |    | 20    | 2018  |      | 19   |
|-----------------|----|-------|-------|------|------|
| Antimicrobials  | BP | Dogs  | Cats  | Dogs | Cats |
|                 |    | n=15  | n=18  | n=30 | n=35 |
| Ampicillin      | 16 | 100.0 | 100.0 | 90.0 | 94.3 |
| Gentamicin      | 32 | 40.0  | 44.4  | 36.7 | 45.7 |
| Tetracycline    | 16 | 80.0  | 66.7  | 80.0 | 61.0 |
| Chloramphenicol | 32 | 6.7   | 0.0   | 3.3  | 0.0  |
| Erythromycin    | 8  | 46.7  | 72.2  | 66.7 | 51.4 |
| Ciprofloxacin   | 4  | 100.0 | 100.0 | 96.7 | 94.3 |
| Vancomycin      | 32 | -     | -     | 0.0  | 0.0  |

#### (3) Staphylococcus pseudintermedius

A total of 134 coagulase-positive *Staphylococcus* spp. isolates (93 from dogs and 41 from cats) were collected in 2018 and 154 the coagulase-positive *Staphylococcus* spp. isolates (82 from dogs and 72 from cats) in 2019. Species and strain numbers of which are shown in Table 4.12.

S. pseudintermedius (78-83 and 22-42 isolates from dogs and cats, respectively) was the most detected Staphylococcus spp., the MIC distributions of which are shown in Tables 12.13.1. and 12.13.2. The resistance rates of S. pseudintermedius strains isolated from dogs and cats showed similar patterns (Table 4.16.). In dogs, isolates highest resistance showed against

benzylpenicillin (97.4%) followed by erythromycin and azithromycin (both 74.7%-79.5%), ciprofloxacin (75.6%-75.9%), whereas in cats, the highest rates resistance ofwere detected for ciprofloxacin (97.6%-100.0%), followed by benzylpenicillin (97.6%), azithromycin (86.4%-95.2%) and erythromycin (86.4%-95.2%). Resistance against other drugs ranged from 49.4% to 66.7% in dogs and 52.4% to 85.7% in cats. Although methicillin-resistant S. pseudintermedius (MRSP) is considered a major cause for concern in small animal clinics, we also detected high rates of resistance to oxacillin (56.6%-62.8% in dogs and 81.0%-81.8% in cats).

Table 4.16. Antimicrobial resistance rates (%) of *Staphylococcus pseudintermedius* isolated from diseased companion animals in 2018 and 2019

|                  |      | 20   | 18    | 2019 |      |
|------------------|------|------|-------|------|------|
| Antimicrobials   | BP   | Dogs | Cats  | Dogs | Cats |
|                  |      | n=83 | n=22  | n=78 | n=42 |
| Benzylpenicillin | 0.25 | -    | -     | 97.4 | 97.6 |
| Oxacillin        | 0.5  | 56.6 | 81.8  | 62.8 | 81.0 |
| Gentamicin       | 16   | 54.2 | 63.6  | 64.1 | 52.4 |
| Tetracycline     | 16   | 67.5 | 81.8  | 66.7 | 85.7 |
| Erythromycin     | 8    | 74.7 | 86.4  | 79.5 | 95.2 |
| Azithromycin     | 8    | 74.7 | 86.4  | 79.5 | 95.2 |
| Ciprofloxacin    | 4    | 75.9 | 100.0 | 75.6 | 97.6 |
| Chloramphenicol  | 32   | 49.4 | 72.7  | 60.3 | 83.3 |

#### (4) Klebsiella pneumoniae

A total of 130 *Klebsiella* spp. isolates (49 from dogs and 81 from cats) were collected in 2018, including 117 isolates of *K. pneumoniae* (45 from dogs and 72 from cats), 12 of *K. oxytoca* (4 from dogs and 8 from cats), and 1 of *K. aerogenes* (formerly *Enterobacter aerogenes*; 1 from cat) and 57 *Klebsiella* spp. isolates (20 from dogs and 37 from cats) were collected in 2019, including 50 isolates of *K. pneumoniae* (18 from dogs and 32 from cats), 7 of *K. oxytoca* (2 from dogs and 5 from cats) (Table 4.12.).

Among the *Klebsiella* spp. isolated, *K. pneumoniae* was the most encountered,

the MIC distributions of which are shown in Tables 12.14.1. and 12.14.2. The rates of resistance shown by K. pneumoniae were found to be relatively high, particularly those against cephalosporins (36.1%–48.9% in dogs and 68.8%-94.4% in cats) and quinolones (47.2%-64.4% in dogs and 81.3%-100.0% in cats) (Table 4.17.). However, no strains showing resistance against colistin or meropenem were detected. Apart from chloramphenicol in 2019, the resistance rates of strains isolated from cats tended to be higher than those isolated from dogs.

Table 4.17. Antimicrobial resistance rates (%) of *Klebsiella pneumoniae* isolated from diseased companion animals in 2018 and 2019

|                               |      | 2018 |       | 2019 |      |
|-------------------------------|------|------|-------|------|------|
| Antimicrobials                | BP   | Dogs | Cats  | Dogs | Cats |
|                               |      | n=45 | n=18  | n=72 | n=32 |
| Cefazolin                     | 32   | 46.7 | 94.4  | 40.3 | 75.0 |
| Cefalexin                     | 32   | 48.9 | 88.9  | 41.7 | 68.8 |
| Cefotaxime                    | 4    | 40.0 | 83.3  | 36.1 | 68.8 |
| Meropenem                     | 4    | 0.0  | 0.0   | 0.0  | 0.0  |
| Streptomycin                  | 32   | 37.8 | 61.1  | 29.2 | 62.5 |
| Gentamicin                    | 16   | 31.1 | 61.1  | 22.2 | 46.9 |
| Kanamycin                     | 64   | 11.1 | 22.2  | 4.2  | 12.5 |
| Tetracycline                  | 16   | 48.9 | 72.2  | 30.6 | 50.0 |
| Chloramphenicol               | 32   | 35.6 | 50.0  | 19.4 | 15.6 |
| Colistin                      | 4    | 0.0  | 0.0   | 0.0  | 0.0  |
| Nalidixic acid                | 32   | 64.4 | 100.0 | 47.2 | 84.4 |
| Ciprofloxacin                 | 1    | 60.0 | 100.0 | 47.2 | 81.3 |
| Sulfamethoxazole/Trimethoprim | 76/4 | 48.9 | 77.8  | 37.5 | 65.6 |

#### (5) Pseudomonas aeruginosa and Proteus mirabilis

In 2018, 78 Pseudomonas aeruginosa from dogs were isolated (Table 4.12.). Although there were one meropenem resistant isolate (1.3%), the isolate was not resistant to gentamicin. In 2019, 81 Proteus mirabilis from dog were isolated (Table 4.12.). The resistance rates shown by *P. mirabilis* was relatively low,

those against cephalosporins (1.2%-3.7%) and quinolones (12.3%-28.4%) (Tables 12.15. and 12.16.).

There were 18 *P. aeruginosa* in 2018 and 17 *P. mirabilis* in 2019 were isolated from cats (Table 4.12.). Given the relatively small number, results for these isolates are not shown.

#### 5. JVARM Publications

#### 2018

Furuno. M., Uchiyama, M., Nakahara, Y., Uenoyama, K., Fukuhara, H., Morino, S., Kijima, M. Japanese trial to monitor methicillin-resistant Staphylococcus aureus (MRSA) in imported pigs during the quarantine period. J. Glob. Antimicrob. Resist. 2018; 14: 182-184.

#### 2019

Kijima, M., Shirakawa, T., Uchiyama, M., Kawanishi, M., Ozawa, M., & Koike, R. (2019). Trends in the serovar and antimicrobial resistance in clinical isolates of *Salmonella enterica* from cattle and pigs between 2002 and 2016 in Japan. Journal of applied microbiology, 127(6), 1869-1875.

#### 6. Acknowledgments

The JVARM members would like to thank the staff of the Livestock Hygiene Service Centers for collecting samples and isolates from animals. Gratitude is also extended to the farmers for providing fecal samples and valuable information concerning antimicrobial use.

The JVARM members are grateful to the following people for helpful support and encouragement:

Haruo Watanabe (International University of Health and Welfare); Motoyuki Sugai and Makoto Onishi (National Institute of Infectious Disease); Yutaka Tamura, Kohei Makita, and Masaru Usui (Rakuno Gakuen University); Tetsuo Asai (Gifu University); Masato Akiba (National Institute of Animal Health); Yoshikazu Ishii (Toho University); Tomita Haruyoshi (Gunma University); Hiroshi Asakura ( National Institute of Health Science) Hiroto Shinomiya (Ehime Prefectural Institute of Public Health Science) and Noriko Environmental Konishi (Tokyo Metropolitan Institute of Public Health)

#### 7. Participants in the JVARM Program

# 7.1. Data from the National Veterinary Assay Laboratory were provided by the following people:

2018

Yuko Endo (Head of Assay Division II), Mayumi Kijima, Michiko Kawanishi, Mari Matsuda, and Takahiro Shirakawa

2019

Tatsuro Sekiya (Head of Assay Division

II), Yoko Shimazaki, Manao Ozawa, Michiko Kawanishi, Mari Matsuda, Takahiro Shirakawa and Yukari Furuya

# 7.2. Data from the Food and Agricultural Materials Inspection Center were provided by the following people:

#### 2018

Sayaka Hashimoto (Director, Feed Analysis II Division), Yoshihiro Sekiguchi, Rieko Kobayashi, Miyuki Asao, Zenya Takeda, Noriko Okuyama

#### 2019

Sayaka Hashimoto (Director, Feed Analysis II Division), Yoshiyasu Hashimoto, Rieko Kobayashi, Miyuki Asao, Akiko Takahashi, Noriko Okuyama

# 7.3 Data from the Livestock Hygiene Services Centers were kindly provided by the following people:

#### 2018

K. Nobumoto (Hokkaido), Y. Kimura (Aomori), H. Miyazaki (Iwate), Egashira (Miyagi), R. Sato (Akita), I. Ohashi (Yamagata), A. Kamikawa (Fukushima), M. Takayasu (Ibaraki), S. Koike (Tochigi), H. Shimura (Gunma), M. Ishihara (Saitama), M. Okamoto (Chiba), T. Hayashi (Tokyo), K. Ebisawa (Kanagawa), K. Tanaka (Niigata), A. Kimata (Toyama), K. Katsuragi (Fukui), I. Ushiyama (Yamanashi), K. (Nagano), M. Otsuka (Gifu), T. Nomoto (Shizuoka), F. Sato (Mie), S. Uchimoto (Shiga), A. Kato (Kyoto), T. Donomoto (Osaka), J. Ishii (Hyogo), E. Iguchi (Nara), N. Kobayashi (Wakayama), K. Nakamura (Tottori), Y. Hara (Shimane), S. Izushi (Okayama), T. Funamori (Hiroshima), H. Sano (Yamaguchi), Y. Takita (Tokushima), Yamaoka (Kagawa), Y. Hikoda

(Ehime), S. Kishi (Kochi), K. Hamada (Fukuoka), N. Ichinohe (Saga), R. Urakawa (Nagasaki), M. Mori (Kumamoto), M. Isomura (Oita), Y. Tanigakubo (Miyazaki), W. Misumi (Kagoshima), S. Shigeno (Okinawa)

#### 2019

K. Hagiya (Hokkaido), T. Abe (Aomori), A. kizaki (Iwate), S. Manabe (Miyagi), C. Fujiwara (Akita), I. Ohashi (Yamagata), A. Kamikawa (Fukushima), M. Talayasu Kato (Ibaraki), K. (Tochigi), M. Moriguchi (Gunma), M. Ishihara (Saitama), M. Okamoto (Chiba), T. Hayashi (Tokyo), S. Fukuoka (Kanagawa), S. Fukudome (Niigata), K. Masunaga Oki (Toyama), Н. (Ishikawa), K. Miyatanin (Fukui), **Tsuchiya** (Yamanashi), K. Suzuki (Nagano), H. Goto (Gifu), T. Nomoto (Shizuoka), F.

Sato (Mie), C. Kawazoe (Shiga), C. Sakata (Kyoto), K. Tanaka, T. Donomoto (Osaka), D. Imabashi (Hyogo), A. Nitta (Nara), H. Akama (Wakayama), K. Nakamura (Tottori), Y. Hara (Shimane), R. Tahara (Okayama), T. Fukumori (Hiroshima), H. Sano (Yamaguchi), Y.

Takita (Tokushima), Y. Hikoda (Ehime), S. Kishi (Kochi), K. Hamada (Fukuoka), R. Urakawa (Nagasaki), M. Isomura (Oita), E. Yoshida (Miyazaki), W. Misumi (Kagoshima), S. Nakao (Okinawa)

#### 8. Materials and Methods

### 8.1 Sampling

### (1) Monitoring System for Farms

Sampling was carried out on farms across Japan by the prefectural LHSCs. *Salmonella* and *Staphylococcus* species were isolated from diagnostic submissions of clinical cases.

# (2) Monitoring System for Slaughterhouses

Sampling in slaughterhouses was carried out by private research laboratories. At each slaughterhouse, fresh fecal samples were collected from the cecum of healthy broiler chickens and from the rectum of healthy cattle and healthy pigs.

E. coli, Enterococcus species, and Campylobacter species were isolated from the cecum- and rectum-derived fecal samples obtained from healthy cattle, pigs, and broilers, whereas species of Salmonella were isolated from only the cecum-derived fecal samples of healthy broilers.

# (3) Monitoring System for Diseased Companion Animals (Dogs and Cats)

Clinical samples submitted from animal hospitals were collected from the private clinical laboratories that had agreed to cooperate with this monitoring. To reduce selection bias, sample numbers were allocated in accordance with the numbers of companion animal hospitals and one sample for each bacterial and host species

should be collected from each hospital. A contracted research laboratory informed the cooperating clinical laboratories with respect to the target bacterial species, required numbers and acceptable sampling location, and the clinical laboratories selected and sent isolates accordingly.

The target bacterial species were as follows: *E. coli* and *Klebsiella* species derived from urine and the reproductive tract, *Enterococcus* species from urine and ears, coagulase-positive *Staphylococcus* species from urine and skin, *Pseudomonas aeruginosa* from urine and ear, and *Proteus mirabilis* from urine and ear.

# (4) Monitoring System for Healthy Companion Animals (Dogs and Cats)

Japan Veterinary Medical Association (JVMA). The JVMA members are collected a rectal swab from healthy dogs and cats visited hospital for health check, vaccination, trimming or so on. It was done with informed consent for owners. Sample numbers were allocated in following with small animal clinic number in each prefecture. Rectal swabs are submitted to contracted laboratories and *E. coli* and *Enterococcus* spp. strains were isolated from samples.

# 8.2 Isolation and Identification

#### (1) Escherichia coli

E. coli strains isolated from each

sample were maintained on desoxycholate-hydrogen sulfate-lactose (DHL) agar (Eiken, Japan). Candidate colonies were identified biochemically using a commercially available kit (API20E; bioMérieux, Marcy l'Etoile, France) and stored at -80°C until used for testing.

#### (2) Enterococcus

Fecal samples were cultured via direct culturing using bile esculin azide agar (BEA; Difco Laboratories, Detroit, MI, USA) or using an enrichment procedure with buffered peptone water (Oxoid, Basingstoke, Hampshire, England). In the former procedure, plates were incubated at 37°C for 48–72 h, whereas in the latter, tubes were incubated at 37°C for 18–24 h and subsequently passaged onto the same types of plates as used for the direct culturing method.

**Isolates** were presumptively identified as enterococci based on colony morphology. These isolates were subcultured onto heart infusion agar (Difco) supplemented with 5% (v/v) sheep blood, following which hemolysis was observed and Gram staining was performed. **Isolates** were tested for catalase production, growth in heart infusion broth supplemented with 6.5% NaCl, and growth at 45°C. In addition, the hydrolysis of L-pyrrolidonyl-β-naphthylamide and pigmentation, and cell motility were evaluated, using the API 20 STREP system (bioMérieux). When required, further identification was undertaken based on D-xylose and sucrose fermentation tests<sup>5)</sup>. All isolates were stored at -80°C until used for testing.

# (3) Campylobacter

Species of *Campylobacter* were isolated on *Campylobacter* blood-free selective agar (mCCDA; Oxoid, UK) using the direct inoculation method. Isolates were identified biochemically and molecularly using PCR<sup>6</sup>. Two isolates per sample were then selected for antimicrobial susceptibility testing and suspended in 15% glycerin, to which buffered peptone water (Oxoid) had been added, and subsequently stored at -80°C until used for testing.

### (4) Salmonella

Salmonella isolates from farms were provided by the Livestock Hygiene Service Centers from diagnostic submissions of clinical cases, whereas slaughterhouses samples from were obtained from cecum-derived fecal samples collected from healthy broilers. The fecal samples were cultured using an enrichment procedure with buffered peptone water (Oxoid). Tubes containing the samples were incubated at 37°C for 18-24h, followed by subsequent passaging into Rappaport–Vassiliadis broth and incubation at 42°C for a further 18-24 h. Thereafter, cultures were then passaged onto CHROMagar<sup>TM</sup> Salmonella plates and incubated at 37°C for 18–24 h,

following which they were presumptively identified as *Salmonella* based on colony morphology.

After biochemical identification, the serotype of the isolates was determined using slide and tube agglutination tests, according to the latest versions of the Kauffmann–White scheme<sup>7)</sup>. All isolates were stored at -80°C until used for testing.

## 8.3 Antimicrobial Susceptibility Testing

The MICs of *E. coli*, *Enterococcus*, *Campylobacter*, and *Salmonella* isolates were determined using the broth microdilution method according to CLSI guidelines. *Staphylococcus aureus* ATCC 29213 and *E. coli* ATCC 25922 were used as quality control strains, whereas *C. jejuni* ATCC 33560 was used for the quality control of MIC measurements in *Campylobacter* species.

## 8.4 Resistance Breakpoints

Resistance breakpoints were defined microbiologically in serial studies. For cases in which MICs for the isolates were bimodally distributed, values intermediate between the two peaks were defined as the breakpoints.

The MIC of each antimicrobial established by CLSI was interpreted using CLSI criteria. The breakpoints of other antimicrobial agents were determined microbiologically.

#### 9. References

- Swann, M.M. 1969. Report of the joint committee on the use of antibiotics in animal husbandry and veterinary medicine. HM Stationary Office. London.
- 2) Tamura, Y. 2003. The Japanese antimicrobial veterinary resistance system (JVARM) monitoring Bernard, V. (ed.). OIE International Standards on Antimicrobial Resistance. Paris, France: **OIE** (World Organization for Animal Health); 2003: 206-210.
- World Health Organization. 2015.
   Global action plan on antimicrobial resistance, Geneva, Switzerland.
- 4) Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing; twenty-fourth information supplement. CLSI document M100-S27. Clinical and Laboratory Standards Institute, Wayne, PA.
- 5) Teixeira, L.M., Carvalho, M.G.S., Facklam, R.R. 2007. *Enterococcus*. In: Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., Pfaller M.A. (eds.), Manual of Clinical Microbiology, 9th edn. 430–442. American Society for Microbiology, Washington, DC.
- 6) Liton, D., Lawson, A.J., Owen, R.J., Stanley, J. 1997. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from

- diarrheic samples. *J. Clin. Microbiol.* 35:2568–2572.
- 7) Grimont, P.A.D, Weill, F.X. 2007. Antigenic formulae of the *Salmonella* serovars, 9<sup>th</sup> ed. World Health Organization Collaborating Center for Reference and Research on *Salmonella*, Pasteur Institute, Paris, France.

Table 12.1.1. Distribution of MICs and resistance (%) in Escherichia coli from cattle (n=189), pigs (n=83) and broilers (n=155) in 2018\_Slaughterhouse

| Antimicrobial       | Animal         | MIC                 | MIC                 | 0/ Posista |      |      |           |           |         |      | MIC     | distribut  | ion   |       |    |    |     |          |
|---------------------|----------------|---------------------|---------------------|------------|------|------|-----------|-----------|---------|------|---------|------------|-------|-------|----|----|-----|----------|
| agent               | species        | $MIC_{50}$          | $MIC_{90}$          | %Resistant | 0.03 | 0.06 | 0.12      | 0.25      | 0.5     | 1    | 2       | 4          | 8     | 16    | 32 | 64 | 128 | 256 >256 |
| Ampicillin          | Cattle         | 4                   | 128                 | 11.6       |      |      |           |           |         | 3    | 24      | 116        | 23    | 1     | 2  | 0  | 2   | 18       |
|                     | Pigs           | 8                   | >128                | 34.9       |      |      |           |           |         | 1    | 12      | 23         | 17    | 1     | 0  | 0  | 0   | 29       |
|                     | Broilers       | 4                   | >128                | 36.1       |      |      |           |           |         | 1    | 22      | 56         | 20    | 0     | 0  | 2  | 1   | 53       |
| Cefazolin           | Cattle         | 1                   | 2                   | 0.5        |      |      |           |           |         | 141  | 43      | 4          | 0     | 0     | 0  | 0  | 1   | 0        |
|                     | Pigs           | 1                   | 4                   | 2.4        |      |      |           |           |         | 42   | 27      | 12         | 1     | 0     | 0  | 0  | 1   | 0        |
|                     | Broilers       | 2                   | 4                   | 7.7        |      |      |           |           |         | 77   | 48      | 18         | 4     | 3     | 0  | 0  | 0   | 5        |
| Cefotaxime          | Cattle         | ≦0.12               | ≦0.12               | 0.0        |      |      | 187       | 0         | 1       | 1    | 0       | 0          | 0     | 0     | 0  |    |     |          |
|                     | Pigs           | $\leq 0.12$         | ≦0.12               | 0.0        |      |      | 78        | 1         | 1       | 1    | 2       | 0          | 0     | 0     | 0  |    |     |          |
|                     | Broilers       | ≦0.12               | ≦0.12               | 3.2        |      |      | 145       | 2         | 1       | 1    | 1       | 0          | 1     | 1     | 3  |    |     |          |
| Meropenem           | Cattle         | ≦0.12               | ≦0.12               | 0.0        |      |      | 189       | 0         | 0       | 0    | 0       | 0          | 0     | 0     |    |    |     |          |
|                     | Pigs           | ≦0.12               | ≦0.12               | 0.0        |      |      | 83        | 0         | 0       | 0    | 0       | 0          | 0     | 0     |    |    |     |          |
|                     | Broilers       | ≦0.12               | ≦0.12               | 0.0        |      |      | 154       | 1         | 0       | 0    | 0       | 0          | 0     | 0     |    |    |     |          |
| Streptomycin        | Cattle         | 8                   | 128                 | 18.5       |      |      |           |           |         |      |         | 45         | 100   | 9     | 7  | 7  | 12  | 9        |
|                     | Pigs           | 16                  | >128                | 49.4       |      |      |           |           |         |      |         | 6          | 29    | 7     | 1  | 9  | 7   | 24       |
|                     | Broilers       | 16                  | >128                | 48.4       |      |      |           |           |         |      |         | 16         | 46    | 18    | 10 | 11 | 14  | 40       |
| Gentamicin          | Cattle         | 1                   | 1                   | 0.0        |      |      |           |           |         | 175  | 14      | 0          | 0     | 0     | 0  | 0  | 0   |          |
|                     | Pigs           | 1                   | 2                   | 3.6        |      |      |           |           |         | 68   | 8       | 4          | 0     | 0     | 2  | 0  | 1   |          |
|                     | Broilers       | 1                   | 2                   | 5.2        |      |      |           |           |         | 136  | 9       | 1          | 1     | 2     | 3  | 1  | 2   |          |
| Kanamycin           | Cattle         | 4                   | 8                   | 0.0        |      |      |           |           |         |      | 81      | 84         | 23    | 1     | 0  | 0  | 0   | 0        |
|                     | Pigs           | 4                   | 16                  | 8.4        |      |      |           |           |         |      | 17      | 37         | 14    | 7     | 1  | 0  | 0   | 7        |
|                     | Broilers       | 8                   | >128                | 43.9       |      |      |           |           |         |      | 22      | 49         | 15    | 1     | 0  | 0  | 1   | 67       |
| Tetracycline        | Cattle         | 4                   | 64                  | 26.5       |      |      |           |           |         | 25   | 34      | 76         | 4     | 0     | 8  | 33 | 9   |          |
|                     | Pigs           | 32                  | >64                 | 55.4       |      |      |           |           |         | 4    | 9       | 20         | 4     | 0     | 5  | 21 | 20  |          |
|                     | Broilers       | 8                   | >64                 | 49.0       |      |      |           |           |         | 9    | 40      | 27         | 3     | 0     | 5  | 51 | 20  |          |
| Chloramphenicol     | Cattle         | 8                   | 8                   | 4.8        |      |      |           |           |         |      | 0       | 44         | 129   | 7     | 2  | 3  | 3   | 1        |
|                     | Pigs           | 8                   | >128                | 25.3       |      |      |           |           |         |      | 1       | 12         | 41    | 8     | 2  | 3  | 1   | 15       |
|                     | Broilers       | 8                   | 128                 | 17.4       |      |      |           |           |         |      | 0       | 20         | 105   | 3     | 1  | 2  | 19  | 5        |
| Colistin            | Cattle         | ≦0.25               | 0.5                 | 0.0        |      |      |           | 161       | 26      | 2    | 0       | 0          | 0     | 0     | 0  |    |     |          |
|                     | Pigs           | ≦0.25               | 0.5                 | 6.0        |      |      |           | 62        | 13      | 3    | 0       | 4          | 1     | 0     | 0  |    |     |          |
|                     | Broilers       | ≦0.25               | 0.5                 | 0.0        |      |      |           | 116       | 36      | 2    | 1       | 0          | 0     | 0     | 0  |    |     |          |
| Nalidixic acid      | Cattle         | 4                   | 8                   | 2.1        |      |      |           |           |         | 2    | 71      | 94         | 13    | 5     | 0  | 0  | 0   | 4        |
|                     | Pigs           | 4                   | 32                  | 12.0       |      |      |           |           |         | 0    | 25      | 38         | 5     | 5     | 4  | 0  | 0   | 6        |
|                     | Broilers       | 4                   | >128                | 40.6       |      |      |           |           |         | 0    | 31      | 55         | 4     | 2     | 0  | 1  | 10  | 52       |
| Ciprofloxacin       | Cattle         | $\leq 0.03$         | $\leq 0.03$         | 0.5        | 171  |      | 2         | 1         | 4       | 0    | 0       | 0          | 0     |       |    |    |     |          |
|                     | Pigs           | $\leq 0.03$         | 0.25                | 1.2        | 61   |      | 3         | 8         | 5       | 0    | 0       | 1          | 0     |       |    |    |     |          |
|                     | Broilers       | ≦0.03               | 4                   | 12.3       | 86   | 2    | 7         | 22        | 10      | 6    | 3       | 7          | 12    |       |    |    |     |          |
| A 42 1 12 1         |                |                     |                     |            |      |      |           |           |         |      | Distrib | ution of l | MICs  |       |    |    |     |          |
| Antimicrobial agent | Animal species | $\mathrm{MIC}_{50}$ | $\mathrm{MIC}_{90}$ | %Resistant |      |      | 2 29/0 12 | 4.75/0.25 | 0.5/0.5 | 10/1 |         |            |       | 152/9 |    |    |     |          |
|                     |                |                     | 40.4                |            |      |      |           | 4.75/0.25 |         |      | 38/2    |            | 152/8 |       |    |    |     |          |
| Sulfamethoxazole    | Cattle         | ≦2.38/0.12          |                     | 5.3        |      |      | 128       | 20        | 22      | 5    | 4       | 0          | 0     | 10    |    |    |     |          |
| /Trimethoprim       | Pigs           |                     | >152/8              |            |      |      | 20        | 14        | 10      | 9    | 3       | 1          | 0     | 26    |    |    |     |          |
|                     | Broilers       | 4.75/0.25           | <b>\152/8</b>       | 33.5       |      |      | 68        | 16        | 15      | 4    | 0       | 0          | 0     | 52    |    |    |     |          |

Broilers 4.75/0.25 >152/8 33.5
White fields represent the range of dilutions tested.

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.1.2. Distribution of MICs and resistance (%) in Escherichia coli from cattle (n=288), pigs (n=80) and broilers (n=128) in 2019\_Slaughterhouse

| Antimicrobial       | Animal            | MIC <sub>50</sub>   | MIC                 | %Resistant   |      |      |           |            |         |      | MIC       | distribut | ion     |       |    |    |     |          |
|---------------------|-------------------|---------------------|---------------------|--------------|------|------|-----------|------------|---------|------|-----------|-----------|---------|-------|----|----|-----|----------|
| agent               | species           | WIIC50              | WIIC90              | 70 Kesistant | 0.03 | 0.06 | 0.12      | 0.25       | 0.5     | 1    | 2         | 4         | 8       | 16    | 32 | 64 | 128 | 256 >256 |
| Ampicillin          | Cattle            | 4                   | 8                   | 6.2          |      |      |           |            |         | 16   | 38        | 168       | 48      | 0     | 1  | 0  | 0   | 17       |
|                     | Pigs              | 4                   | >128                | 32.5         |      |      |           |            |         | 0    | 15        | 35        | 4       | 0     | 0  | 0  | 0   | 26       |
|                     | Broilers          | 4                   | >128                | 36.7         |      |      |           |            |         | 1    | 21        | 43        | 16      | 0     | 1  | 0  | 1   | 45       |
| Cefazolin           | Cattle            | ≦1                  | 2                   | 1.0          |      |      |           |            |         | 221  | 61        | 3         | 1       | 0     | 0  | 0  | 1   | 1        |
|                     | Pigs              | ≦1                  | 4                   | 3.8          |      |      |           |            |         | 44   | 26        | 7         | 1       | 0     | 0  | 0  | 0   | 2        |
|                     | Broilers          | 2                   | 4                   | 4.7          |      |      |           |            |         | 56   | 53        | 13        | 1       | 0     | 1  | 0  | 0   | 4        |
| Cefotaxime          | Cattle            | ≦0.12               |                     | 0.7          |      |      | 282       | 0          | 4       | 0    | 0         | 0         | 1       | 1     | 0  |    |     |          |
|                     | Pigs              |                     | $\leq 0.12$         | 2.5          |      |      | 76        | 0          | 2       | 0    | 0         | 0         | 0       | 1     | 1  |    |     |          |
|                     | Broilers          | ≦0.12               |                     | 3.1          |      |      | 121       | 3          | 0       | 0    | 0         | 1         | 2       | 1     | 0  |    |     |          |
| Meropenem           | Cattle            | $\leq 0.12$         |                     | 0.0          |      |      | 288       | 0          | 0       | 0    | 0         | 0         | 0       | 0     |    |    |     |          |
|                     | Pigs              | $\leq 0.12$         |                     | 0.0          |      |      | 80        | 0          | 0       | 0    | 0         | 0         | 0       | 0     |    |    |     |          |
|                     | Broilers          | ≦0.12               |                     | 0.0          |      |      | 128       | 0          | 0       | 0    | 0         | 0         | 0       | 0     |    |    |     |          |
| Streptomycin        | Cattle            | 8                   | 128                 | 19.8         |      |      |           |            |         |      |           | 142       | 83      | 6     | 12 | 15 | 18  | 12       |
|                     | Pigs              | 8                   | >128                | 41.3         |      |      |           |            |         |      |           | 20        | 23      | 4     | 5  | 6  | 9   | 13       |
|                     | Broilers          | 16                  | >128                | 40.6         |      |      |           |            |         |      |           | 36        | 25      | 15    | 6  | 7  | 11  | 28       |
| Gentamicin          | Cattle            | ≦1                  | ≦1                  | 0.0          |      |      |           |            |         | 288  | 0         | 0         | 0       | 0     | 0  | 0  | 0   |          |
|                     | Pigs              | ≦1                  | 2                   | 2.5          |      |      |           |            |         | 71   | 6         | 0         | 1       | 0     | 0  | 2  | 0   |          |
|                     | Broilers          | ≦1                  | ≦1                  | 6.2          |      |      |           |            |         | 116  | 3         | 1         | 0       | 3     | 4  | 1  | 0   |          |
| Kanamycin           | Cattle            | ≦2                  | 4                   | 0.7          |      |      |           |            |         |      | 200       | 80        | 6       | 0     | 0  | 0  | 0   | 2        |
|                     | Pigs              | 4                   | 16                  | 10.0         |      |      |           |            |         |      | 37        | 27        | 7       | 1     | 0  | 0  | 0   | 8        |
|                     | Broilers          | 4                   | >128                | 37.5         |      |      |           |            |         |      | 53        | 23        | 3       | 1     | 0  | 0  | 0   | 48       |
| Tetracycline        | Cattle            | ≦2                  | 64                  | 22.9         |      |      |           |            |         | 50   | 111       | 55        | 6       | 4     | 7  | 33 | 22  |          |
|                     | Pigs              | 4                   | 128                 | 47.5         |      |      |           |            |         | 6    | 23        | 12        | 1       | 0     | 0  | 19 | 19  |          |
|                     | Broilers          | 64                  | 128                 | 62.5         |      |      |           |            |         | 14   | 18        | 16        | 0       | 0     | 6  | 50 | 24  |          |
| Chloramphenicol     | Cattle            | 8                   | 8                   | 4.2          |      |      |           |            |         |      | 0         | 73        | 193     | 10    | 3  | 0  | 7   | 2        |
|                     | Pigs              | 8                   | >128                | 22.5         |      |      |           |            |         |      | 0         | 13        | 48      | 1     | 2  | 5  | 1   | 10       |
|                     | Broilers          | 8                   | 128                 | 15.6         |      |      |           |            |         |      | 1         | 33        | 67      | 7     | 2  | 3  | 10  | 5        |
| Colistin            | Cattle            | ≦0.25               | ≦0.25               | 0.3          |      |      |           | 274        | 10      | 3    | 0         | 1         | 0       | 0     | 0  |    |     |          |
|                     | Pigs              | ≦0.25               | 0.5                 | 2.5          |      |      |           | 68         | 8       | 1    | 1         | 2         | 0       | 0     | 0  |    |     |          |
|                     | Broilers          | ≦0.25               | 0.5                 | 0.0          |      |      |           | 107        | 21      | 0    | 0         | 0         | 0       | 0     | 0  |    |     |          |
| Nalidixic acid      | Cattle            | 4                   | 4                   | 1.4          |      |      |           |            |         | 5    | 75        | 190       | 14      | 0     | 0  | 0  | 1   | 3        |
|                     | Pigs              | 4                   | 128                 | 11.2         |      |      |           |            |         | 2    | 15        | 46        | 5       | 3     | 0  | 0  | 2   | 7        |
|                     | Broilers          | 4                   | >128                | 36.7         |      |      |           |            |         | 1    | 34        | 35        | 4       | 7     | 2  | 1  | 6   | 38       |
| Ciprofloxacin       | Cattle            | ≦0.03               | ≦0.03               | 0.3          | 278  | 1    | 3         | 3          | 2       | 0    | 0         | 0         | 1       |       |    |    |     |          |
|                     | Pigs              | ≦0.03               | 0.25                | 2.5          | 64   | 1    | 2         | 5          | 5       | 0    | 1         | 0         | 2       |       |    |    |     |          |
|                     | Broilers          | ≦0.03               | 4                   | 12.5         | 72   | 0    | 8         | 17         | 10      | 3    | 2         | 6         | 10      |       |    |    |     |          |
|                     |                   |                     |                     |              |      |      |           |            |         | D    | istributi | on(%) c   | of MICs |       |    |    |     |          |
| Antimicrobial agent | Animal<br>species | $\mathrm{MIC}_{50}$ | $\mathrm{MIC}_{90}$ | %Resistant   |      |      | 2 20 0 12 | 4.75 (0.25 | 0.5/0.5 |      |           |           |         | 150/0 |    |    |     |          |
|                     |                   |                     |                     | • •          |      |      |           | 4.75/0.25  |         | 19/1 | 38/2      |           | 152/8   |       |    |    |     |          |
| Sulfamethoxazole    | Cattle            |                     | 4.75/0.25           | 2.8          |      |      | 228       | 42         | 9       | 1    | 0         | 0         | 0       | 8     |    |    |     |          |
| /Trimethoprim       | Pigs              |                     | >152/8              | 23.8         |      |      | 40        | 12         | 4       | 5    | 0         | 0         | 1       | 18    |    |    |     |          |
| X71'. C' 11         | Broilers          | 4.75/0.25           | >152/8              | 30.5         |      |      | 63        | 15         | 6       | 4    | 1         | 0         | 3       | 36    |    |    |     |          |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.2.1. Distribution of MICs and resistance (%) in Enterococcus faecalis from cattle (n=15), pigs (n=29) and broilers (n=106) in 2018\_Slaughterhouse

| Antimicrobial          | Animal             | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant                              |      |      |      |         |          | ]       | MIC distr | ibution |    |    |        |     |          |      |
|------------------------|--------------------|-------------------|-------------------|-----------------------------------------|------|------|------|---------|----------|---------|-----------|---------|----|----|--------|-----|----------|------|
| agent                  | species            | 30                | 90                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.06 | 0.12 | 0.25 | 0.5     | 1        | 2       | 4         | 8       | 16 | 32 | 64     | 128 | 256      | >256 |
| Ampicillin             | Cattle             | 1                 | 1                 | 0.0                                     | 0    | 0    | 0    | 1       | 13       | 1       | 0         | 0       | 0  | 0  | 0      | 0   |          |      |
|                        | Pigs               | 1                 | 1                 | 0.0                                     | 0    | 0    | 0    | 2       | 26       | 1       | 0         | 0       | 0  | 0  | 0      | 0   |          |      |
|                        | Broilers           | 1                 | 1                 | 0.0                                     | 0    | 0    | 0    | 0       | 105      | 1       | 0         | 0       | 0  | 0  | 0      | 0   |          |      |
| Streptomycin           | Cattle             | 128               | 256               | -                                       |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 1  | 0      | 11  | 2        | 1    |
|                        | Pigs               | 128               | >256              | -                                       |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 1  | 1      | 20  | 1        | 6    |
|                        | Broilers           | 256               | >256              | -                                       |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 1  | 3      | 46  | 9        | 47   |
| Gentamicin             | Cattle             | 16                | 32                | 40.0                                    | 0    | 0    | 0    | 0       | 0        | 0       | 1         | 0       | 8  | 6  | 0      | 0   | 0        |      |
|                        | Pigs               | 16                | >128              | 31.0                                    | 0    | 0    | 0    | 0       | 0        | 1       | 0         | 2       | 17 | 5  | 0      | 1   | 3        |      |
|                        | Broilers           | 16                | 32                | 15.1                                    | 0    | 0    | 0    | 0       | 0        | 0       | 1         | 16      | 73 | 10 | 0      | 0   | 6        |      |
| Kanamycin              | Cattle             | 64                | 128               | 46.7                                    |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 1  | 0  | 7      | 7   | 0        | 0    |
|                        | Pigs               | 128               | >256              | 51.7                                    |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 1  | 0  | 13     | 10  | 0        | 5    |
|                        | Broilers           | >256              | >256              | 66.0                                    |      | 0    | 0    | 0       | 0        | 0       | 1         | 0       | 0  | 2  | 33     | 12  | 0        | 58   |
| Erythromycin           | Cattle             | 2                 | 4                 | 0.0                                     | 0    | 2    | 1    | 2       | 2        | 5       | 3         | 0       | 0  | 0  | 0      | 0   |          |      |
|                        | Pigs               | 2                 | >64               | 44.8                                    | 0    | 1    | 3    | 1       | 4        | 6       | 1         | 0       | 0  | 0  | 0      | 13  |          |      |
|                        | Broilers           | 2                 | >64               | 43.4                                    | 0    | 4    | 6    | 6       | 14       | 24      | 6         | 1       | 6  | 3  | 0      | 36  |          |      |
| Tylosin                | Cattle             | 2                 | 4                 | 0.0                                     | 0    | 0    | 0    | 0       | 0        | 8       | 7         | 0       | 0  | 0  | 0      | 0   |          |      |
|                        | Pigs               | 4                 | >64               | 44.8                                    | 0    | 0    | 0    | 0       | 1        | 11      | 4         | 0       | 0  | 0  | 0      | 13  |          |      |
|                        | Broilers           | 2                 | >64               | 43.4                                    | 0    | 0    | 0    | 0       | 0        | 53      | 7         | 0       | 0  | 0  | 0      | 46  |          |      |
| Azithromycin           | Cattle             | 4                 | 8                 | -                                       |      | 0    | 0    | 3       | 1        | 2       | 3         | 6       | 0  | 0  | 0      |     |          |      |
|                        | Pigs               | 8                 | >32               | -                                       |      | 0    | 0    | 4       | 1        | 2       | 4         | 5       | 0  | 0  | 13     |     |          |      |
| <del></del>            | Broilers           | 8                 | >32               | -                                       |      | 0    | 0    | 6       | 9        | 9       | 12        | 23      | 1  | 0  | 46     |     |          |      |
| Lincomycin             | Cattle             | 32                | 64                | 0.0                                     |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 13 | 2      | 0   | 0        | 0    |
|                        | Pigs               | 128               | >256              | 51.7                                    |      | 0    | 0    | 0       | 0        | 0       | 0         | 1       | 0  | 13 | 0      | 1   | 1        | 13   |
|                        | Broilers           | 32                | >256              | 43.4                                    |      | 0    | 0    | 0       | 4        | 0       | 0         | 0       | 3  | 50 | 3      | 0   | 4        | 42   |
| Tetracycline           | Cattle             | 0.5               | >32               | 26.7                                    | 0    | 0    | 0    | 8       | 3        | 0       | 0         | 0       | 0  | 1  | 3      |     |          |      |
|                        | Pigs               | >32               | >32               | 65.5                                    | 0    | 0    | 0    | 7       | 3        | 0       | 0         | 0       | 0  | 0  | 19     |     |          |      |
| ~                      | Broilers           | >32               | >32               | 70.8                                    | 0    | 0    | 0    | 13      | 16       | 2       | 0         | 0       | 1  | 20 | 54     |     |          |      |
| Chloramphenicol        | Cattle             | 8                 | 8                 | 6.7                                     |      | 0    | 0    | 0       | 0        | 0       | 0         | 14      | 0  | 1  | 0      | 0   | 0        | 0    |
|                        | Pigs               | 8                 | 128               | 27.6                                    |      | 0    | 0    | 0       | 0        | 0       | 0         | 19      | 2  | 1  | 0      | 7   | 0        | 0    |
| <b>n</b>               | Broilers           | 8                 | 64                | 11.3                                    |      | 0    | 0    | 0       | 0        | 0       | 1         | 79      | 14 | 0  | 3      | 9   | 0        | 0    |
| Bacitracin             | Cattle             | 256               | 256               | -                                       |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 0  | 1      | 4   | 10       | 0    |
|                        | Pigs               | 256               | 256               | -                                       |      | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 0  | 2<br>9 | 10  | 15<br>31 | 2    |
| X/:                    | Broilers<br>Cattle | 128               | >256              | 0.0                                     | 0    | 0    | 0    | 0       | 12       | 2       | 0         | 0       | 0  | 0  | 0      | 46  | 31       | 18   |
| Vancomycin             |                    | -                 |                   |                                         |      | 0    |      |         |          |         |           |         | -  |    |        |     |          |      |
|                        | Pigs               | 1<br>1            | 2<br>2            | 0.0                                     | 0    | 0    | 0    | 2 3     | 18<br>74 | 9<br>29 | 0         | 0       | 0  | 0  | 0      | 0   |          |      |
| Nalidixic acid         | Broilers<br>Cattle | >128              | >128              | 0.0                                     | 0    | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 0  | 0      | 0   | 15       |      |
| rvandixic acid         |                    | >128              | >128              | -                                       | 0    | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 0  | 0      | 0   | 29       |      |
|                        | Pigs               | >128              |                   | -                                       | 0    | 0    | 0    | 0       | 0        | 0       | 0         | 0       | 0  | 0  | 0      | 0   | 106      |      |
| Ciprofloxacin          | Broilers<br>Cattle | >128              | >128              | 0.0                                     | 0    | 0    | 0    | 2       | 6        | 7       | 0         | 0       | 0  | 0  | 0      | 0   | 100      |      |
| Стргопохасии           | Pigs               | 1                 | 2                 | 3.4                                     | 0    | 0    | 0    | 3       | 6<br>17  | 8       | 1         | 0       | 0  | 0  | 0      | 0   |          |      |
|                        | Pigs<br>Broilers   | 1                 | 2                 | 2.8                                     | 0    | 0    | 0    | 3<br>13 | 17<br>77 | 13      | 1         | 2       | 0  | 0  | 0      | 0   |          |      |
| Calinamyain            | Cattle             | 1                 | 1                 |                                         | 0    | 0    | 0    | 0       | 14       | 13      | 0         | 0       | 0  | 0  | U      | U   |          |      |
| Salinomycin            |                    | 1                 | 1                 | -                                       | 0    | 0    | 0    | 0       | 28       | 1       | 0         | 0       | 0  | 0  |        |     |          |      |
|                        | Pigs               | 1                 |                   | -                                       |      |      |      |         |          |         |           |         |    |    |        |     |          |      |
| White fields represent | Broilers           | 1<br>lutions te   | 8                 | -                                       | 0    | 0    | 0    | 1       | 57       | 2       | 17        | 29      | 0  | 0  |        |     |          |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.2.2. Distribution of MICs and resistance (%) in Enterococcus faecalis from cattle (n=4), pigs (n=14) and broilers (n=60) in 2019\_Slaughterhouse

| Antimicrobial          | Animal   | MICso  | MIC <sub>90</sub> | %Resistant  |      |      |      |               |    |    | MIC dist | ribution |    | >_Sidugi |    |     |     |      |
|------------------------|----------|--------|-------------------|-------------|------|------|------|---------------|----|----|----------|----------|----|----------|----|-----|-----|------|
| agent                  | species  | 111030 | 1111090           | /orconstant | 0.06 | 0.12 | 0.25 | 0.5           | 1  | 2  | 4        | 8        | 16 | 32       | 64 | 128 | 256 | >256 |
| Ampicillin             | Cattle   | 1      | 1                 | 0.0         | 0    | 0    | 0    | 0             | 4  | 0  | 0        | 0        | 0  | 0        | 0  | 0   |     |      |
|                        | Pigs     | 1      | 1                 | 0.0         | 0    | 0    | 0    | 3             | 11 | 0  | 0        | 0        | 0  | 0        | 0  | 0   |     |      |
|                        | Broilers | 1      | 1                 | 0.0         | 0    | 0    | 0    | 1             | 58 | 1  | 0        | 0        | 0  | 0        | 0  | 0   |     |      |
| Streptomycin           | Cattle   | 64     | 128               | -           |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 0        | 3  | 1   | 0   | 0    |
|                        | Pigs     | 128    | >256              | -           |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 0        | 3  | 6   | 1   | 4    |
|                        | Broilers | 128    | >256              | -           |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 1        | 4  | 34  | 1   | 20   |
| Gentamicin             | Cattle   | 8      | 16                | 0.0         | 0    | 0    | 0    | 0             | 0  | 0  | 1        | 1        | 2  | 0        | 0  | 0   | 0   |      |
|                        | Pigs     | 16     | >128              | 35.7        | 0    | 0    | 0    | 0             | 0  | 0  | 1        | 4        | 4  | 3        | 0  | 0   | 2   |      |
|                        | Broilers | 16     | 32                | 15.0        | 0    | 0    | 0    | 0             | 0  | 1  | 0        | 19       | 31 | 6        | 0  | 0   | 3   |      |
| Kanamycin              | Cattle   | 32     | 64                | 0.0         |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 2        | 2  | 0   | 0   | 0    |
|                        | Pigs     | 64     | >256              | 42.9        |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 2        | 6  | 0   | 0   | 6    |
|                        | Broilers | 128    | >256              | 51.7        |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 1  | 3        | 25 | 6   | 0   | 25   |
| Erythromycin           | Cattle   | 2      | >64               | 25.0        | 0    | 0    | 0    | 0             | 1  | 1  | 1        | 0        | 0  | 0        | 0  | 1   |     |      |
|                        | Pigs     | 2      | >64               | 50.0        | 0    | 1    | 0    | 3             | 1  | 2  | 0        | 0        | 0  | 0        | 0  | 7   |     |      |
|                        | Broilers | 16     | >64               | 53.3        | 1    | 1    | 4    | 5             | 5  | 9  | 3        | 1        | 4  | 1        | 0  | 26  |     |      |
| Tylosin                | Cattle   | 2      | >64               | 25.0        | 0    | 0    | 0    | 0             | 1  | 1  | 1        | 0        | 0  | 0        | 0  | 1   |     |      |
|                        | Pigs     | 4      | >64               | 50.0        | 0    | 0    | 0    | 0             | 1  | 4  | 2        | 0        | 0  | 0        | 0  | 7   |     |      |
|                        | Broilers | >64    | >64               | 55.0        | 0    | 0    | 0    | 0             | 0  | 19 | 8        | 0        | 0  | 0        | 1  | 32  |     |      |
| Azithromycin           | Cattle   | 4      | >32               | -           |      | 0    | 0    | 0             | 0  | 1  | 1        | 1        | 0  | 0        | 1  |     |     |      |
|                        | Pigs     | 8      | >32               | -           |      | 0    | 0    | 1             | 1  | 2  | 1        | 2        | 0  | 0        | 7  |     |     |      |
|                        | Broilers | >32    | >32               | -           |      | 1    | 0    | 2             | 7  | 4  | 4        | 9        | 1  | 0        | 32 |     |     |      |
| Lincomycin             | Cattle   | 32     | >256              | 25.0        |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 1  | 2        | 0  | 0   | 0   | 1    |
|                        | Pigs     | 32     | >256              | 50.0        |      | 0    | 0    | 0             | 0  | 0  | 0        | 2        | 0  | 5        | 0  | 1   | 0   | 6    |
|                        | Broilers | 256    | >256              | 55.0        |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 2  | 24       | 1  | 0   | 3   | 30   |
| Tetracycline           | Cattle   | 1      | >32               | 25.0        | 0    | 0    | 1    | 1             | 1  | 0  | 0        | 0        | 0  | 0        | 1  |     |     |      |
|                        | Pigs     | >32    | >32               | 57.1        | 0    | 0    | 1    | 5             | 0  | 0  | 0        | 0        | 0  | 0        | 8  |     |     |      |
| ~                      | Broilers | >32    | >32               | 66.7        | 0    | 0    | 1    | 15            | 4  | 0  | 0        | 0        | 1  | 6        | 33 |     |     |      |
| Chloramphenicol        | Cattle   | 8      | 128               | 25.0        |      | 0    | 0    | 0             | 0  | 0  | 1        | 2        | 0  | 0        | 0  | 1   | 0   | 0    |
|                        | Pigs     | 8      | 128               | 35.7        |      | 0    | 0    | 0             | 0  | 0  | 5        | 4        | 0  | 0        | 0  | 5   | 0   | 0    |
| D : :                  | Broilers | 8      | 128               | 20.0        |      | 0    | 0    | 0             | 0  | 0  | 1        | 42       | 5  | 0        | 4  | 8   | 0   | 0    |
| Bacitracin             | Cattle   | 128    | 128               | -           |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 0        | 0  | 4   | 0   | 0    |
|                        | Pigs     | 128    | >256              | -           |      | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 0        | 2  | 5   | 5   | 2    |
| ***                    | Broilers | 128    | >256              | -           | 0    | 0    | 0    | 0             | 0  | 0  | 0        | 0        | 0  | 0        | 3  | 31  | 13  | 13   |
| Vancomycin             | Cattle   | 1      | 2                 | 0.0         | 0    | 0    | 0    | -             | 2  | 1  | 0        | 0        | 0  | 0        | 0  | 0   |     |      |
|                        | Pigs     | 1      | 2                 | 0.0         | 0    | 0    | 0    | 1             | 11 | 2  | 0        | 0        | 0  | 0        | 0  | 0   |     |      |
| M-11dinin - 11d        | Broilers | 1 120  | 2                 | 0.0         | 0    | 0    | 1    | 6             | 36 | 17 | 0        | 0        | 0  |          | 0  | 0   | - 4 |      |
| Nalidixic acid         | Cattle   | >128   | >128              | -           | 0    | 0    | 0    | 0             | 0  | 0  |          | 0        | 0  | 0        | 0  | 0   | 4   |      |
|                        | Pigs     | >128   | >128              | -           | 0    | 0    | 0    | 0             | 0  | 0  | 0        | 0        |    | 0        | 0  | 0   | 14  |      |
| Ciprofloxacin          | Broilers | >128   | >128              | 0.0         | 0    | 0    | 0    | 0             | 2  | 0  | 0        | 0        | 0  | 0        | 0  | 0   | 60  |      |
| Сіргопохасіп           | Cattle   | 1      | 2                 | 0.0<br>7.1  | 0    | 0    | 0    | 0             | 11 | 1  | 0        | 0        | 0  |          | 0  | 0   |     |      |
|                        | Pigs     | 1      | 2                 | 3.3         | 0    | 0    | 0    | 9             | 43 | 2  | 0        | 1        | 0  | 1        | 0  | 0   |     |      |
| Calinamyain            | Broilers | 1<br>1 |                   | 3.3         | 0    | 0    | 0    | <u>9</u><br>1 | 3  | 6  | 0        | 0        | 0  | 0        | U  | U   |     |      |
| Salinomycin            | Cattle   | 1      | 1<br>1            | -           |      | 0    |      | -             |    | 0  | 0        |          | 0  |          |    |     |     |      |
|                        | Pigs     | 2      | 8                 | -           | 0    | 0    | 0    | 0             | 14 | 0  |          | 0        | 0  | 0        |    |     |     |      |
| White fields represent | Broilers |        |                   |             | U    | U    | U    | 3             | 26 | 3  | 14       | 14       | U  | U        |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.3.1. Distribution of MICs and resistance (%) in Enterococcus faecium from pigs (n=2) and broilers (n=10) in 2018\_Slaughterhouse

| Antimicrobial   | Animal   | MIC <sub>50</sub>  | MIC <sub>90</sub>  | %Resistant  |      |      |      |     |   |   | MIC dist | ribution |    |    |    |     |     |      |
|-----------------|----------|--------------------|--------------------|-------------|------|------|------|-----|---|---|----------|----------|----|----|----|-----|-----|------|
| agent           | species  | WIIC <sub>50</sub> | WIIC <sub>90</sub> | % Kesistani | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4        | 8        | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Pigs     | 2                  | 8                  | 0.0         | 0    | 0    | 0    | 0   | 0 | 1 | 0        | 1        | 0  | 0  | 0  | 0   |     |      |
| •               | Broilers | 2                  | 2                  | 0.0         | 0    | 0    | 0    | 1   | 2 | 6 | 0        | 1        | 0  | 0  | 0  | 0   |     |      |
| Streptomycin    | Pigs     | 64                 | 128                | -           |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 1  | 1   | 0   | 0    |
|                 | Broilers | 64                 | 64                 | -           |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 2  | 7  | 0   | 0   | 1    |
| Gentamicin      | Pigs     | 8                  | 32                 | 50.0        | 0    | 0    | 0    | 0   | 0 | 0 | 0        | 1        | 0  | 1  | 0  | 0   | 0   |      |
|                 | Broilers | 8                  | 8                  | 0.0         | 0    | 0    | 0    | 0   | 0 | 0 | 3        | 7        | 0  | 0  | 0  | 0   | 0   |      |
| Kanamycin       | Pigs     | 128                | 256                | 100.0       |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 0  | 1   | 1   | 0    |
|                 | Broilers | 128                | 256                | 90.0        |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 1  | 4   | 4   | 1    |
| Erythromycin    | Pigs     | 4                  | 4                  | 0.0         | 0    | 0    | 0    | 0   | 0 | 0 | 2        | 0        | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 2                  | >64                | 40.0        | 0    | 2    | 0    | 1   | 1 | 2 | 0        | 0        | 0  | 2  | 0  | 2   |     |      |
| Tylosin         | Pigs     | 4                  | 8                  | 0.0         | 0    | 0    | 0    | 0   | 0 | 0 | 1        | 1        | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 2                  | >64                | 20.0        | 0    | 0    | 0    | 0   | 2 | 3 | 2        | 1        | 0  | 0  | 0  | 2   |     |      |
| Azithromycin    | Pigs     | 8                  | 8                  | -           |      | 0    | 0    | 0   | 0 | 0 | 0        | 2        | 0  | 0  | 0  |     |     |      |
|                 | Broilers | 4                  | >32                | -           |      | 0    | 2    | 1   | 0 | 1 | 2        | 0        | 0  | 1  | 3  |     |     |      |
| Lincomycin      | Pigs     | 16                 | 32                 | 0.0         |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 1  | 1  | 0  | 0   | 0   | 0    |
|                 | Broilers | 2                  | >256               | 20.0        |      | 0    | 0    | 1   | 3 | 2 | 0        | 0        | 1  | 1  | 0  | 0   | 0   | 2    |
| Tetracycline    | Pigs     | 0.5                | >32                | 50.0        | 0    | 0    | 0    | 1   | 0 | 0 | 0        | 0        | 0  | 0  | 1  |     |     |      |
|                 | Broilers | >32                | >32                | 60.0        | 0    | 0    | 2    | 2   | 0 | 0 | 0        | 0        | 0  | 0  | 6  |     |     |      |
| Chloramphenicol | Pigs     | 8                  | 8                  | 0.0         |      | 0    | 0    | 0   | 0 | 0 | 0        | 2        | 0  | 0  | 0  | 0   | 0   | 0    |
|                 | Broilers | 8                  | 16                 | 10.0        |      | 0    | 0    | 0   | 0 | 0 | 2        | 5        | 2  | 1  | 0  | 0   | 0   | 0    |
| Bacitracin      | Pigs     | >256               | >256               | -           |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 0  | 0   | 0   | 2    |
|                 | Broilers | 256                | >256               | -           |      | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 2  | 0  | 0  | 1   | 3   | 4    |
| Vancomycin      | Pigs     | 0.5                | 0.5                | 0.0         | 0    | 0    | 0    | 2   | 0 | 0 | 0        | 0        | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 0.5                | 1                  | 0.0         | 0    | 0    | 0    | 8   | 2 | 0 | 0        | 0        | 0  | 0  | 0  | 0   |     |      |
| Nalidixic acid  | Pigs     | >128               | >128               | -           | 0    | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 0  | 0   | 2   |      |
|                 | Broilers | >128               | >128               | -           | 0    | 0    | 0    | 0   | 0 | 0 | 0        | 0        | 0  | 0  | 0  | 0   | 10  |      |
| Ciprofloxacin   | Pigs     | 1                  | 2                  | 0.0         | 0    | 0    | 0    | 0   | 1 | 1 | 0        | 0        | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 2                  | 4                  | 20.0        | 0    | 0    | 0    | 0   | 4 | 4 | 1        | 1        | 0  | 0  | 0  | 0   |     |      |
| Salinomycin     | Pigs     | 1                  | 1                  | -           | 0    | 0    | 0    | 0   | 2 | 0 | 0        | 0        | 0  | 0  |    |     |     |      |
|                 | Broilers | 2                  | 4                  | -           | 0    | 0    | 0    | 0   | 2 | 3 | 5        | 0        | 0  | 0  |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.3.2. Distribution of MICs and resistance (%) in Enterococcus faecium from cattle (n=1) and broilers (n=7) in 2019\_Slaughterhouse

| Antimicrobial   | Animal   | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant  |      |      |      |     |   |   | MIC dis | tribution |    |    |    |     |     |      |
|-----------------|----------|-------------------|-------------------|-------------|------|------|------|-----|---|---|---------|-----------|----|----|----|-----|-----|------|
| agent           | species  | MIC <sub>50</sub> | MIC <sub>90</sub> | % Kesistani | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4       | 8         | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Cattle   | 0.5               | 0.5               | 0.0         | 0    | 0    | 0    | 1   | 0 | 0 | 0       | 0         | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 4                 | 8                 | 0.0         | 0    | 0    | 0    | 1   | 2 | 0 | 1       | 3         | 0  | 0  | 0  | 0   |     |      |
| Streptomycin    | Cattle   | 16                | 16                | -           |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 1  | 0  | 0  | 0   | 0   | 0    |
|                 | Broilers | 64                | 64                | -           |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 1  | 6  | 0   | 0   | 0    |
| Gentamicin      | Cattle   | 2                 | 2                 | 0.0         | 0    | 0    | 0    | 0   | 0 | 1 | 0       | 0         | 0  | 0  | 0  | 0   | 0   |      |
|                 | Broilers | 8                 | 16                | 0.0         | 0    | 0    | 0    | 0   | 0 | 0 | 2       | 2         | 3  | 0  | 0  | 0   | 0   |      |
| Kanamycin       | Cattle   | 32                | 32                | 0.0         |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 1  | 0  | 0   | 0   | 0    |
|                 | Broilers | 256               | >256              | 85.7        |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 0  | 1  | 2   | 3   | 1    |
| Erythromycin    | Cattle   | 2                 | 2                 | 0.0         | 0    | 0    | 0    | 0   | 0 | 1 | 0       | 0         | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 1                 | >64               | 28.6        | 0    | 3    | 0    | 0   | 1 | 0 | 1       | 0         | 0  | 0  | 0  | 2   |     |      |
| Tylosin         | Cattle   | 2                 | 2                 | 0.0         | 0    | 0    | 0    | 0   | 0 | 1 | 0       | 0         | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 4                 | >64               | 28.6        | 0    | 0    | 0    | 0   | 1 | 0 | 4       | 0         | 0  | 0  | 0  | 2   |     |      |
| Azithromycin    | Cattle   | 2                 | 2                 | -           |      | 0    | 0    | 0   | 0 | 1 | 0       | 0         | 0  | 0  | 0  |     |     |      |
|                 | Broilers | 2                 | >32               | -           |      | 0    | 3    | 0   | 0 | 1 | 0       | 1         | 0  | 0  | 2  |     |     |      |
| Lincomycin      | Cattle   | 8                 | 8                 | 0.0         |      | 0    | 0    | 0   | 0 | 0 | 0       | 1         | 0  | 0  | 0  | 0   | 0   | 0    |
|                 | Broilers | 32                | >256              | 28.6        |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 1  | 3  | 1  | 0   | 0   | 2    |
| Tetracycline    | Cattle   | 0.5               | 0.5               | 0.0         | 0    | 0    | 0    | 1   | 0 | 0 | 0       | 0         | 0  | 0  | 0  |     |     |      |
|                 | Broilers | >32               | >32               | 57.1        | 0    | 0    | 3    | 0   | 0 | 0 | 0       | 0         | 0  | 0  | 4  |     |     |      |
| Chloramphenicol | Cattle   | 4                 | 4                 | 0.0         |      | 0    | 0    | 0   | 0 | 0 | 1       | 0         | 0  | 0  | 0  | 0   | 0   | 0    |
|                 | Broilers | 8                 | 32                | 28.6        |      | 0    | 0    | 0   | 0 | 0 | 3       | 1         | 1  | 2  | 0  | 0   | 0   | 0    |
| Bacitracin      | Cattle   | >256              | >256              | -           |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 0  | 0  | 0   | 0   | 1    |
|                 | Broilers | 256               | >256              | -           |      | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 1  | 0  | 0  | 0   | 5   | 1    |
| Vancomycin      | Cattle   | 4                 | 4                 | 0.0         | 0    | 0    | 0    | 0   | 0 | 0 | 1       | 0         | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 0.5               | 1                 | 0.0         | 0    | 0    | 0    | 5   | 2 | 0 | 0       | 0         | 0  | 0  | 0  | 0   |     |      |
| Nalidixic acid  | Cattle   | >128              | >128              | -           | 0    | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 0  | 0  | 0   | 1   |      |
|                 | Broilers | >128              | >128              | -           | 0    | 0    | 0    | 0   | 0 | 0 | 0       | 0         | 0  | 0  | 0  | 0   | 7   |      |
| Ciprofloxacin   | Cattle   | 1                 | 1                 | 0.0         | 0    | 0    | 0    | 0   | 1 | 0 | 0       | 0         | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 2                 | 8                 | 42.9        | 0    | 0    | 0    | 1   | 0 | 3 | 1       | 2         | 0  | 0  | 0  | 0   |     |      |
| Salinomycin     | Cattle   | 1                 | 1                 | -           | 0    | 0    | 0    | 0   | 1 | 0 | 0       | 0         | 0  | 0  |    |     |     |      |
| -               | Broilers | 4                 | 8                 | -           | 0    | 0    | 0    | 0   | 0 | 2 | 3       | 2         | 0  | 0  |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.4.1. Distribution of MICs and resistance (%) in Campylobacter jejuni from cattle (n=35) and broilers (n=47) in 2018\_Slaughterhouse

| Antimicrobial   | Animal   | MIC <sub>50</sub> | MIC <sub>90</sub>  | %Resistant  |      |      |      |      |     |    | MIC | distributi | on |    |    |    |     |     |      |
|-----------------|----------|-------------------|--------------------|-------------|------|------|------|------|-----|----|-----|------------|----|----|----|----|-----|-----|------|
| agent           | species  | MIC <sub>50</sub> | WIIC <sub>90</sub> | % Kesistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2   | 4          | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Cattle   | 4                 | 16                 | 8.6         |      |      |      | 0    | 1   | 5  | 5   | 12         | 8  | 1  | 1  | 1  | 0   | 1   |      |
|                 | Broilers | 4                 | 64                 | 14.9        |      |      |      | 0    | 2   | 2  | 4   | 22         | 6  | 4  | 2  | 5  | 0   | 0   |      |
| Gentamicin      | Cattle   | 0.5               | 2                  | 0.0         |      |      | 1    | 2    | 16  | 12 | 2   | 1          | 1  | 0  | 0  | 0  |     |     |      |
|                 | Broilers | 0.5               | 1                  | 0.0         |      |      | 0    | 3    | 35  | 7  | 2   | 0          | 0  | 0  | 0  | 0  |     |     |      |
| Streptomycin    | Cattle   | 1                 | 2                  | 8.6         |      |      | 0    | 0    | 5   | 19 | 8   | 0          | 0  | 0  | 1  | 1  | 0   | 1   |      |
| -               | Broilers | 1                 | 1                  | 0.0         |      |      | 0    | 0    | 4   | 39 | 3   | 1          | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Azithromycin    | Cattle   | 0.12              | 0.25               | 5.7         | 5    | 12   | 13   | 2    | 0   | 0  | 1   | 0          | 0  | 0  | 0  | 0  | 2   |     |      |
|                 | Broilers | 0.06              | 0.25               | 0.0         | 7    | 25   | 9    | 4    | 0   | 2  | 0   | 0          | 0  | 0  | 0  | 0  | 0   |     |      |
| Erythromycin    | Cattle   | 0.5               | 2                  | 5.7         |      | 0    | 0    | 12   | 14  | 4  | 2   | 1          | 0  | 0  | 0  | 0  | 2   |     |      |
|                 | Broilers | 0.5               | 1                  | 0.0         |      | 0    | 2    | 13   | 22  | 6  | 3   | 0          | 0  | 1  | 0  | 0  | 0   |     |      |
| Tetracycline    | Cattle   | 64                | 128                | 65.7        |      | 3    | 9    | 0    | 0   | 0  | 0   | 0          | 0  | 0  | 5  | 5  | 13  |     |      |
|                 | Broilers | 0.12              | 64                 | 23.4        |      | 11   | 13   | 8    | 4   | 0  | 0   | 0          | 0  | 0  | 3  | 4  | 4   |     |      |
| Nalidixic acid  | Cattle   | 4                 | 256                | 31.4        |      |      |      |      | 0   | 0  | 11  | 9          | 2  | 2  | 0  | 2  | 3   | 6   |      |
|                 | Broilers | 4                 | 256                | 31.9        |      |      |      |      | 0   | 0  | 11  | 13         | 7  | 1  | 0  | 4  | 5   | 6   |      |
| Ciprofloxacin   | Cattle   | 0.12              | 16                 | 31.4        | 0    | 1    | 18   | 3    | 2   | 0  | 0   | 0          | 3  | 7  | 1  | 0  | 0   |     |      |
| -               | Broilers | 0.25              | 16                 | 29.8        | 0    | 1    | 21   | 3    | 7   | 1  | 0   | 0          | 9  | 2  | 1  | 1  | 1   |     |      |
| Chloramphenicol | Cattle   | 1                 | 2                  | 2.9         |      |      |      | 0    | 0   | 21 | 11  | 1          | 1  | 1  | 0  | 0  | 0   | 0   |      |
|                 | Broilers | 2                 | 4                  | 2.1         |      |      |      | 0    | 2   | 19 | 18  | 6          | 1  | 1  | 0  | 0  | 0   | 0   |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.4.2. Distribution of MICs and resistance (%) in Campylobacter jejuni from cattle (n=114) and broilers (n=35) in 2019\_Slaughterhouse

| Antimicrobial   | Animal   | MIC        | MIC        | 0/ Desistant |      |      |      |      |     |    | MIC | distributi | on |    |    |    |     |     |      |
|-----------------|----------|------------|------------|--------------|------|------|------|------|-----|----|-----|------------|----|----|----|----|-----|-----|------|
| agent           | species  | $MIC_{50}$ | $MIC_{90}$ | %Resistant   | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2   | 4          | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Cattle   | 4          | 32         | 11.4         |      |      |      | 0    | 3   | 9  | 18  | 56         | 14 | 1  | 6  | 7  | 0   | 0   |      |
|                 | Broilers | 4          | 32         | 14.3         |      |      |      | 0    | 0   | 6  | 4   | 12         | 6  | 2  | 3  | 0  | 0   | 2   |      |
| Gentamicin      | Cattle   | 1          | 1          | 0.0          |      |      | 0    | 2    | 19  | 88 | 5   | 0          | 0  | 0  | 0  | 0  |     |     |      |
|                 | Broilers | 1          | 1          | 0.0          |      |      | 0    | 1    | 12  | 21 | 1   | 0          | 0  | 0  | 0  | 0  |     |     |      |
| Streptomycin    | Cattle   | 2          | 4          | 1.8          |      |      | 0    | 0    | 0   | 21 | 74  | 17         | 0  | 0  | 0  | 1  | 0   | 1   |      |
|                 | Broilers | 1          | 2          | 0.0          |      |      | 0    | 0    | 1   | 20 | 13  | 1          | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Azithromycin    | Cattle   | 0.06       | 0.12       | 0.0          | 4    | 67   | 35   | 8    | 0   | 0  | 0   | 0          | 0  | 0  | 0  | 0  | 0   |     |      |
| -               | Broilers | 0.06       | 0.12       | 0.0          | 8    | 22   | 5    | 0    | 0   | 0  | 0   | 0          | 0  | 0  | 0  | 0  | 0   |     |      |
| Erythromycin    | Cattle   | 0.5        | 1          | 0.0          |      | 0    | 1    | 28   | 63  | 17 | 2   | 2          | 1  | 0  | 0  | 0  | 0   |     |      |
|                 | Broilers | 0.25       | 0.5        | 0.0          |      | 0    | 3    | 16   | 14  | 2  | 0   | 0          | 0  | 0  | 0  | 0  | 0   |     |      |
| Tetracycline    | Cattle   | 64         | 128        | 67.5         |      | 15   | 18   | 4    | 0   | 0  | 0   | 0          | 0  | 3  | 4  | 28 | 42  |     |      |
| -               | Broilers | 0.12       | 64         | 34.3         |      | 11   | 10   | 2    | 0   | 0  | 0   | 0          | 0  | 0  | 4  | 7  | 1   |     |      |
| Nalidixic acid  | Cattle   | 128        | 256        | 60.5         |      |      |      |      | 0   | 0  | 24  | 18         | 3  | 0  | 0  | 8  | 33  | 28  |      |
|                 | Broilers | 4          | 128        | 37.1         |      |      |      |      | 0   | 0  | 11  | 10         | 1  | 0  | 0  | 3  | 9   | 1   |      |
| Ciprofloxacin   | Cattle   | 8          | 16         | 59.6         | 1    | 2    | 34   | 9    | 0   | 0  | 0   | 2          | 30 | 30 | 6  | 0  | 0   |     |      |
| •               | Broilers | 0.25       | 16         | 34.3         | 0    | 0    | 17   | 4    | 1   | 0  | 1   | 0          | 5  | 6  | 1  | 0  | 0   |     |      |
| Chloramphenicol | Cattle   | 1          | 2          | 6.1          |      |      |      | 1    | 7   | 74 | 25  | 0          | 0  | 4  | 3  | 0  | 0   | 0   |      |
|                 | Broilers | 1          | 2          | 0.0          |      |      |      | 0    | 2   | 27 | 6   | 0          | 0  | 0  | 0  | 0  | 0   | 0   |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.5.1. Distribution of MICs and resistance (%) in *Campylobacter coli* from Pigs (n=29)in 2018\_Slaughterhouse

| Antimicrobial   | Animal  | MIC               | MIC               | 0/ <b>D</b> |      |      |      |      |     |   | MIC o | distributio | n  |    |    |    |     |     |      |
|-----------------|---------|-------------------|-------------------|-------------|------|------|------|------|-----|---|-------|-------------|----|----|----|----|-----|-----|------|
| agent           | species | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant  | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2     | 4           | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Pigs    | 8                 | 64                | 17.2        |      |      |      | 0    | 0   | 1 | 0     | 6           | 14 | 3  | 0  | 3  | 1   | 1   |      |
| Gentamicin      | Pigs    | 2                 | 2                 | 0.0         |      |      | 0    | 0    | 0   | 9 | 18    | 2           | 0  | 0  | 0  | 0  |     |     |      |
| Streptomycin    | Pigs    | 128               | 256               | 69.0        |      |      | 0    | 0    | 0   | 0 | 1     | 3           | 5  | 0  | 0  | 2  | 4   | 14  |      |
| Azithromycin    | Pigs    | 0.25              | 128               | 20.7        | 0    | 0    | 5    | 11   | 6   | 1 | 0     | 0           | 0  | 0  | 0  | 1  | 5   |     |      |
| Erythromycin    | Pigs    | 2                 | 128               | 20.7        |      | 0    | 0    | 0    | 1   | 7 | 8     | 7           | 0  | 0  | 0  | 0  | 6   |     |      |
| Tetracycline    | Pigs    | 128               | 128               | 86.2        |      | 0    | 1    | 1    | 0   | 1 | 0     | 0           | 1  | 0  | 4  | 4  | 17  |     |      |
| Nalidixic acid  | Pigs    | 128               | 256               | 58.6        |      |      |      |      | 0   | 0 | 0     | 4           | 6  | 2  | 0  | 0  | 9   | 8   |      |
| Ciprofloxacin   | Pigs    | 16                | 32                | 58.6        | 0    | 0    | 2    | 7    | 2   | 1 | 0     | 0           | 2  | 6  | 7  | 2  | 0   |     |      |
| Chloramphenicol | Pigs    | 2                 | 8                 | 3.4         |      |      |      | 0    | 0   | 0 | 15    | 11          | 2  | 0  | 1  | 0  | 0   | 0   |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.5.2. Distribution of MICs and resistance (%) in Campylobacter coli from Pigs (n=60) in 2019\_Slaughterhouse

| Antimicrobial   | Animal  | MIC <sub>50</sub> | MIC                 | 0/ <b>D</b> : - t t |      |      |      |      |     |    | MIC | distributio | on |    |    |    |     |     |      |
|-----------------|---------|-------------------|---------------------|---------------------|------|------|------|------|-----|----|-----|-------------|----|----|----|----|-----|-----|------|
| agent           | species | MIC <sub>50</sub> | $\mathrm{MIC}_{90}$ | %Resistant          | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2   | 4           | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Pigs    | 8                 | 64                  | 26.7                |      |      |      | 0    | 0   | 3  | 13  | 10          | 16 | 2  | 1  | 9  | 6   | 0   |      |
| Gentamicin      | Pigs    | 2                 | 2                   | 0.0                 |      |      | 0    | 0    | 0   | 13 | 47  | 0           | 0  | 0  | 0  | 0  |     |     |      |
| Streptomycin    | Pigs    | 128               | 256                 | 68.3                |      |      | 0    | 0    | 0   | 0  | 2   | 5           | 11 | 1  | 0  | 1  | 17  | 23  |      |
| Azithromycin    | Pigs    | 0.25              | 128                 | 31.7                | 0    | 1    | 22   | 14   | 3   | 1  | 0   | 0           | 0  | 0  | 0  | 1  | 18  |     |      |
| Erythromycin    | Pigs    | 1                 | 128                 | 33.3                |      | 0    | 0    | 0    | 6   | 26 | 5   | 3           | 0  | 0  | 0  | 2  | 18  |     |      |
| Tetracycline    | Pigs    | 64                | 128                 | 78.3                |      | 1    | 6    | 4    | 2   | 0  | 0   | 0           | 0  | 1  | 13 | 16 | 17  |     |      |
| Nalidixic acid  | Pigs    | 8                 | 128                 | 45.0                |      |      |      |      | 0   | 0  | 0   | 15          | 15 | 3  | 3  | 6  | 12  | 6   |      |
| Ciprofloxacin   | Pigs    | 0.5               | 32                  | 40.0                | 2    | 0    | 8    | 16   | 10  | 0  | 0   | 0           | 5  | 10 | 7  | 2  | 0   |     |      |
| Chloramphenicol | Pigs    | 2                 | 4                   | 3.3                 |      |      |      | 1    | 1   | 12 | 39  | 5           | 0  | 0  | 2  | 0  | 0   | 0   |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.6.1. MIC distributions and resistance (%) for Salmonella spp. from healthy chickien or broilers (n=117), in 2018 - Slaughterhouse

| Antimicrobial   | Animal  | MIC <sub>50</sub>  | MIC <sub>90</sub>  | 0/ Dogistant |      |      |      |      |     |     | MIC distr | ributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|--------------------|--------------|------|------|------|------|-----|-----|-----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | WIIC <sub>90</sub> | %Resistant   | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1   | 2         | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Chicken | ≦1                 | 4                  | 6.8          |      |      |      |      |     | 77  | 26        | 6         | 0  | 0  | 0  | 0  | 1   | 7   |      |
| Cefazolin       | Chicken | 2                  | 2                  | 3.4          |      |      |      |      |     | 38  | 70        | 5         | 0  | 2  | 0  | 0  | 0   | 2   |      |
| Cefotaxime      | Chicken | ≦0.12              | 0.25               | 2.6          |      |      | 105  | 4    | 3   | 0   | 2         | 2         | 0  | 1  | 0  |    |     |     |      |
| Meropenem       | Chicken | ≦0.12              | ≦0.12              | 0.0          |      |      | 117  | 0    | 0   | 0   | 0         | 0         | 0  | 0  |    |    |     |     |      |
| Streptomycin    | Chicken | 32                 | 64                 | 73.3         |      |      |      |      |     |     |           | 4         | 15 | 12 | 54 | 26 | 5   | 0   |      |
| Gentamicin      | Chicken | ≦1                 | ≦1                 | 0.0          |      |      |      |      |     | 116 | 1         | 0         | 0  | 0  | 0  | 0  | 0   |     |      |
| Kanamycin       | Chicken | >128               | >128               | 68.4         |      |      |      |      |     |     | 30        | 4         | 0  | 3  | 0  | 1  | 0   | 79  |      |
| Tetracycline    | Chicken | 64                 | 64                 | 76.9         |      |      |      |      |     | 8   | 19        | 0         | 0  | 1  | 1  | 82 | 6   |     |      |
| Chloramphenicol | Chicken | 4                  | 8                  | 1.7          |      |      |      |      |     |     | 6         | 66        | 41 | 2  | 0  | 0  | 0   | 2   |      |
| Colistin        | Chicken | 0.5                | 1                  | 0.9          |      |      |      | 8    | 57  | 44  | 7         | 1         | 0  | 0  | 0  |    |     |     |      |
| Nalidixic acid  | Chicken | 4                  | >128               | 18.8         |      |      |      |      |     | 0   | 6         | 83        | 6  | 0  | 4  | 0  | 0   | 18  |      |
| Ciprofloxacin   | Chicken | ≦0.03              | 0.25               | 0.0          | 91   | 4    | 5    | 14   | 2   | 1   | 0         | 0         | 0  |    |    |    |     |     |      |

| Antimicrobial                             |                     |            |            |           |           |         |      |      |      | MIC dis | stributions |  |
|-------------------------------------------|---------------------|------------|------------|-----------|-----------|---------|------|------|------|---------|-------------|--|
| agent                                     | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant | 2.36/0.12 | 4.75/0.25 | 9.5/0.5 | 19/1 | 38/2 | 76/4 | 152/8   | >152/8      |  |
| Sulfamethoxazole/<br>Trimethoprim Chicken | >152/8              | >152/8     | 53.0       | 30        | 19        | 4       | 2    | 0    | 0    | 0       | 62          |  |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.6.2. MIC distributions and resistance (%) for Salmonella spp. from healthy chickien or broilers (n=107), in 2019 - Slaughterhouse

| Antimicrobial   | Animal  | MIC <sub>50</sub>  | MIC        | %Resistant  |      |      |      |      |     |     | MIC | C distributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|------------|-------------|------|------|------|------|-----|-----|-----|-----------------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | $MIC_{90}$ | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1   | 2   | 4               | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Chicken | ≦1                 | 2          | 5.6         |      |      |      |      |     | 85  | 14  | 2               | 0  | 0  | 0  | 1  | 0   | 5   |      |
| Cefazolin       | Chicken | 2                  | 2          | 3.7         |      |      |      |      |     | 19  | 82  | 2               | 1  | 1  | 0  | 0  | 0   | 2   |      |
| Cefotaxime      | Chicken | ≦0.12              | ≦0.12      | 1.9         |      |      | 103  | 2    | 0   | 0   | 0   | 1               | 1  | 0  | 0  |    |     |     |      |
| Meropenem       | Chicken | ≦0.12              | ≦0.12      | 0.0         |      |      | 107  | 0    | 0   | 0   | 0   | 0               | 0  | 0  |    |    |     |     |      |
| Streptomycin    | Chicken | 16                 | 32         | 33.6        |      |      |      |      |     |     |     | 20              | 13 | 38 | 27 | 8  | 1   | 0   |      |
| Gentamicin      | Chicken | ≦1                 | ≦1         | 0.0         |      |      |      |      |     | 105 | 2   | 0               | 0  | 0  | 0  | 0  | 0   |     |      |
| Kanamycin       | Chicken | >128               | >128       | 75.7        |      |      |      |      |     |     | 24  | 0               | 0  | 2  | 0  | 0  | 0   | 81  |      |
| Tetracycline    | Chicken | 64                 | 64         | 69.2        |      |      |      |      |     | 12  | 21  | 0               | 0  | 0  | 9  | 63 | 2   |     |      |
| Chloramphenicol | Chicken | 4                  | 8          | 0.9         |      |      |      |      |     |     | 19  | 76              | 10 | 1  | 0  | 0  | 1   | 0   |      |
| Colistin        | Chicken | 2                  | 2          | 1.9         |      |      |      | 14   | 16  | 18  | 57  | 2               | 0  | 0  | 0  |    |     |     |      |
| Nalidixic acid  | Chicken | 4                  | 8          | 8.4         |      |      |      |      |     | 1   | 3   | 90              | 4  | 0  | 4  | 0  | 1   | 4   |      |
| Ciprofloxacin   | Chicken | ≦0.03              | ≦0.03      | 0.9         | 98   | 0    | 1    | 3    | 4   | 1   | 0   | 0               | 0  |    |    |    |     |     |      |

| Antimicrobial                             |            |            |            |                 |        |         |      |      |      | M     | IC distribution | ns |
|-------------------------------------------|------------|------------|------------|-----------------|--------|---------|------|------|------|-------|-----------------|----|
| agent                                     | $MIC_{50}$ | $MIC_{90}$ | %Resistant | ≤2.38/0.12 4.75 | 5/0.25 | 9.5/0.5 | 19/1 | 38/2 | 76/4 | 152/8 | >152/8          |    |
| Sulfamethoxazole/<br>Trimethoprim Chicken | >152/8     | >152/8     | 52.3       | 34              | 13     | 1       | 3    | 0    | 0    | 0     | 56              |    |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.7.1. MIC distributions and resistance (%) for Salmonella spp. from diseased cattle (n=80), pigs (n=64), chickien (n=22), in 2018 - Farm

| Antimicrobial   | Animal  | MG          | ) ffC             | ov. Do     |      |      |      |      |     |    | MIC | distributions |    |    |    |    |     |     |      |
|-----------------|---------|-------------|-------------------|------------|------|------|------|------|-----|----|-----|---------------|----|----|----|----|-----|-----|------|
| agent           | species | $MIC_{50}$  | MIC <sub>90</sub> | %Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2   | 4             | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Cattle  | 4           | >128              | 36.8       |      |      |      |      |     | 6  | 18  | 12            | 0  | 0  | 0  | 0  | 0   | 21  |      |
|                 | Pigs    | 16          | >128              | 50.0       |      |      |      |      |     | 10 | 15  | 5             | 1  | 1  | 0  | 0  | 0   | 32  |      |
|                 | Chicken | 2           | 4                 | 4.5        |      |      |      |      |     | 6  | 13  | 2             | 0  | 0  | 0  | 0  | 0   | 1   |      |
| Cefazolin       | Cattle  | 2           | 4                 | 1.8        |      |      |      |      |     | 23 | 20  | 12            | 1  | 1  | 0  | 0  | 0   | 0   |      |
|                 | Pigs    | 2           | 4                 | 9.4        |      |      |      |      |     | 16 | 23  | 19            | 5  | 1  | 0  | 0  | 0   | 0   |      |
|                 | Chicken | 2           | 4                 | 0.0        |      |      |      |      |     | 5  | 13  | 4             | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Cefotaxime      | Cattle  | ≦0.12       | 0.25              | 0.0        |      |      | 32   | 25   | 0   | 0  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
|                 | Pigs    | $\leq 0.12$ | 0.25              | 0.0        |      |      | 35   | 25   | 4   | 0  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
|                 | Chicken | ≦0.12       | ≦0.12             | 0.0        |      |      | 20   | 2    | 0   | 0  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
| Meropenem       | Cattle  | -           | -                 | -          |      |      | -    | -    | -   | -  | -   | -             | -  | -  |    |    |     |     |      |
|                 | Pigs    | -           | -                 | -          |      |      | -    | -    | -   | -  | -   | -             | -  | -  |    |    |     |     |      |
|                 | Chicken | -           | -                 | -          |      |      | -    | -    | -   | -  | -   | -             | -  | -  |    |    |     |     |      |
| Streptomycin    | Cattle  | 16          | >128              | 42.1       |      |      |      |      |     |    | 1   | 2             | 6  | 24 | 2  | 2  | 1   | 19  |      |
|                 | Pigs    | 32          | >128              | 60.9       |      |      |      |      |     |    | 0   | 1             | 5  | 19 | 7  | 5  | 2   | 25  |      |
|                 | Chicken | 32          | 32                | 68.2       |      |      |      |      |     |    | 0   | 1             | 3  | 3  | 13 | 2  | 0   | 0   |      |
| Gentamicin      | Cattle  | ≦0.5        | ≦0.5              | 1.8        |      |      |      |      | 53  | 3  | 0   | 0             | 0  | 0  | 0  | 0  | 1   |     |      |
|                 | Pigs    | ≦0.5        | 1                 | 4.7        |      |      |      |      | 57  | 4  | 0   | 0             | 0  | 0  | 0  | 1  | 2   |     |      |
|                 | Chicken | ≦0.5        | ≦0.5              | 0.0        |      |      |      |      | 22  | 0  | 0   | 0             | 0  | 0  | 0  | 0  | 0   |     |      |
| Kanamycin       | Cattle  | 2           | 4                 | 0.0        |      |      |      |      |     | 6  | 38  | 10            | 2  | 1  | 0  | 0  | 0   | 0   |      |
|                 | Pigs    | 2           | 8                 | 4.7        |      |      |      |      |     | 1  | 39  | 17            | 2  | 2  | 0  | 0  | 0   | 3   |      |
|                 | Chicken | >128        | >128              | 63.6       |      |      |      |      |     | 1  | 7   | 0             | 0  | 0  | 0  | 0  | 0   | 14  |      |
| Tetracycline    | Cattle  | 2           | >64               | 33.3       |      |      |      |      | 1   | 16 | 20  | 1             | 0  | 0  | 0  | 0  | 19  |     |      |
|                 | Pigs    | 8           | >64               | 50.0       |      |      |      |      | 0   | 8  | 21  | 1             | 2  | 1  | 1  | 4  | 26  |     |      |
|                 | Chicken | 64          | 64                | 77.3       |      |      |      |      | 0   | 2  | 3   | 0             | 0  | 0  | 2  | 15 | 0   |     |      |
| Chloramphenicol | Cattle  | 8           | 8                 | 3.5        |      |      |      |      |     |    | 0   | 5             | 50 | 0  | 1  | 0  | 1   | 0   |      |
|                 | Pigs    | 8           | >128              | 21.9       |      |      |      |      |     |    | 0   | 6             | 34 | 10 | 2  | 0  | 4   | 8   |      |
|                 | Chicken | 8           | 8                 | 0.0        |      |      |      |      |     |    | 1   | 8             | 11 | 2  | 0  | 0  | 0   | 0   |      |
| Colistin        | Cattle  | 0.25        | 1                 | 0.0        |      |      | 0    | 44   | 13  | 0  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
|                 | Pigs    | 0.25        | 1                 | 4.7        |      |      | 5    | 48   | 8   | 0  | 0   | 3             | 0  | 0  | 0  |    |     |     |      |
|                 | Chicken | 0.5         | >16               | 18.2       |      |      | 0    | 6    | 6   | 6  | 0   | 1             | 0  | 0  | 3  |    |     |     |      |
| Nalidixic acid  | Cattle  | 8           | 8                 | 1.8        |      |      |      |      |     | 0  | 1   | 27            | 28 | 0  | 0  | 0  | 0   | 1   |      |
|                 | Pigs    | 8           | >128              | 20.3       |      |      |      |      |     | 0  | 0   | 19            | 29 | 3  | 0  | 0  | 0   | 13  |      |
|                 | Chicken | 4           | 8                 | 0.0        |      |      |      |      |     | 0  | 0   | 17            | 5  | 0  | 0  | 0  | 0   | 0   |      |
| Ciprofloxacin   | Cattle  | ≦0.03       | ≦0.03             | 0.0        | 56   | 0    | 0    | 0    | 0   | 1  | 0   | 0             | 0  |    |    |    |     |     |      |
|                 | Pigs    | ≦0.03       | 0.25              | 0.0        | 48   | 3    | 1    | 7    | 2   | 3  | 0   | 0             | 0  |    |    |    |     |     |      |
|                 | Chicken | ≦0.03       | 0.06              | 0.0        | 17   | 5    | 0    | 0    | 0   | 0  | 0   | 0             | 0  |    |    |    |     |     |      |

| Antimicrobial                     | Animal  | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant  |            |           |         |      |      |      | M     | IC distributio | ons |
|-----------------------------------|---------|-------------------|-------------------|-------------|------------|-----------|---------|------|------|------|-------|----------------|-----|
| agent                             | species | WIC50             | WIC90             | /orconstant | ≤2.38/0.12 | 4.75/0.25 | 9.5/0.5 | 19/1 | 38/2 | 76/4 | 152/8 | >152/8         |     |
|                                   | Cattle  | 4.75/0.25         | 4.75/0.25         | 2.7         | 28         | 25        | 2       | 1    | 0    | 0    | 0     | 1              |     |
| Sulfamethoxazole/<br>Trimethoprim | Pigs    | 4.75/0.25         | >152/8            | 12.5        | 29         | 17        | 9       | 1    | 0    | 0    | 0     | 8              |     |
|                                   | Chicken | >152/8            | >152/8            | 59.1        | 5          | 3         | 1       | 0    | 0    | 0    | 0     | 13             |     |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.7.2. MIC distributions and resistance (%) for Salmonella spp. from disease cattle (n=57), pigs (n=69) and chickien (n=16), in 2019 - Farm

| Antimicrobial   | Animal  | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant  |      |      |      |      |     |    | MIC | distributions |    |    |    |    |     |     |      |
|-----------------|---------|-------------------|-------------------|-------------|------|------|------|------|-----|----|-----|---------------|----|----|----|----|-----|-----|------|
| agent           | species | MIC <sub>50</sub> | MIC <sub>90</sub> | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2   | 4             | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Cattle  | >128              | >128              | 61.4        |      |      |      |      |     | 8  | 9   | 5             | 0  | 0  | 1  | 0  | 0   | 34  |      |
|                 | Pigs    | 4                 | >128              | 44.9        |      |      |      |      |     | 12 | 22  | 1             | 2  | 1  | 0  | 1  | 0   | 30  |      |
|                 | Chicken | 2                 | >128              | 25.0        |      |      |      |      |     | 6  | 6   | 0             | 0  | 0  | 0  | 0  | 0   | 4   |      |
| Cefazolin       | Cattle  | 2                 | 8                 | 5.3         |      |      |      |      |     | 10 | 19  | 16            | 9  | 0  | 1  | 0  | 0   | 2   |      |
|                 | Pigs    | 2                 | 8                 | 17.4        |      |      |      |      |     | 16 | 25  | 16            | 8  | 4  | 0  | 0  | 0   | 0   |      |
|                 | Chicken | 2                 | 4                 | 0.0         |      |      |      |      |     | 4  | 9   | 3             | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Cefotaxime      | Cattle  | ≦0.12             | 0.25              | 1.8         |      |      | 45   | 10   | 0   | 1  | 0   | 0             | 0  | 0  | 1  |    |     |     |      |
|                 | Pigs    | $\leq 0.12$       | 0.25              | 0.0         |      |      | 51   | 16   | 0   | 2  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
|                 | Chicken | ≦0.12             | ≦0.12             | 0.0         |      |      | 16   | 0    | 0   | 0  | 0   | 0             | 0  | 0  | 0  |    |     |     |      |
| Meropenem       | Cattle  | ≦0.12             | ≦0.12             | 0           |      |      | 56   | 1    | 0   | 0  | 0   | 0             | 0  | 0  |    |    |     |     |      |
|                 | Pigs    | $\leq 0.12$       | $\leq 0.12$       | 0           |      |      | 64   | 3    | 1   | 1  | 0   | 0             | 0  | 0  |    |    |     |     |      |
|                 | Chicken | ≦0.12             | ≦0.12             | 0           |      |      | 16   | 0    | 0   | 0  | 0   | 0             | 0  | 0  |    |    |     |     |      |
| Streptomycin    | Cattle  | >128              | >128              | 64.9        |      |      |      |      |     |    |     | 0             | 5  | 15 | 0  | 1  | 5   | 31  |      |
|                 | Pigs    | 32                | >128              | 55.1        |      |      |      |      |     |    |     | 0             | 4  | 27 | 8  | 4  | 4   | 22  |      |
|                 | Chicken | 64                | >128              | 93.8        |      |      |      |      |     |    |     | 0             | 1  | 0  | 6  | 6  | 0   | 3   |      |
| Gentamicin      | Cattle  | ≦1                | ≦1                | 7.0         |      |      |      |      |     | 52 | 1   | 0             | 0  | 1  | 0  | 0  | 3   |     |      |
|                 | Pigs    | ≦1                | $\leq 1$          | 5.8         |      |      |      |      |     | 63 | 2   | 0             | 0  | 0  | 2  | 0  | 2   |     |      |
|                 | Chicken | ≦1                | 32                | 18.8        |      |      |      |      |     | 13 | 0   | 0             | 0  | 0  | 2  | 0  | 1   |     |      |
| Kanamycin       | Cattle  | ≦2                | >128              | 12.3        |      |      |      |      |     |    | 30  | 15            | 2  | 0  | 3  | 0  | 0   | 7   |      |
|                 | Pigs    | 4                 | >128              | 14.5        |      |      |      |      |     |    | 31  | 20            | 4  | 3  | 1  | 0  | 0   | 10  |      |
|                 | Chicken | >128              | >128              | 68.8        |      |      |      |      |     |    | 1   | 3             | 1  | 0  | 0  | 0  | 0   | 11  |      |
| Tetracycline    | Cattle  | 2                 | >64               | 63.2        |      |      |      |      |     | 4  | 15  | 2             | 0  | 0  | 6  | 2  | 28  |     |      |
|                 | Pigs    | 2                 | >64               | 37.7        |      |      |      |      |     | 9  | 27  | 4             | 3  | 1  | 1  | 5  | 19  |     |      |
|                 | Chicken | 64                | >64               | 75.0        |      |      |      |      |     | 1  | 3   | 0             | 0  | 1  | 1  | 8  | 2   |     |      |
| Chloramphenicol | Cattle  | 16                | >128              | 29.8        |      |      |      |      |     |    | 0   | 1             | 26 | 13 | 0  | 1  | 1   | 15  |      |
|                 | Pigs    | 8                 | 16                | 8.7         |      |      |      |      |     |    | 0   | 8             | 33 | 22 | 1  | 2  | 1   | 2   |      |
|                 | Chicken | 8                 | 16                | 0.0         |      |      |      |      |     |    | 1   | 6             | 7  | 2  | 0  | 0  | 0   | 0   |      |
| Colistin        | Cattle  | 0.5               | 1                 | 1.8         |      |      |      | 3    | 48  | 4  | 1   | 1             | 0  | 0  | 0  |    |     |     |      |
|                 | Pigs    | 0.5               | 2                 | 8.7         |      |      |      | 12   | 42  | 6  | 3   | 5             | 1  | 0  | 0  |    |     |     |      |
|                 | Chicken | 1                 | 4                 | 18.8        |      |      |      | 1    | 2   | 8  | 2   | 3             | 0  | 0  | 0  |    |     |     |      |
| Nalidixic acid  | Cattle  | 8                 | 8                 | 3.5         |      |      |      |      |     | 0  | 1   | 26            | 27 | 1  | 1  | 0  | 0   | 1   |      |
|                 | Pigs    | 8                 | >128              | 21.7        |      |      |      |      |     | 0  | 0   | 31            | 16 | 7  | 2  | 1  | 0   | 12  |      |
|                 | Chicken | 8                 | >128              | 50.0        |      |      |      |      |     | 0  | 0   | 7             | 1  | 0  | 0  | 0  | 0   | 8   |      |
| Ciprofloxacin   | Cattle  | ≦0.03             | 0.06              | 1.8         | 41   | 12   | 0    | 1    | 2   | 1  | 0   | 0             | 0  |    |    |    |     |     |      |
|                 | Pigs    | ≦0.03             | 0.50              | 1.4         | 40   | 9    | 2    | 6    | 11  | 1  | 0   | 0             | 0  |    |    |    |     |     |      |
|                 | Chicken | 0.12              | 2.00              | 18.8        | 6    | 1    | 1    | 4    | 1   | 0  | 3   | 0             | 0  |    |    |    |     |     |      |

| Antimicrobial                     | Animal  | MIC <sub>50</sub> | MIC <sub>90</sub> | %Resistant    |            |           |         |      |      |      | M     | IC distribution | ns |
|-----------------------------------|---------|-------------------|-------------------|---------------|------------|-----------|---------|------|------|------|-------|-----------------|----|
| agent                             | species | WIIC50            | W11C90            | /0 KCSISIAIII | ≤2.38/0.12 | 4.75/0.25 | 9.5/0.5 | 19/1 | 38/2 | 76/4 | 152/8 | >152/8          |    |
|                                   | Cattle  | 4.75/0.25         | >152/8            | 29.8          | 23         | 13        | 3       | 1    | 0    | 0    | 4     | 13              |    |
| Sulfamethoxazole/<br>Trimethoprim | Pigs    | $\leq$ 2.38/0.12  | >152/8            | 18.8          | 39         | 9         | 5       | 0    | 3    | 0    | 1     | 12              |    |
|                                   | Chicken | >152/8            | >152/8            | 56.3          | 6          | 1         | 0       | 0    | 0    | 0    | 0     | 9               |    |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.8.1. MIC distribution and resistance (%) for Escherichia coli from healthy dogs (n=151) and cats (n=158) in 2018

| Antimicrobial   | Animal  | $MIC_{50}$         | $MIC_{90}$        | %Resistant - |      |      |      |      |     |   | MIC dist | ribution |     |    |    |    |     |     |      |
|-----------------|---------|--------------------|-------------------|--------------|------|------|------|------|-----|---|----------|----------|-----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | WIC <sub>90</sub> | %Resistant - | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4        | 8   | 16 | 32 | 64 | 128 | 256 | >250 |
| Ampicillin      | Dogs    | 8                  | >128              | 33.8         |      |      |      |      |     |   |          | 54       | 41  | 5  | 0  | 0  | 4   | 47  |      |
|                 | Cats    | 8                  | >128              | 28.5         |      |      |      |      |     |   |          | 71       | 40  | 2  | 1  | 2  | 5   | 37  |      |
| Cefazolin       | Dogs    | ≦2                 | >128              | 17.2         |      |      |      |      |     |   | 114      | 8        | 2   | 1  | 1  | 1  | 0   | 24  |      |
|                 | Cats    | ≦2                 | >128              | 17.1         |      |      |      |      |     |   | 123      | 4        | 2   | 2  | 2  | 2  | 0   | 23  |      |
| Cefalexin       | Dogs    | 8                  | >128              | 17.9         |      |      |      |      |     |   | 1        | 35       | 79  | 9  | 3  | 0  | 1   | 23  |      |
|                 | Cats    | 8                  | >128              | 18.4         |      |      |      |      |     |   | 0        | 47       | 74  | 8  | 0  | 1  | 5   | 23  |      |
| Cefotaxime      | Dogs    | <b>≦</b> 0.5       | 8                 | 13.2         |      |      |      |      | 127 | 0 | 4        | 1        | 4   | 3  | 6  | 3  | 3   |     |      |
|                 | Cats    | ≦0.5               | 4                 | 10.8         |      |      |      |      | 135 | 2 | 4        | 3        | 1   | 5  | 5  | 2  | 1   |     |      |
| Meropenem       | Dogs    | <b>≦</b> 0.5       | <b>≦</b> 0.5      | 0.0          |      |      |      |      | 151 | 0 | 0        | 0        | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | <b>≦</b> 0.5      | 0.0          |      |      |      |      | 158 | 0 | 0        | 0        | 0   | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 8                  | >128              | 19.2         |      |      |      |      |     |   |          | 68       | 51  | 3  | 2  | 4  | 4   | 19  |      |
|                 | Cats    | ≦4                 | 64                | 11.4         |      |      |      |      |     |   |          | 98       | 41  | 1  | 1  | 2  | 5   | 10  |      |
| Gentamicin      | Dogs    | ≦2                 | 2                 | 3.3          |      |      |      |      |     |   | 146      | 0        | 0   | 1  | 2  | 2  | 0   |     |      |
|                 | Cats    | $\leq 2$           | 2                 | 2.5          |      |      |      |      |     |   | 154      | 0        | 0   | 1  | 1  | 0  | 2   |     |      |
| Kanamycin       | Dogs    | ≦4                 | 8                 | 5.3          |      |      |      |      |     |   |          | 134      | 7   | 2  | 0  | 0  | 0   | 8   |      |
|                 | Cats    | ≦4                 | 4                 | 1.9          |      |      |      |      |     |   |          | 150      | 5   | 0  | 0  | 0  | 0   | 3   |      |
| Tetracycline    | Dogs    | ≦2                 | 64                | 16.6         |      |      |      |      |     |   | 82       | 43       | 1   | 0  | 4  | 13 | 8   |     |      |
| •               | Cats    | ≦2                 | 64                | 10.8         |      |      |      |      |     |   | 136      | 5        | 0   | 0  | 0  | 6  | 11  |     |      |
| Nalidixic acid  | Dogs    | ≦4                 | >128              | 27.8         |      |      |      |      |     |   |          | 100      | 6   | 3  | 1  | 3  | 0   | 38  | -    |
|                 | Cats    | ≦4                 | >128              | 24.7         |      |      |      |      |     |   |          | 115      | 4   | 0  | 0  | 2  | 5   | 32  |      |
| Ciprofloxacin   | Dogs    | ≦0.06              | >8                | 18.5         |      | 105  | 3    | 10   | 5   | 1 | 0        | 5        | 1   | 21 |    |    |     |     |      |
|                 | Cats    | $\leq 0.06$        | >8                | 12.0         |      | 115  | 3    | 18   | 3   | 0 | 0        | 2        | 1   | 16 |    |    |     |     |      |
| Colistin        | Dogs    | ≦0.5               | ≦0.5              | 0.0          |      |      |      |      | 151 | 0 | 0        | 0        | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | 0.5               | 0.0          |      |      |      |      | 158 | 0 | 0        | 0        | 0   | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 8                  | 16                | 4.6          |      |      |      |      |     |   | -        | 13       | 115 | 16 | 0  | 1  | 0   | 6   |      |
|                 | Cats    | 8                  | 8                 | 1.3          |      |      |      |      |     |   |          | 13       | 136 | 7  | 0  | 0  | 1   | 1   |      |

| Antimicrobial     |      |                     |            | _          |          |      | MIC dis | tributions |       |        |  |
|-------------------|------|---------------------|------------|------------|----------|------|---------|------------|-------|--------|--|
| agent             |      | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |  |
| Sulfamethoxazole/ | Dogs | ≤9.5/0.5            | >152/8     | 13.2       | 130      | 1    | 0       | 0          | 0     | 20     |  |
| Trimethoprim      | Cats | $\leq$ 9.5/0.5      | >152/8     | 12.0       | 137      | 1    | 1       | 0          | 0     | 19     |  |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.8.2. MIC distributions and resistance (%) for Escherichia coli from healthy dogs (n=192) and cats (n=188), in 2019

| Antimicrobial   | Animal  | MIC <sub>50</sub>  | MIC <sub>90</sub>  | %Resistant   |      |      |      |      |     |   | MIC di | stributions |     |    |    |    |     |     |      |
|-----------------|---------|--------------------|--------------------|--------------|------|------|------|------|-----|---|--------|-------------|-----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | W11C <sub>90</sub> | 70 Kesistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2      | 4           | 8   | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 8                  | >128               | 22.9         |      |      |      |      |     |   |        | 89          | 58  | 1  | 0  | 2  | 0   | 42  |      |
|                 | Cats    | ≦4                 | >128               | 27.1         |      |      |      |      |     |   |        | 123         | 13  | 1  | 0  | 4  | 6   | 41  |      |
| Cefazolin       | Dogs    | ≦2                 | 32                 | 13.0         |      |      |      |      |     |   | 159    | 8           | 2   | 2  | 3  | 0  | 1   | 17  |      |
|                 | Cats    | ≦2                 | 32                 | 11.7         |      |      |      |      |     |   | 151    | 12          | 1   | 2  | 6  | 1  | 0   | 15  |      |
| Cefalexin       | Dogs    | 8                  | 128                | 10.9         |      |      |      |      |     |   | 1      | 22          | 132 | 16 | 0  | 0  | 3   | 18  |      |
|                 | Cats    | 8                  | >128               | 13.3         |      |      |      |      |     |   | 0      | 34          | 116 | 13 | 0  | 0  | 5   | 20  |      |
| Cefotaxime      | Dogs    | ≦0.5               | 2                  | 8.9          |      |      |      |      | 171 | 1 | 3      | 2           | 5   | 1  | 2  | 4  | 3   |     |      |
|                 | Cats    | ≦0.5               | ≦0.5               | 6.4          |      |      |      |      | 173 | 2 | 1      | 1           | 0   | 5  | 4  | 2  | 0   |     |      |
| Meropenem       | Dogs    | ≦0.5               | ≦0.5               | 0.0          |      |      |      |      | 192 | 0 | 0      | 0           | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 0.0          |      |      |      |      | 188 | 0 | 0      | 0           | 0   | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 8                  | 64                 | 13.0         |      |      |      |      |     |   |        | 89          | 69  | 9  | 2  | 5  | 5   | 13  |      |
|                 | Cats    | 8                  | 32                 | 11.7         |      |      |      |      |     |   |        | 90          | 70  | 6  | 6  | 2  | 4   | 10  |      |
| Gentamicin      | Dogs    | ≦2                 | ≦2                 | 2.6          |      |      |      |      |     |   | 187    | 0           | 0   | 0  | 2  | 3  | 0   |     |      |
|                 | Cats    | $\leq 2$           | $\leq 2$           | 4.3          |      |      |      |      |     |   | 179    | 1           | 0   | 2  | 4  | 2  | 0   |     |      |
| Kanamycin       | Dogs    | ≦4                 | ≦4                 | 3.6          |      |      |      |      |     |   |        | 176         | 9   | 0  | 0  | 0  | 0   | 7   |      |
|                 | Cats    | ≦4                 | ≦4                 | 3.2          |      |      |      |      |     |   |        | 170         | 12  | 0  | 0  | 0  | 0   | 6   |      |
| Tetracycline    | Dogs    | ≦2                 | 64                 | 13.0         |      |      |      |      |     |   | 100    | 67          | 0   | 0  | 0  | 9  | 16  |     |      |
|                 | Cats    | ≦2                 | 32                 | 10.1         |      |      |      |      |     |   | 134    | 35          | 0   | 0  | 1  | 10 | 8   |     |      |
| Nalidixic acid  | Dogs    | ≦4                 | >128               | 20.8         |      |      |      |      |     |   |        | 141         | 8   | 3  | 1  | 2  | 6   | 31  | _    |
|                 | Cats    | ≦4                 | >128               | 28.7         |      |      |      |      |     |   |        | 127         | 5   | 2  | 1  | 4  | 4   | 45  |      |
| Ciprofloxacin   | Dogs    | ≦0.06              | 0.25               | 8.9          |      | 149  | 4    | 20   | 2   | 2 | 0      | 0           | 1   | 14 |    |    |     |     |      |
|                 | Cats    | ≦0.06              | 4                  | 13.3         |      | 130  | 7    | 20   | 6   | 3 | 1      | 3           | 1   | 17 |    |    |     |     |      |
| Colistin        | Dogs    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 0.5          |      |      |      |      | 191 | 0 | 0      | 1           | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 0.0          |      |      |      |      | 188 | 0 | 0      | 0           | 0   | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 8                  | 16                 | 5.7          |      |      |      |      |     |   |        | 16          | 143 | 22 | 1  | 4  | 2   | 4   |      |
|                 | Cats    | 8                  | 8                  | 3.7          |      |      |      |      |     |   |        | 26          | 149 | 5  | 2  | 3  | 1   | 1   |      |

| Antimicrobial     |      |                |            | _          |          |      | MIC dis | stributions |       |        |  |
|-------------------|------|----------------|------------|------------|----------|------|---------|-------------|-------|--------|--|
| agent             |      | $MIC_{50}$     | $MIC_{90}$ | %Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4        | 152/8 | >152/8 |  |
| Sulfamethoxazole/ | Dogs | ≤9.5/0.5       | ≤9.5/0.5   | 7.8        | 176      | 0    | 1       | 0           | 0     | 15     |  |
| Trimethoprim      | Cats | $\leq$ 9.5/0.5 | ≤9.5/0.5   | 9.6        | 170      | 0    | 0       | 1           | 0     | 17     |  |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.9.1. MIC distribution and resistance (%) for Enterococcus faecalis from healthy dogs (n=101) and cats (n=64), in 2018

| Antimicrobial   | Animal  | $\mathrm{MIC}_{50}$ | MIC        | 0/ D: - t t |      |      |      |      |     |    | MIC dist | ribution |    |    |    |    |     |     |      |
|-----------------|---------|---------------------|------------|-------------|------|------|------|------|-----|----|----------|----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub>  | $MIC_{90}$ | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2        | 4        | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 1                   | 1          | 1.0         |      | 0    | 0    | 1    | 5   | 84 | 10       | 0        | 0  | 0  | 1  | 0  | 0   | 0   |      |
|                 | Cats    | 1                   | 2          | 0.0         |      | 0    | 0    | 0    | 1   | 44 | 19       | 0        | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Gentamicin      | Dogs    | 8                   | 256        | 13.9        |      |      | 0    | 1    | 0   | 1  | 1        | 5        | 70 | 9  | 0  | 0  | 0   | 2   | 12   |
|                 | Cats    | 8                   | 256        | 14.1        |      |      | 0    | 0    | 0   | 0  | 0        | 8        | 44 | 3  | 0  | 0  | 1   | 0   | 8    |
| Tetracycline    | Dogs    | 64                  | 64         | 66.3        |      | 0    | 0    | 0    | 15  | 18 | 1        | 0        | 0  | 2  | 11 | 47 | 7   |     |      |
|                 | Cats    | 32                  | 64         | 56.3        |      | 0    | 0    | 0    | 9   | 19 | 0        | 0        | 0  | 0  | 4  | 30 | 2   |     |      |
| Chloramphenicol | Dogs    | 8                   | 32         | 22.8        |      |      |      | 0    | 0   | 1  | 0        | 35       | 39 | 3  | 18 | 4  | 1   | 0   | 0    |
|                 | Cats    | 8                   | 32         | 14.1        |      |      |      | 0    | 0   | 0  | 0        | 8        | 45 | 2  | 9  | 0  | 0   | 0   | 0    |
| Erythromycin    | Dogs    | 2                   | >64        | 39.6        | 0    | 0    | 5    | 6    | 8   | 22 | 19       | 1        | 0  | 0  | 0  | 1  | 39  |     |      |
|                 | Cats    | 2                   | >64        | 39.1        | 0    | 0    | 3    | 1    | 9   | 18 | 8        | 0        | 0  | 0  | 0  | 0  | 25  |     |      |
| Azithromycin    | Dogs    | 4                   | >64        | =           | 0    | 0    | 1    | 3    | 5   | 5  | 18       | 27       | 2  | 0  | 0  | 0  | 40  |     |      |
|                 | Cats    | 4                   | >64        | =           | 0    | 0    | 0    | 1    | 3   | 4  | 10       | 20       | 1  | 0  | 0  | 0  | 25  |     |      |
| Ciprofloxacin   | Dogs    | 1                   | 2          | 5.9         | 0    | 0    | 0    | 1    | 25  | 63 | 6        | 0        | 0  | 0  | 5  | 0  | 1   |     |      |
| _               | Cats    | 1                   | 32         | 17.2        | 0    | 0    | 0    | 0    | 4   | 41 | 8        | 0        | 0  | 2  | 9  | 0  | 0   |     |      |
| Vancomycin      | Dogs    | 1                   | 2          | 0.0         |      |      | 0    | 0    | 1   | 82 | 18       | 0        | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
| •               | Cats    | 1                   | 2          | 0.0         |      |      | 0    | 0    | 3   | 49 | 12       | 0        | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
|                 |         |                     |            |             |      |      |      |      |     |    |          |          |    |    |    |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.9.2. MIC distributions and resistance (%) for Enterococcus faecalis from healthy dogs (n=123) and cats (n=76), in 2019

| Antimicrobial   | Animal  | $\mathrm{MIC}_{50}$ | MIC        | 0/ D: - t t |      |      |      |      |     |    | MIC dista | ributions |    |    |    |    |     |     |      |
|-----------------|---------|---------------------|------------|-------------|------|------|------|------|-----|----|-----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub>  | $MIC_{90}$ | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2         | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 1                   | 2          | 0.0         |      | 0    | 0    | 0    | 2   | 95 | 26        | 0         | 0  | 0  | 0  | 0  | 0   | 0   |      |
|                 | Cats    | 1                   | 2          | 0.0         |      | 0    | 0    | 0    | 0   | 61 | 15        | 0         | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Gentamicin      | Dogs    | 8                   | 16         | 8.9         |      |      | 0    | 0    | 0   | 0  | 0         | 5         | 70 | 37 | 0  | 0  | 0   | 1   | 10   |
|                 | Cats    | 8                   | >256       | 14.5        |      |      | 0    | 0    | 0   | 0  | 1         | 10        | 44 | 10 | 1  | 0  | 0   | 1   | 9    |
| Tetracycline    | Dogs    | 1                   | 64         | 47.2        |      | 0    | 0    | 0    | 14  | 49 | 1         | 0         | 1  | 0  | 5  | 49 | 4   |     |      |
|                 | Cats    | 64                  | 64         | 68.4        |      | 0    | 0    | 0    | 2   | 22 | 0         | 0         | 0  | 0  | 4  | 47 | 1   |     |      |
| Chloramphenicol | Dogs    | 8                   | 32         | 13.0        |      |      |      | 0    | 0   | 0  | 0         | 1         | 99 | 7  | 4  | 9  | 3   | 0   | 0    |
| -               | Cats    | 8                   | 64         | 15.8        |      |      |      | 0    | 0   | 0  | 0         | 0         | 51 | 13 | 0  | 12 | 0   | 0   | 0    |
| Erythromycin    | Dogs    | 2                   | >64        | 24.4        | 0    | 0    | 2    | 9    | 19  | 28 | 35        | 0         | 0  | 0  | 1  | 0  | 29  |     |      |
|                 | Cats    | 2                   | >64        | 35.5        | 0    | 0    | 3    | 6    | 7   | 18 | 14        | 1         | 0  | 0  | 0  | 0  | 27  |     |      |
| Azithromycin    | Dogs    | 4                   | >64        | -           | 0    | 0    | 0    | 0    | 3   | 11 | 32        | 42        | 5  | 0  | 1  | 0  | 29  |     |      |
| -               | Cats    | 4                   | >64        | -           | 0    | 0    | 0    | 1    | 3   | 6  | 19        | 15        | 5  | 0  | 0  | 0  | 27  |     |      |
| Ciprofloxacin   | Dogs    | 1                   | 2          | 3.3         | 0    | 0    | 0    | 0    | 12  | 81 | 26        | 0         | 0  | 1  | 2  | 1  | 0   |     |      |
| _               | Cats    | 1                   | 4          | 10.5        | 0    | 0    | 0    | 0    | 4   | 44 | 20        | 1         | 0  | 2  | 4  | 1  | 0   |     |      |
| Vancomycin      | Dogs    | 1                   | 2          | 0.0         |      |      | 0    | 0    | 1   | 95 | 25        | 2         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
| •               | Cats    | 1                   | 2          | 0.0         |      |      | 0    | 0    | 2   | 60 | 13        | 1         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
|                 |         |                     |            |             |      |      |      |      |     |    |           |           |    |    |    |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.10.1. MIC distributions and resistance (%) for Escherichia coli from diseased dogs (n=154) and cats (n=93), in 2018

| Antimicrobial   | Animal  | $MIC_{50}$         | MIC          | 0/ D: - t t |      |      |      |      |     |   | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|--------------|-------------|------|------|------|------|-----|---|----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | $MIC_{90}$   | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >128               | >128         | 63.0        |      |      |      |      |     |   |          | 23        | 28 | 6  | 0  | 0  | 0   | 97  |      |
|                 | Cats    | >128               | >128         | 65.6        |      |      |      |      |     |   |          | 19        | 12 | 1  | 0  | 2  | 0   | 59  |      |
| Cefazolin       | Dogs    | 4                  | >128         | 44.2        |      |      |      |      |     |   | 74       | 7         | 4  | 1  | 1  | 2  | 0   | 65  |      |
|                 | Cats    | 4                  | >128         | 44.1        |      |      |      |      |     |   | 42       | 5         | 4  | 1  | 0  | 4  | 2   | 35  |      |
| Cefalexin       | Dogs    | 16                 | >128         | 42.9        |      |      |      |      |     |   | 0        | 5         | 57 | 26 | 0  | 0  | 2   | 64  |      |
|                 | Cats    | 16                 | >128         | 47.3        |      |      |      |      |     |   | 0        | 2         | 42 | 5  | 4  | 2  | 3   | 35  |      |
| Cefotaxime      | Dogs    | ≦0.5               | >64          | 41.6        |      |      |      |      | 89  | 0 | 1        | 1         | 0  | 8  | 11 | 18 | 26  |     |      |
|                 | Cats    | <b>≦</b> 0.5       | >64          | 39.8        |      |      |      |      | 55  | 1 | 0        | 0         | 2  | 6  | 6  | 10 | 13  |     |      |
| Meropenem       | Dogs    | ≦0.5               | ≦0.5         | 0.0         |      |      |      |      | 154 | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5 | 0.0         |      |      |      |      | 93  | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 8                  | >128         | 29.9        |      |      |      |      |     |   |          | 71        | 29 | 8  | 3  | 12 | 8   | 23  |      |
|                 | Cats    | 8                  | >128         | 34.4        |      |      |      |      |     |   |          | 40        | 18 | 3  | 1  | 3  | 5   | 23  |      |
| Gentamicin      | Dogs    | ≦2                 | 32           | 18.8        |      |      |      |      |     |   | 122      | 2         | 1  | 2  | 16 | 7  | 4   |     |      |
|                 | Cats    | ≦2                 | 32           | 15.1        |      |      |      |      |     |   | 78       | 0         | 1  | 0  | 8  | 5  | 1   |     |      |
| Kanamycin       | Dogs    | ≦4                 | 32           | 7.8         |      |      |      |      |     |   |          | 104       | 26 | 8  | 4  | 2  | 0   | 10  |      |
|                 | Cats    | ≦4                 | >128         | 12.9        |      |      |      |      |     |   |          | 70        | 9  | 1  | 1  | 0  | 1   | 11  |      |
| Tetracycline    | Dogs    | 4                  | >64          | 27.9        |      |      |      |      |     |   | 43       | 60        | 8  | 1  | 0  | 5  | 37  |     |      |
|                 | Cats    | 4                  | >64          | 29.0        |      |      |      |      |     |   | 42       | 19        | 5  | 1  | 1  | 4  | 21  |     |      |
| Nalidixic acid  | Dogs    | >128               | >128         | 72.7        |      |      |      |      |     |   |          | 34        | 6  | 2  | 2  | 1  | 1   | 108 | _    |
|                 | Cats    | >128               | >128         | 68.8        |      |      |      |      |     |   |          | 25        | 4  | 0  | 2  | 0  | 0   | 62  |      |
| Ciprofloxacin   | Dogs    | 8                  | >8           | 55.2        |      | 42   | 3    | 9    | 15  | 3 | 2        | 1         | 6  | 73 |    |    |     |     |      |
|                 | Cats    | 1                  | >8           | 50.5        |      | 29   | 1    | 4    | 12  | 2 | 0        | 1         | 4  | 40 |    |    |     |     |      |
| Colistin        | Dogs    | ≦0.5               | ≦0.5         | 0.0         |      |      |      |      | 149 | 5 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | ≦0.5         | 1.1         |      |      |      |      | 92  | 0 | 0        | 1         | 0  | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 16                 | 32           | 16.2        |      |      |      |      | 0   | 0 | 0        | 5         | 55 | 69 | 11 | 4  | 1   | 9   |      |
|                 | Cats    | 16                 | 32           | 15.1        |      |      |      |      | 0   | 0 | 0        | 4         | 39 | 36 | 7  | 1  | 1   | 5   |      |

| Antimicrobial     |      |                     |            |            |          |      | MIC dis | tributions |       |        |  |
|-------------------|------|---------------------|------------|------------|----------|------|---------|------------|-------|--------|--|
| agent             |      | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |  |
| Sulfamethoxazole/ | Dogs | $\leq$ 9.5/0.5      | >152/8     | 27.9       | 104      | 3    | 4       | 3          | 0     | 40     |  |
| Trimethoprim      | Cats | $\leq$ 9.5/0.5      | >152/8     | 34.4       | 56       | 1    | 4       | 0          | 0     | 32     |  |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.10.2. MIC distributions and resistance (%) for Escherichia coli from diseased dogs (n=178) and cats (n=128), in 2019

| Antimicrobial   | Animal  | $\mathrm{MIC}_{50}$ | $MIC_{90}$        | 0/ D: - t t |      |      |      |      |     |   | MIC dist | ributions |     |    |    |    |     |     |      |
|-----------------|---------|---------------------|-------------------|-------------|------|------|------|------|-----|---|----------|-----------|-----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub>  | MIC <sub>90</sub> | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4         | 8   | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 32                  | >128              | 51.1        |      |      |      |      |     |   |          | 57        | 29  | 1  | 2  | 0  | 3   | 86  |      |
|                 | Cats    | >128                | >128              | 60.2        |      |      |      |      |     |   |          | 40        | 10  | 1  | 2  | 3  | 1   | 71  |      |
| Cefazolin       | Dogs    | ≦2                  | >128              | 30.3        |      |      |      |      |     |   | 106      | 11        | 6   | 1  | 3  | 2  | 0   | 49  |      |
|                 | Cats    | ≦2                  | >128              | 32.0        |      |      |      |      |     |   | 80       | 7         | 0   | 0  | 4  | 0  | 1   | 36  |      |
| Cefalexin       | Dogs    | 8                   | >128              | 31.5        |      |      |      |      |     |   | 1        | 15        | 94  | 12 | 4  | 2  | 1   | 49  |      |
|                 | Cats    | 8                   | >128              | 31.3        |      |      |      |      |     |   | 1        | 14        | 69  | 4  | 0  | 0  | 4   | 36  |      |
| Cefotaxime      | Dogs    | ≦0.5                | 64                | 26.4        |      |      |      |      | 126 | 1 | 4        | 0         | 4   | 7  | 11 | 15 | 10  |     |      |
|                 | Cats    | <b>≦</b> 0.5        | 32                | 26.6        |      |      |      |      | 90  | 2 | 2        | 2         | 2   | 7  | 11 | 8  | 4   |     |      |
| Meropenem       | Dogs    | ≦0.5                | ≦0.5              | 0.0         |      |      |      |      | 178 | 0 | 0        | 0         | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5                | ≦0.5              | 0.0         |      |      |      |      | 128 | 0 | 0        | 0         | 0   | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 8                   | >128              | 20.2        |      |      |      |      |     |   |          | 75        | 54  | 13 | 5  | 4  | 6   | 21  |      |
|                 | Cats    | 8                   | >128              | 28.9        |      |      |      |      |     |   |          | 45        | 40  | 6  | 2  | 8  | 5   | 22  |      |
| Gentamicin      | Dogs    | ≦2                  | 32                | 12.9        |      |      |      |      |     |   | 155      | 0         | 0   | 1  | 15 | 5  | 2   |     |      |
|                 | Cats    | ≦2                  | 4                 | 9.4         |      |      |      |      |     |   | 115      | 1         | 0   | 1  | 4  | 5  | 2   |     |      |
| Kanamycin       | Dogs    | ≦4                  | 8                 | 5.1         |      |      |      |      |     |   |          | 149       | 14  | 4  | 2  | 0  | 0   | 9   |      |
|                 | Cats    | ≦4                  | 8                 | 7.0         |      |      |      |      |     |   |          | 103       | 14  | 1  | 1  | 0  | 1   | 8   |      |
| Tetracycline    | Dogs    | 4                   | >64               | 21.3        |      |      |      |      |     |   | 69       | 68        | 3   | 0  | 0  | 16 | 22  |     |      |
|                 | Cats    | $\leqq 2$           | >64               | 26.6        |      |      |      |      |     |   | 65       | 26        | 3   | 1  | 2  | 12 | 19  |     |      |
| Nalidixic acid  | Dogs    | >128                | >128              | 56.2        |      |      |      |      |     |   |          | 68        | 4   | 6  | 0  | 4  | 4   | 92  | Ī    |
|                 | Cats    | 8                   | >128              | 46.9        |      |      |      |      |     |   |          | 61        | 5   | 2  | 0  | 0  | 1   | 59  |      |
| Ciprofloxacin   | Dogs    | 0.25                | >8                | 38.8        |      | 71   | 6    | 20   | 12  | 1 | 0        | 3         | 3   | 62 |    |    |     |     |      |
|                 | Cats    | 0.12                | >8                | 37.5        |      | 60   | 5    | 12   | 3   | 1 | 1        | 3         | 8   | 35 |    |    |     |     |      |
| Colistin        | Dogs    | <b>≦</b> 0.5        | ≦0.5              | 0.0         |      |      |      |      | 171 | 7 | 0        | 0         | 0   | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5                | ≦0.5              | 0.0         |      |      |      |      | 120 | 8 | 0        | 0         | 0   | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 8                   | 32                | 11.8        |      |      |      |      |     |   |          | 16        | 122 | 19 | 6  | 3  | 2   | 10  |      |
|                 | Cats    | 8                   | 16                | 7.8         |      |      |      |      |     |   |          | 15        | 87  | 16 | 1  | 0  | 1   | 8   |      |

| Antimicrobial          |                |            |            |                |      | MIC dis | tributions |       |        |
|------------------------|----------------|------------|------------|----------------|------|---------|------------|-------|--------|
| agent                  | $MIC_{50}$     | $MIC_{90}$ | %Resistant | $\leq 9.5/0.5$ | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |
| Sulfamethoxazole/ Dogs | $\leq$ 9.5/0.5 | >152/8     | 17.4       | 140            | 4    | 3       | 0          | 0     | 31     |
| Trimethoprim Cats      | $\leq 9.5/0.5$ | >152/8     | 22.7       | 97             | 2    | 0       | 0          | 0     | 29     |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.11.1. MIC distributions and resistance (%) for Enterococcus faecalis from diseased dogs (n=57) and cats (n=39), in 2018

| Antimicrobial   | Animal  | $MIC_{50}$         | MIC        | 0/ <b>D</b> : - t t |      |      |      |      |     |    | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|------------|---------------------|------|------|------|------|-----|----|----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | $MIC_{90}$ | %Resistant          | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 1                  | 1          | 0.0                 |      |      |      |      | 21  | 33 | 3        | 0         | 0  | 0  | 0  | 0  | 0   |     |      |
|                 | Cats    | 1                  | 2          | 0.0                 |      |      |      |      | 2   | 28 | 8        | 1         | 0  | 0  | 0  | 0  | 0   |     |      |
| Cefazolin       | Dogs    | 16                 | 32         | -                   |      |      |      |      | 1   | 0  | 2        | 2         | 8  | 23 | 20 | 1  |     |     |      |
|                 | Cats    | 32                 | 64         | -                   |      |      |      |      | 0   | 0  | 0        | 1         | 0  | 10 | 24 | 3  | 1   |     |      |
| Cefalexin       | Dogs    | >64                | >64        | -                   |      |      |      |      | 0   | 1  | 0        | 0         | 0  | 0  | 6  | 17 | 33  |     |      |
|                 | Cats    | >64                | >64        | -                   |      |      |      |      | 0   | 0  | 0        | 0         | 0  | 0  | 1  | 3  | 35  |     |      |
| Cefmetazole     | Dogs    | >64                | >64        | -                   |      |      |      |      | 0   | 0  | 0        | 1         | 0  | 1  | 1  | 4  | 50  |     |      |
|                 | Cats    | >64                | >64        | -                   |      |      |      |      | 0   | 0  | 0        | 0         | 0  | 0  | 0  | 0  | 39  |     |      |
| Cefotaxime      | Dogs    | >64                | >64        | -                   |      |      |      |      | 13  | 0  | 0        | 0         | 0  | 0  | 1  | 8  | 35  |     |      |
|                 | Cats    | >64                | >64        | -                   |      |      |      |      | 1   | 0  | 0        | 0         | 0  | 0  | 0  | 2  | 36  |     |      |
| Streptomycin    | Dogs    | 64                 | >128       | -                   |      |      |      |      |     |    | 12       | 1         | 3  | 1  | 5  | 21 | 6   | 8   |      |
|                 | Cats    | 64                 | >128       | -                   |      |      |      |      |     |    | 0        | 0         | 0  | 3  | 1  | 16 | 12  | 7   |      |
| Gentamicin      | Dogs    | 8                  | 16         | 8.8                 |      |      |      |      |     | 14 | 5        | 9         | 22 | 2  | 0  | 0  | 2   | 3   |      |
|                 | Cats    | 8                  | >128       | 15.4                |      |      |      |      |     | 4  | 3        | 4         | 20 | 2  | 0  | 1  | 0   | 5   |      |
| Tetracycline    | Dogs    | 64                 | >64        | 66.7                |      |      |      |      | 9   | 10 | 0        | 0         | 0  | 1  | 4  | 26 | 7   |     |      |
|                 | Cats    | 64                 | 64         | 76.9                |      |      |      |      | 2   | 7  | 0        | 0         | 0  | 0  | 1  | 27 | 2   |     |      |
| Erythromycin    | Dogs    | 2                  | >32        | 36.8                |      |      |      | 4    | 10  | 14 | 8        | 0         | 0  | 0  | 0  | 21 |     |     |      |
| , ,             | Cats    | 2                  | >32        | 46.2                |      |      |      | 2    | 5   | 11 | 2        | 1         | 0  | 0  | 0  | 18 |     |     |      |
| Azithromycin    | Dogs    | 4                  | >32        | -                   |      |      |      | 2    | 2   | 5  | 15       | 10        | 2  | 0  | 0  | 21 |     |     |      |
|                 | Cats    | 4                  | >32        | -                   |      |      |      | 1    | 0   | 5  | 8        | 6         | 0  | 1  | 0  | 18 |     |     |      |
| Chloramphenicol | Dogs    | 8                  | 32         | 15.8                |      |      |      |      | 3   | 0  | 1        | 9         | 35 | 3  | 5  | 2  | 2   | 0   | -    |
| Cinoramphemeor  | Cats    | 8                  | 64         | 23.1                |      |      |      |      |     | 0  | 1        | 5         | 24 | 0  | 2  | 6  | 1   | 0   |      |
| Ciprofloxacin   | Dogs    | 1                  | 2          | 8.8                 |      |      |      | 5    | 10  | 29 | 8        | 0         | 1  | 0  | 3  | 1  |     |     |      |
| Стртополист     | Cats    | 1                  | >32        | 25.6                |      |      |      | 0    | 10  | 18 | 7        | 1         | 0  | 1  | 2  | 6  |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.11.2. MIC distributions and resistance (%) for Enterococcus faecalis from diseased dogs (n=100) and cats (n=62), in 2019

| Antimicrobial   | Animal  | MIC        | MIC        | 0/ <b>D</b> |      |      |      |      |     |    | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|------------|------------|-------------|------|------|------|------|-----|----|----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | $MIC_{50}$ | $MIC_{90}$ | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | 1          | >128       | 0.0         |      | 0    | 0    | 0    | 0   | 82 | 18       | 0         | 0  | 0  | 0  | 0  | 0   | 0   |      |
|                 | Cats    | 1          | 2          | 0.0         |      | 0    | 0    | 1    | 3   | 34 | 24       | 0         | 0  | 0  | 0  | 0  | 0   | 0   |      |
| Gentamicin      | Dogs    | 8          | >256       | 22.0        |      |      | 0    | 0    | 0   | 0  | 1        | 7         | 48 | 22 | 3  | 1  | 0   | 0   | 18   |
|                 | Cats    | 8          | >256       | 14.5        |      |      | 0    | 1    | 0   | 0  | 1        | 7         | 39 | 5  | 0  | 1  | 0   | 1   | 7    |
| Tetracycline    | Dogs    | 64         | 64         | 65.0        |      | 0    | 0    | 0    | 3   | 32 | 0        | 0         | 0  | 0  | 5  | 54 | 6   |     |      |
|                 | Cats    | 64         | 64         | 67.7        |      | 0    | 0    | 0    | 0   | 20 | 0        | 0         | 0  | 0  | 7  | 34 | 1   |     |      |
| Chloramphenicol | Dogs    | 8          | 64         | 24.0        |      |      |      | 0    | 0   | 0  | 1        | 2         | 71 | 2  | 6  | 14 | 4   | 0   | 0    |
|                 | Cats    | 8          | 32         | 14.5        |      |      |      | 0    | 0   | 0  | 0        | 2         | 50 | 1  | 4  | 4  | 1   | 0   | 0    |
| Erythromycin    | Dogs    | 2          | >64        | 36.0        | 0    | 0    | 6    | 10   | 20  | 15 | 13       | 0         | 0  | 0  | 0  | 0  | 36  |     |      |
|                 | Cats    | 1          | >64        | 33.9        | 0    | 0    | 1    | 6    | 11  | 15 | 8        | 0         | 1  | 0  | 0  | 1  | 19  |     |      |
| Azithromycin    | Dogs    | 4          | >64        | -           | 0    | 0    | 0    | 0    | 13  | 9  | 25       | 17        | 0  | 0  | 0  | 0  | 36  |     |      |
| -               | Cats    | 4          | >64        | -           | 0    | 0    | 0    | 0    | 4   | 7  | 19       | 10        | 2  | 0  | 0  | 0  | 20  |     |      |
| Ciprofloxacin   | Dogs    | 1          | >64        | 11.0        | 0    | 0    | 0    | 0    | 9   | 57 | 23       | 1         | 0  | 1  | 5  | 4  | 0   |     |      |
|                 | Cats    | 1          | 16         | 14.5        | 0    | 0    | 0    | 0    | 3   | 33 | 17       | 2         | 0  | 1  | 2  | 2  | 2   |     |      |
| Vancomycin      | Dogs    | 1          | 2          | 0.0         |      |      | 0    | 0    | 0   | 87 | 13       | 0         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
| •               | Cats    | 1          | 2          | 0.0         |      |      | 0    | 0    | 3   | 44 | 15       | 0         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.12.1. MIC distributions and resistance (%) for Enterococcus faecium from diseased dogs (n=15) and cats (n=18), in 2018

| Antimicrobial   | Animal  | MIC                 | MIC        | 0/ <b>D</b> :-tt |      |      |      |      |     |   | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|---------------------|------------|------------------|------|------|------|------|-----|---|----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant       | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >64                 | >64        | 100.0            |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 2  | 5  | 8   |     |      |
|                 | Cats    | >64                 | >64        | 100.0            |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 1  | 3  | 14  |     |      |
| Cefazolin       | Dogs    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 15  |     |      |
|                 | Cats    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 18  |     |      |
| Cefalexin       | Dogs    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 15  |     |      |
|                 | Cats    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 18  |     |      |
| Cefmetazole     | Dogs    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 15  |     |      |
|                 | Cats    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 18  |     |      |
| Cefotaxime      | Dogs    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 15  |     |      |
|                 | Cats    | >64                 | >64        | -                |      |      |      |      | 0   | 0 | 0        | 0         | 0  | 0  | 0  | 0  | 18  |     |      |
| Streptomycin    | Dogs    | 32                  | >128       | -                |      |      |      |      |     |   | 0        | 0         | 0  | 3  | 5  | 1  | 0   | 6   |      |
|                 | Cats    | >128                | >128       | -                |      |      |      |      |     |   | 0        | 0         | 0  | 1  | 5  | 1  | 0   | 11  |      |
| Gentamicin      | Dogs    | 8                   | >128       | 40.0             |      |      |      |      |     | 1 | 4        | 1         | 3  | 0  | 3  | 0  | 0   | 3   |      |
|                 | Cats    | 8                   | >128       | 44.4             |      |      |      |      |     | 0 | 2        | 6         | 2  | 0  | 5  | 1  | 0   | 2   |      |
| Tetracycline    | Dogs    | 32                  | >64        | 80.0             |      |      |      |      | 3   | 0 | 0        | 0         | 0  | 2  | 3  | 5  | 2   |     |      |
|                 | Cats    | 64                  | >64        | 66.7             |      |      |      |      | 3   | 3 | 0        | 0         | 0  | 0  | 1  | 7  | 4   |     |      |
| Erythromycin    | Dogs    | 2                   | >32        | 46.7             |      |      |      | 0    | 0   | 2 | 6        | 0         | 0  | 0  | 0  | 7  |     |     |      |
|                 | Cats    | >32                 | >32        | 72.2             |      |      |      | 0    | 0   | 0 | 4        | 1         | 0  | 0  | 0  | 13 |     |     |      |
| Azithromycin    | Dogs    | 8                   | >32        | -                |      |      |      | 0    | 0   | 0 | 2        | 4         | 2  | 0  | 0  | 7  |     |     |      |
|                 | Cats    | >32                 | >32        | _                |      |      |      | 0    | 0   | 0 | 0        | 2         | 3  | 0  | 0  | 13 |     |     |      |
| Chloramphenicol | Dogs    | 8                   | 16         | 6.7              |      |      |      |      |     | 0 | 0        | 3         | 8  | 3  | 1  | 0  | 0   | 0   | _    |
| 2orumpiiemeor   | Cats    | 8                   | 8          | 0.0              |      |      |      |      |     | 0 | 0        | 4         | 13 | 1  | 0  | 0  | 0   | 0   |      |
| Ciprofloxacin   | Dogs    | >32                 | >32        | 100.0            |      |      |      | 0    | 0   | 0 | 0        | 0         | 0  | 0  | 2  | 13 |     |     |      |
| o.p.o.no.nuem   | Cats    | >32                 | >32        | 100.0            |      |      |      | 0    | 0   | 0 | 0        | 1         | 0  | 0  | 3  |    |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.12.2. MIC distributions and resistance (%) for Enterococcus faecium from diseased dogs (n=30) and cats (n=35), in 2019

| Antimicrobial   | Animal  | MIC                 | MIC        | 0/ D :      |      |      |      |      |     |    | MIC distr | ributions |    |    |    |    |     |     |      |
|-----------------|---------|---------------------|------------|-------------|------|------|------|------|-----|----|-----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | % Resistant | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2         | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >128                | >128       | 90.0        |      | 0    | 0    | 1    | 0   | 0  | 2         | 0         | 0  | 0  | 1  | 4  | 2   | 20  |      |
|                 | Cats    | >128                | >128       | 94.3        |      | 0    | 0    | 1    | 0   | 0  | 1         | 0         | 0  | 0  | 2  | 3  | 7   | 21  |      |
| Gentamicin      | Dogs    | 8                   | >256       | 36.7        |      |      | 0    | 0    | 1   | 0  | 1         | 6         | 9  | 2  | 2  | 1  | 0   | 1   | 7    |
|                 | Cats    | 16                  | >256       | 45.7        |      |      | 0    | 0    | 0   | 1  | 2         | 4         | 10 | 2  | 1  | 2  | 5   | 1   | 7    |
| Tetracycline    | Dogs    | 64                  | >64        | 80.0        |      | 0    | 0    | 0    | 4   | 1  | 0         | 0         | 1  | 2  | 6  | 10 | 6   |     |      |
|                 | Cats    | 32                  | >64        | 60.0        |      | 0    | 0    | 0    | 14  | 0  | 0         | 0         | 0  | 0  | 7  | 7  | 7   |     |      |
| Chloramphenicol | Dogs    | 8                   | 64         | 3.3         |      |      |      | 0    | 0   | 0  | 0         | 5         | 18 | 6  | 0  | 1  | 0   | 0   | 0    |
|                 | Cats    | 8                   | 8          | 0.0         |      |      |      | 0    | 0   | 0  | 0         | 6         | 29 | 0  | 0  | 0  | 0   | 0   | 0    |
| Erythromycin    | Dogs    | 2                   | >64        | 66.7        | 0    | 0    | 0    | 0    | 0   | 2  | 7         | 1         | 1  | 1  | 0  | 0  | 18  |     |      |
|                 | Cats    | 16                  | >64        | 51.4        | 0    | 0    | 0    | 0    | 0   | 4  | 12        | 1         | 0  | 1  | 0  | 0  | 17  |     |      |
| Azithromycin    | Dogs    | 4                   | >64        | -           | 0    | 0    | 0    | 0    | 0   | 0  | 2         | 7         | 1  | 1  | 0  | 1  | 18  |     |      |
| -               | Cats    | 16                  | >64        | -           | 0    | 0    | 0    | 0    | 0   | 0  | 4         | 13        | 0  | 1  | 0  | 0  | 17  |     |      |
| Ciprofloxacin   | Dogs    | >64                 | >64        | 96.7        | 0    | 0    | 0    | 0    | 0   | 0  | 1         | 2         | 1  | 0  | 6  | 3  | 17  |     |      |
|                 | Cats    | >64                 | >64        | 94.3        | 0    | 0    | 0    | 1    | 0   | 0  | 1         | 1         | 0  | 0  | 2  | 8  | 22  |     |      |
| Vancomycin      | Dogs    | 1                   | 1          | 0.0         |      |      | 0    | 0    | 5   | 23 | 1         | 1         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |
|                 | Cats    | 1                   | 1          | 0.0         |      |      | 0    | 1    | 5   | 28 | 1         | 0         | 0  | 0  | 0  | 0  | 0   | 0   | 0    |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.13.1. MIC distributions and resistance (%) for Staphylococcus pseudintermedius from diseased dogs (n=83) and cats (n=22), in 2018

| Antimicrobial       | Animal  | MIC                 | MIC             | 0/ D: - t t |      |      |      |          |     |          | MIC dist | ributions |    |    |    |    |     |     |      |
|---------------------|---------|---------------------|-----------------|-------------|------|------|------|----------|-----|----------|----------|-----------|----|----|----|----|-----|-----|------|
| agent               | species | $MIC_{50}$          | $MIC_{90}$      | % Resistant | 0.03 | 0.06 | 0.12 | 0.25     | 0.5 | 1        | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin          | Dogs    | 8                   | >16             | -           |      |      | 6    | 6        | 10  | 3        | 5        | 5         | 8  | 16 | 24 |    |     |     |      |
|                     | Cats    | >16                 | >16             | -           |      |      | 0    | 0        | 0   | 3        | 1        | 0         | 0  | 1  | 17 |    |     |     |      |
| Oxacillin           | Dogs    | 0.5                 | 16              | 56.6        |      |      | 33   | 3        | 7   | 6        | 4        | 6         | 7  | 17 |    |    |     |     |      |
|                     | Cats    | >8                  | >8              | 81.8        |      |      | 1    | 3        | 1   | 1        | 0        | 1         | 0  | 15 |    |    |     |     |      |
| Cefazolin           | Dogs    | 0.25                | 8               | -           |      |      | 40   | 16       | 6   | 1        | 4        | 5         | 6  | 5  |    |    |     |     |      |
|                     | Cats    | 4                   | >8              | -           |      |      | 1    | 5        | 1   | 2        | 0        | 2         | 4  | 7  |    |    |     |     |      |
| Cefalexin           | Dogs    | 4                   | >16             | -           |      |      |      | 3        | 0   | 30       | 6        | 15        | 7  | 4  | 18 |    |     |     |      |
|                     | Cats    | >16                 | >16             | -           |      |      |      | 0        | 0   | 1        | 3        | 2         | 1  | 3  | 12 |    |     |     |      |
| Cefoxitin           | Dogs    | ≦0.5                | 2               | -           |      |      |      |          | 64  | 9        | 8        | 1         | 0  | 1  |    |    |     |     |      |
|                     | Cats    | 2                   | 4               | -           |      |      |      |          | 5   | 5        | 8        | 2         | 1  | 1  |    |    |     |     |      |
| Cefmetazole         | Dogs    | ≦0.5                | 1               | -           |      |      |      |          | 65  | 12       | 4        | 1         | 0  | 1  |    |    |     |     |      |
|                     | Cats    | 1                   | 2               | -           |      |      |      |          | 8   | 4        | 8        | 1         | 0  | 1  |    |    |     |     |      |
| Cefotaxime          | Dogs    | 1                   | >8              | -           |      | 3    | 1    | 31       | 3   | 8        | 10       | 6         | 7  | 14 |    |    |     |     |      |
|                     | Cats    | >8                  | >8              | -           |      | 0    | 0    | 1        | 1   | 1        | 3        | 2         | 2  | 12 |    |    |     |     |      |
| Streptomycin        | Dogs    | >128                | >128            | -           |      |      |      |          |     |          |          | 19        | 3  | 0  | 0  | 2  | 10  | 49  |      |
|                     | Cats    | >128                | >128            | -           |      |      |      |          |     |          |          | 1         | 0  | 1  | 1  | 0  | 1   | 18  |      |
| Gentamicin          | Dogs    | 16                  | 32              | 54.2        |      |      |      |          | 16  | 1        | 0        | 7         | 14 | 23 | 18 | 4  |     |     |      |
|                     | Cats    | 16                  | >32             | 63.6        |      |      |      |          | 0   | 0        | 1        | 2         | 5  | 5  | 6  | 3  |     |     |      |
| Tetracycline        | Dogs    | 32                  | >32             | 67.5        |      |      |      |          | 27  | 0        | 0        | 0         | 0  | 2  | 17 | 37 |     |     |      |
|                     | Cats    | >32                 | >32             | 81.8        |      |      |      |          | 4   | 0        | 0        | 0         | 0  | 0  | 4  | 14 |     |     |      |
| Erythromycin        | Dogs    | >16                 | >16             | 74.7        |      |      |      | 19       | 2   | 0        | 0        | 0         | 0  | 1  | 61 |    |     |     |      |
| , ,                 | Cats    | >16                 | >16             | 86.4        |      |      |      | 2        | 1   | 0        | 0        | 0         | 0  | 0  | 19 |    |     |     |      |
| Azithromycin        | Dogs    | >16                 | >16             | 74.7        |      |      |      | 4        | 16  | 1        | 0        | 0         | 0  | 4  | 58 |    |     |     | _    |
| 1 Izium omiy um     | Cats    | >16                 | >16             | 86.4        |      |      |      | 0        | 3   | 0        | 0        | 0         | 0  | 0  | 19 |    |     |     |      |
| Ciprofloxacin       | Dogs    | 32                  | >32             | 75.9        |      |      |      | 17       | 2   | 1        | 0        | 2         | 0  | 4  | 33 | 24 |     |     | -    |
| Cipronoxuem         | Cats    | >32                 | >32             | 100.0       |      |      |      | 0        | 0   | 0        | 0        | 0         | 0  | 2  | 8  | 12 |     |     |      |
| Chloramphenicol     | Dogs    | 16                  | 64              | 49.4        |      |      |      | <u> </u> | 3   | <u> </u> | 2        | 17        | 21 | 2  | 10 | 31 |     |     |      |
| Cinorumphemeor      | _       |                     |                 |             |      |      |      |          |     |          |          |           |    | 1  | 1  |    |     |     |      |
| White fields repres | Cats    | 64<br>re of dilutio | 64<br>ns tested | 72.7        |      |      |      |          |     |          | 0        | 3         | 2  | 1  | 1  | 15 |     |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.13.2. MIC distributions and resistance (%) for Staphylococcus pseudintermedius from diseased dogs (n=78) and cats (n=42), in 2019

| agent specie  Benzylpenicillin Dogs Cats  Oxacillin Dogs Cats  Cefazolin Dogs Cats  Cefalexin Dogs Cats  Cefoxitin Dogs Cats  Cefoxitin Dogs Cats  Cefmetazole Dogs Cats  Cefotaxime Dogs Cats  Streptomycin Dogs Cats  Gentamicin Dogs                                              | s s    | >4<br>>4<br>1<br>>8<br>0.5<br>4<br>8 | >4<br>>4<br>>8<br>>8<br>>8<br>>8 | 97.4<br>97.6<br>62.8<br>81.0 | 0.03 | 0.06<br>0<br>0 | 0.12 | 0.25 | 0.5      | 1  | 2  | 4  | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|----------------------------------|------------------------------|------|----------------|------|------|----------|----|----|----|----|----|----|----|-----|-----|------|
| Cats           Oxacillin         Dogs Cats           Cefazolin         Dogs Cats           Cefalexin         Dogs Cats           Cefoxitin         Dogs Cats           Cefmetazole         Dogs Cats           Cefotaxime         Dogs Cats           Streptomycin         Dogs Cats | s<br>s | >4<br>1<br>>8<br>0.5<br>4            | >4<br>>8<br>>8<br>>8             | 97.6<br>62.8<br>81.0         | 2    |                |      | 0    | Λ        |    |    |    |    |    |    |    |     |     | 00   |
| Oxacillin Dogs Cats  Cefazolin Dogs Cats  Cefalexin Dogs Cats  Cefoxitin Dogs Cats  Cefoxitin Dogs Cats  Cefmetazole Dogs Cats  Cefotaxime Dogs Cats  Streptomycin Dogs Cats                                                                                                         | S<br>S | 1<br>>8<br>0.5<br>4                  | >8<br>>8<br>>8                   | 62.8<br>81.0                 | 1    | 0              | 0    |      | 0        | 0  | 2  | 1  | 73 |    |    |    |     |     |      |
| Cats Cefazolin Dogs Cats Cefalexin Dogs Cats Cefoxitin Dogs Cats Cefmetazole Dogs Cats Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                                   | S<br>S | >8<br>0.5<br>4                       | >8<br>>8                         | 81.0                         |      |                | U    | 0    | 0        | 2  | 1  | 1  | 37 |    |    |    |     |     |      |
| Cefazolin Dogs Cats Cefalexin Dogs Cats Cefoxitin Dogs Cats Cefoxitin Dogs Cats Cefmetazole Dogs Cats Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                    | s      | 0.5<br>4                             | >8                               |                              |      |                | 29   | 0    | 8        | 10 | 3  | 2  | 4  | 22 |    |    |     |     |      |
| Cats Cefalexin Dogs Cats Cefoxitin Dogs Cats Cefmetazole Dogs Cats Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                                                       | S      | 4                                    |                                  | _                            |      |                | 6    | 2    | 3        | 3  | 2  | 0  | 0  | 26 |    |    |     |     |      |
| CefalexinDogs<br>CatsCefoxitinDogs<br>CatsCefmetazoleDogs<br>CatsCefotaximeDogs<br>CatsStreptomycinDogs<br>Cats                                                                                                                                                                      | S      |                                      | >8                               |                              |      |                | 30   | 7    | 14       | 3  | 1  | 2  | 7  | 14 |    |    |     |     |      |
| Cats           Cefoxitin         Dogs<br>Cats           Cefmetazole         Dogs<br>Cats           Cefotaxime         Dogs<br>Cats           Streptomycin         Dogs<br>Cats                                                                                                       |        | 8                                    |                                  | -                            |      |                | 7    | 3    | 3        | 2  | 4  | 5  | 3  | 15 |    |    |     |     |      |
| Cefoxitin Dogs Cats  Cefmetazole Dogs Cats  Cefotaxime Dogs Cats  Streptomycin Dogs Cats                                                                                                                                                                                             |        |                                      | >16                              | -                            |      |                |      | 0    | 1        | 7  | 20 | 8  | 12 | 6  | 24 |    |     |     |      |
| Cats  Cefmetazole Dogs Cats  Cefotaxime Dogs Cats  Streptomycin Dogs Cats                                                                                                                                                                                                            |        | >16                                  | >16                              | -                            |      |                |      | 0    | 0        | 6  | 2  | 2  | 4  | 2  | 26 |    |     |     |      |
| Cefmetazole Dogs Cats Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                                                                                                    | ,      | <b>≦</b> 0.5                         | 2                                | -                            |      |                |      |      | 40       | 20 | 11 | 5  | 1  | 1  |    |    |     |     |      |
| Cats Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                                                                                                                     |        | 2                                    | 2                                | -                            |      |                |      |      | 10       | 8  | 21 | 2  | 0  | 1  |    |    |     |     |      |
| Cefotaxime Dogs Cats Streptomycin Dogs Cats                                                                                                                                                                                                                                          | s      | <b>≦</b> 0.5                         | 2                                | -                            |      |                |      |      | 46       | 21 | 8  | 2  | 0  | 1  |    |    |     |     |      |
| Cats Streptomycin Dogs Cats                                                                                                                                                                                                                                                          |        | 1                                    | 2                                | -                            |      |                |      |      | 15       | 20 | 7  | 0  | 0  | 0  |    |    |     |     |      |
| Cats Streptomycin Dogs Cats                                                                                                                                                                                                                                                          | S      | 2                                    | >8                               | -                            |      | 0              | 1    | 29   | 0        | 5  | 7  | 11 | 2  | 23 |    |    |     |     |      |
| Cats                                                                                                                                                                                                                                                                                 |        | >8                                   | >8                               | -                            |      | 0              | 2    | 5    | 1        | 1  | 3  | 4  | 1  | 25 |    |    |     |     |      |
|                                                                                                                                                                                                                                                                                      | s :    | >128                                 | >128                             | -                            |      |                |      |      |          |    |    | 9  | 5  | 2  | 0  | 1  | 2   | 59  |      |
| Contomicin Dogs                                                                                                                                                                                                                                                                      | )      | >128                                 | >128                             | -                            |      |                |      |      |          |    |    | 2  | 1  | 0  | 0  | 1  | 2   | 36  |      |
| Gentallicii Dogs                                                                                                                                                                                                                                                                     | S      | 16                                   | 32                               | 64.1                         |      |                |      |      | 14       | 0  | 0  | 2  | 12 | 24 | 23 | 3  |     |     |      |
| Cats                                                                                                                                                                                                                                                                                 |        | 16                                   | 32                               | 52.4                         |      |                |      |      | 3        | 0  | 3  | 3  | 11 | 11 | 10 | 1  |     |     |      |
| Tetracycline Dogs                                                                                                                                                                                                                                                                    | S      | >32                                  | >32                              | 66.7                         |      |                |      |      | 25       | 0  | 1  | 0  | 0  | 0  | 2  | 50 |     |     |      |
| Cats                                                                                                                                                                                                                                                                                 |        | >32                                  | >32                              | 85.7                         |      |                |      |      | 6        | 0  | 0  | 0  | 0  | 0  | 4  | 32 |     |     |      |
| Erythromycin Dogs                                                                                                                                                                                                                                                                    | S      | >16                                  | >16                              | 79.5                         |      |                |      | 14   | 2        | 0  | 0  | 0  | 0  | 0  | 62 |    |     |     |      |
| Cats                                                                                                                                                                                                                                                                                 |        | >16                                  | >16                              | 95.2                         |      |                |      | 1    | 1        | 0  | 0  | 0  | 0  | 0  | 40 |    |     |     |      |
| Azithromycin Dogs                                                                                                                                                                                                                                                                    |        | >16                                  | >16                              | 79.5                         |      |                |      | 0    | 16       | 0  | 0  | 0  | 0  | 0  | 62 |    |     |     | -    |
| Cats                                                                                                                                                                                                                                                                                 |        | >16                                  | >16                              | 95.2                         |      |                |      | 0    | 1        | 1  | 0  | 0  | 0  | 0  | 40 |    |     |     |      |
| Ciprofloxacin Dogs                                                                                                                                                                                                                                                                   |        | >32                                  | >32                              | 75.6                         |      |                |      | 15   | 2        | 2  | 0  | 1  | 2  | 1  | 6  | 49 |     |     | -    |
| Cats                                                                                                                                                                                                                                                                                 |        | >32                                  | >32                              | 97.6                         |      |                |      | 1    | 0        | 0  | 0  | 0  | 0  | 2  | 7  | 32 |     |     |      |
| Chloramphenicol Dogs                                                                                                                                                                                                                                                                 |        | 64                                   | 64                               | 60.3                         |      |                |      | -    | <u> </u> | Ü  | 1  | 5  | 23 | 2  | 4  | 43 | 0   |     |      |
| Cats                                                                                                                                                                                                                                                                                 |        | 64                                   | 64                               | 83.3                         |      |                |      |      |          |    | 0  | 2  | 5  | 0  | 10 | 25 | 0   |     |      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.14.1. MIC distributions and resistance (%) for Klebisiella pneumoniae from diseased dogs (n=45) and cats (n=18), in 2018

| Antimicrobial   | Animal  | $MIC_{50}$         | $MIC_{90}$        | 0/ Pasistant |      |      |      |      |     |   | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|-------------------|--------------|------|------|------|------|-----|---|----------|-----------|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | WIC <sub>90</sub> | % Resistant  | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >128               | >128              | 93.3         |      |      |      |      |     |   |          | 0         | 0  | 3  | 10 | 5  | 1   | 26  |      |
|                 | Cats    | >128               | >128              | 100.0        |      |      |      |      |     |   |          | 0         | 0  | 0  | 0  | 0  | 0   | 18  |      |
| Cefazolin       | Dogs    | 16                 | >128              | 46.7         |      |      |      |      |     |   | 21       | 1         | 0  | 2  | 1  | 1  | 1   | 18  |      |
|                 | Cats    | >128               | >128              | 94.4         |      |      |      |      |     |   | 0        | 1         | 0  | 0  | 0  | 1  | 1   | 15  |      |
| Cefalexin       | Dogs    | 16                 | >128              | 48.9         |      |      |      |      |     |   | 1        | 14        | 7  | 1  | 2  | 2  | 1   | 17  |      |
|                 | Cats    | >128               | >128              | 88.9         |      |      |      |      |     |   | 0        | 0         | 1  | 1  | 0  | 1  | 0   | 15  |      |
| Cefotaxime      | Dogs    | ≦0.5               | >64               | 40.0         |      |      |      |      | 26  | 0 | 1        | 0         | 0  | 0  | 4  | 5  | 9   |     |      |
|                 | Cats    | 64                 | >64               | 83.3         |      |      |      |      | 1   | 1 | 1        | 0         | 0  | 0  | 4  | 6  | 5   |     |      |
| Meropenem       | Dogs    | ≦0.5               | ≦0.5              | 0.0          |      |      |      |      | 45  | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5      | 0.0          |      |      |      |      | 18  | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | ≦4                 | >128              | 37.8         |      |      |      |      |     |   |          | 24        | 2  | 2  | 2  | 2  | 5   | 8   |      |
|                 | Cats    | 128                | >128              | 61.1         |      |      |      |      |     |   |          | 7         | 0  | 0  | 0  | 1  | 4   | 6   |      |
| Gentamicin      | Dogs    | ≦2                 | >64               | 31.1         |      |      |      |      |     |   | 27       | 1         | 3  | 1  | 5  | 3  | 5   |     |      |
|                 | Cats    | 16                 | >64               | 61.1         |      |      |      |      |     |   | 6        | 0         | 1  | 2  | 4  | 3  | 2   |     |      |
| Kanamycin       | Dogs    | ≦4                 | 64                | 11.1         |      |      |      |      |     |   |          | 32        | 3  | 5  | 0  | 1  | 0   | 4   |      |
|                 | Cats    | 16                 | >128              | 22.2         |      |      |      |      |     |   |          | 4         | 2  | 3  | 5  | 0  | 0   | 4   |      |
| Tetracycline    | Dogs    | 8                  | >64               | 48.9         |      |      |      |      |     |   | 14       | 6         | 3  | 1  | 2  | 3  | 16  |     |      |
|                 | Cats    | >64                | >64               | 72.2         |      |      |      |      |     |   | 2        | 1         | 2  | 0  | 0  | 1  | 12  |     |      |
| Nalidixic acid  | Dogs    | >128               | >128              | 64.4         |      |      |      |      |     |   |          | 9         | 4  | 3  | 0  | 4  | 1   | 24  | -    |
|                 | Cats    | >128               | >128              | 100.0        |      |      |      |      |     |   |          | 0         | 0  | 0  | 0  | 0  | 0   | 18  |      |
| Ciprofloxacin   | Dogs    | 4                  | >8                | 60.0         |      | 14   | 1    | 1    | 2   | 2 | 1        | 3         | 0  | 21 |    |    |     |     |      |
|                 | Cats    | >8                 | >8                | 100.0        |      | 0    | 0    | 0    | 0   | 0 | 0        | 0         | 2  | 16 |    |    |     |     |      |
| Colistin        | Dogs    | ≦0.5               | ≦0.5              | 0.0          |      |      |      |      | 45  | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | ≦0.5              | 0.0          |      |      |      |      | 18  | 0 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 8                  | >128              | 35.6         |      |      |      |      |     |   | •        | 5         | 21 | 3  | 2  | 4  | 1   | 9   |      |
|                 | Cats    | 8                  | >128              | 50.0         |      |      |      |      |     |   |          | 4         | 5  | 0  | 2  | 1  | 1   | 5   |      |

| Antimicrobial          |                     |            |            |          |      | MIC dis | tributions |       |        |
|------------------------|---------------------|------------|------------|----------|------|---------|------------|-------|--------|
| agent                  | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |
| Sulfamethoxazole/ Dogs | 38/2                | >152/8     | 48.9       | 19       | 1    | 3       | 4          | 0     | 18     |
| Trimethoprim Cats      | >152/8              | >152/8     | 77.8       | 4        | 0    | 0       | 1          | 0     | 13     |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.14.2. MIC distributions and resistance (%) for Klebisiella pneumoniae from diseased dogs (n=72) and cats (n=32), in 2019

| Antimicrobial   | Animal  | $MIC_{50}$         | $MIC_{90}$         | %Resistant    |      |      |      |      |     |   | MIC dist | ributions |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|--------------------|---------------|------|------|------|------|-----|---|----------|-----------|----|----|----|----|-----|-----|------|
|                 | species | WIIC <sub>50</sub> | WIIC <sub>90</sub> | 70 Kesistalit | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2        | 4         | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >128               | >128               | 87.5          |      |      |      |      |     |   |          | 1         | 1  | 7  | 18 | 4  | 3   | 38  |      |
|                 | Cats    | >128               | >128               | 96.9          |      |      |      |      |     |   |          | 1         | 0  | 0  | 3  | 2  | 0   | 26  |      |
| Cefazolin       | Dogs    | ≦2                 | >128               | 40.3          |      |      |      |      |     |   | 36       | 4         | 2  | 1  | 1  | 1  | 1   | 26  |      |
|                 | Cats    | >128               | >128               | 75.0          |      |      |      |      |     |   | 8        | 0         | 0  | 0  | 2  | 0  | 0   | 22  |      |
| Cefalexin       | Dogs    | 8                  | >128               | 41.7          |      |      |      |      |     |   | 0        | 33        | 7  | 2  | 3  | 2  | 1   | 24  |      |
|                 | Cats    | >128               | >128               | 68.8          |      |      |      |      |     |   | 0        | 4         | 5  | 1  | 2  | 0  | 1   | 19  |      |
| Cefotaxime      | Dogs    | ≦0.5               | 64                 | 36.1          |      |      |      |      | 44  | 2 | 0        | 1         | 2  | 6  | 9  | 4  | 4   |     |      |
|                 | Cats    | 16                 | 64                 | 65.6          |      |      |      |      | 11  | 0 | 0        | 0         | 2  | 3  | 6  | 7  | 3   |     |      |
| Meropenem       | Dogs    | ≦0.5               | <b>≦</b> 0.5       | 0.0           |      |      |      |      | 71  | 0 | 1        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | <b>≦</b> 0.5       | 0.0           |      |      |      |      | 31  | 1 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | ≦4                 | >128               | 29.2          |      |      |      |      |     |   |          | 47        | 1  | 3  | 2  | 6  | 5   | 8   |      |
|                 | Cats    | 64                 | >128               | 62.5          |      |      |      |      |     |   |          | 9         | 2  | 1  | 1  | 6  | 5   | 8   |      |
| Gentamicin      | Dogs    | ≦2                 | 32                 | 22.2          |      |      |      |      |     |   | 54       | 2         | 0  | 6  | 6  | 2  | 2   |     |      |
|                 | Cats    | 4                  | 32                 | 46.9          |      |      |      |      |     |   | 15       | 2         | 0  | 5  | 7  | 2  | 1   |     |      |
| Kanamycin       | Dogs    | ≦4                 | 16                 | 4.2           |      |      |      |      |     |   |          | 60        | 3  | 4  | 2  | 1  | 0   | 2   |      |
|                 | Cats    | ≦4                 | 64                 | 12.5          |      |      |      |      |     |   |          | 16        | 3  | 6  | 3  | 2  | 0   | 2   |      |
| Tetracycline    | Dogs    | 4                  | >64                | 30.6          |      |      |      |      |     |   | 30       | 18        | 2  | 1  | 1  | 3  | 17  |     |      |
|                 | Cats    | 8                  | >64                | 50.0          |      |      |      |      |     |   | 10       | 4         | 2  | 0  | 0  | 4  | 12  |     |      |
| Nalidixic acid  | Dogs    | 16                 | >128               | 47.2          |      |      |      |      |     |   |          | 28        | 7  | 3  | 1  | 3  | 1   | 29  | _    |
|                 | Cats    | >128               | >128               | 84.4          |      |      |      |      |     |   |          | 3         | 1  | 1  | 0  | 0  | 0   | 27  |      |
| Ciprofloxacin   | Dogs    | 0.25               | 16                 | 47.2          |      | 34   | 0    | 3    | 1   | 2 | 1        | 3         | 3  | 25 |    |    |     |     |      |
|                 | Cats    | >8                 | >8                 | 81.3          |      | 3    | 0    | 2    | 1   | 0 | 1        | 0         | 5  | 20 |    |    |     |     |      |
| Colistin        | Dogs    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 0.0           |      |      |      |      | 68  | 4 | 0        | 0         | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | ≦0.5               | 1                  | 0.0           |      |      |      |      | 28  | 3 | 1        | 0         | 0  | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 8                  | 64                 | 19.4          |      |      |      |      |     |   |          | 25        | 28 | 5  | 2  | 6  | 2   | 4   |      |
|                 | Cats    | ≦4                 | 32                 | 15.6          |      |      |      |      |     |   |          | 18        | 3  | 6  | 2  | 0  | 1   | 2   |      |

| Antimicrobial          |                |            |             |          |      | MIC dis | tributions |       |        |
|------------------------|----------------|------------|-------------|----------|------|---------|------------|-------|--------|
| agent                  | $MIC_{50}$     | $MIC_{90}$ | % Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |
| Sulfamethoxazole/ Dogs | $\leq$ 9.5/0.5 | >152/8     | 37.5        | 38       | 3    | 4       | 1          | 2     | 24     |
| Trimethoprim Cats      | >152/8         | >152/8     | 65.6        | 8        | 1    | 2       | 0          | 0     | 21     |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.15. MIC distributions and resistance (%) for Pseudomonas aeruginosa from diseased dogs (n=78) and cats (n=18), in 2018

| Antimicrobial   | Animal  | MIC                 | MIC        | 0/ D: - t t |      |      |      |      |     |    | MIC dist | ributions |   |    |    |    |     |     |      |
|-----------------|---------|---------------------|------------|-------------|------|------|------|------|-----|----|----------|-----------|---|----|----|----|-----|-----|------|
| agent           | species | $\mathrm{MIC}_{50}$ | $MIC_{90}$ | %Resistant  | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1  | 2        | 4         | 8 | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | >128                | >128       | -           |      |      |      |      |     |    |          | 0         | 0 | 0  | 0  | 1  | 1   | 76  |      |
|                 | Cats    | >128                | >128       | -           |      |      |      |      |     |    |          | 0         | 0 | 0  | 0  | 0  | 0   | 18  |      |
| Cefazolin       | Dogs    | >128                | >128       | -           |      |      |      |      |     |    | 0        | 0         | 0 | 0  | 0  | 0  | 0   | 78  |      |
|                 | Cats    | >128                | >128       | -           |      |      |      |      |     |    | 0        | 0         | 0 | 0  | 0  | 0  | 0   | 18  |      |
| Cefalexin       | Dogs    | >128                | >128       | -           |      |      |      |      |     |    | 0        | 0         | 0 | 0  | 0  | 0  | 0   | 78  |      |
|                 | Cats    | >128                | >128       | -           |      |      |      |      |     |    | 0        | 0         | 0 | 0  | 0  | 0  | 0   | 18  |      |
| Cefotaxime      | Dogs    | 32                  | >64        | 33.3        |      |      |      |      | 0   | 0  | 0        | 1         | 8 | 28 | 15 | 13 | 13  |     |      |
|                 | Cats    | 32                  | >64        | 38.9        |      |      |      |      | 0   | 0  | 0        | 0         | 1 | 6  | 4  | 5  | 2   |     |      |
| Meropenem       | Dogs    | ≦0.5                | 1          | 1.3         |      |      |      |      | 59  | 13 | 4        | 1         | 0 | 1  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5        | 2          | 5.6         |      |      |      |      | 11  | 4  | 2        | 0         | 0 | 1  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 64                  | 128        | -           |      |      |      |      |     |    |          | 2         | 0 | 11 | 20 | 23 | 16  | 6   |      |
|                 | Cats    | 32                  | 64         | -           |      |      |      |      |     |    |          | 0         | 2 | 2  | 10 | 3  |     | 1   |      |
| Gentamicin      | Dogs    | ≦2                  | 4          | 1.3         |      |      |      |      |     |    | 58       | 17        | 2 | 0  | 0  | 0  | 1   |     |      |
|                 | Cats    | ≦2                  | $\leq 2$   | 5.6         |      |      |      |      |     |    | 17       | 0         | 0 | 1  | 0  | 0  | 0   |     |      |
| Kanamycin       | Dogs    | 64                  | >128       | -           |      |      |      |      |     |    |          | 3         | 2 | 2  | 13 | 28 | 19  | 11  |      |
|                 | Cats    | 64                  | 128        | -           |      |      |      |      |     |    |          | 0         | 2 | 2  | 3  | 8  | 2   | 1   |      |
| Tetracycline    | Dogs    | 32                  | 64         | -           |      |      |      |      |     |    | 0        | 0         | 1 | 11 | 34 | 27 | 5   |     |      |
|                 | Cats    | 32                  | 64         | -           |      |      |      |      |     |    | 0        | 0         | 0 | 5  | 9  | 3  | 1   |     |      |
| Nalidixic acid  | Dogs    | >128                | >128       | -           |      |      |      |      |     |    |          | 1         | 0 | 0  | 1  | 7  | 19  | 50  | _    |
|                 | Cats    | >128                | >128       | -           |      |      |      |      |     |    |          | 0         | 0 | 1  | 0  | 0  | 3   | 14  |      |
| Ciprofloxacin   | Dogs    | 0.25                | 4          | 21.8        |      | 4    | 19   | 18   | 13  | 7  | 5        | 7         | 0 | 5  |    |    |     |     |      |
|                 | Cats    | 0.25                | 8          | 27.8        |      | 1    | 6    | 6    | 0   | 0  | 1        | 0         | 3 | 1  |    |    |     |     |      |
| Colistin        | Dogs    | ≦0.5                | 1          | 0.0         |      |      |      |      | 58  | 20 | 0        | 0         | 0 | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5        | 1          | 0.0         |      |      |      |      | 11  | 7  | 0        | 0         | 0 | 0  | 0  |    |     |     |      |
| Chloramphenicol | Dogs    | 128                 | >128       | -           |      |      |      |      |     |    |          | 0         | 0 | 0  | 2  | 5  | 33  | 38  |      |
| _               | Cats    | 128                 | >128       | -           |      |      |      |      |     |    |          | 0         | 0 | 0  | 0  | 2  | 8   | 8   |      |

| Antimicrobial          |            |            |            |          |      | MIC dis | stributions |       |        |
|------------------------|------------|------------|------------|----------|------|---------|-------------|-------|--------|
| agent                  | $MIC_{50}$ | $MIC_{90}$ | %Resistant | ≤9.5/0.5 | 19/1 | 38/2    | 76/4        | 152/8 | >152/8 |
| Sulfamethoxazole/ Dogs | >152/8     | >152/8     | -          | 0        | 0    | 0       | 11          | 14    | 53     |
| Trimethoprim Cats      | >152/8     | >152/8     | -          | 0        | 0    | 1       | 1           | 4     | 12     |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

Table 12.16. MIC distributions and resistance (%) for Proteus mirabilis from diseased dogs (n=81) and cats (n=17), in 2019

| Antimicrobial   | Animal  | $MIC_{50}$         | $MIC_{90}$         | %Resistant   | MIC distributions |      |      |      |     |   |    |    |    |    |    |    |     |     |      |
|-----------------|---------|--------------------|--------------------|--------------|-------------------|------|------|------|-----|---|----|----|----|----|----|----|-----|-----|------|
| agent           | species | WIIC <sub>50</sub> | WIIC <sub>90</sub> | 70 Kesistani | 0.03              | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2  | 4  | 8  | 16 | 32 | 64 | 128 | 256 | >256 |
| Ampicillin      | Dogs    | ≦4                 | 32                 | 13.6         |                   |      |      |      |     |   |    | 69 | 1  | 0  | 3  | 2  | 0   | 6   |      |
|                 | Cats    | ≦4                 | >128               | 29.4         |                   |      |      |      |     |   |    | 10 | 2  | 0  | 1  | 1  | 1   | 2   |      |
| Cefazolin       | Dogs    | 4                  | 8                  | 2.5          |                   |      |      |      |     |   | 6  | 61 | 10 | 2  | 0  | 0  | 1   | 1   |      |
|                 | Cats    | 4                  | 8                  | 5.9          |                   |      |      |      |     |   | 4  | 11 | 1  | 0  | 0  | 0  | 0   | 1   |      |
| Cefalexin       | Dogs    | 16                 | 16                 | 3.7          |                   |      |      |      |     |   | 0  | 1  | 23 | 54 | 1  | 0  | 0   | 2   |      |
|                 | Cats    | 16                 | 16                 | 5.9          |                   |      |      |      |     |   | 0  | 0  | 8  | 8  | 0  | 0  | 0   | 1   |      |
| Cefotaxime      | Dogs    | ≦0.5               | ≦0.5               | 1.2          |                   |      |      |      | 79  | 0 | 1  | 0  | 0  | 1  | 0  | 0  | 0   |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 5.9          |                   |      |      |      | 16  | 0 | 0  | 0  | 0  | 0  | 0  | 1  | 0   |     |      |
| Meropenem       | Dogs    | ≦0.5               | ≦0.5               | 0.0          |                   |      |      |      | 81  | 0 | 0  | 0  | 0  | 0  | 0  |    |     |     |      |
|                 | Cats    | <b>≦</b> 0.5       | <b>≦</b> 0.5       | 0.0          |                   |      |      |      | 17  | 0 | 0  | 0  | 0  | 0  | 0  |    |     |     |      |
| Streptomycin    | Dogs    | 16                 | 64                 | -            |                   |      |      |      |     |   |    | 4  | 32 | 27 | 3  | 8  | 2   | 5   |      |
|                 | Cats    | 8                  | 16                 | -            |                   |      |      |      |     |   |    | 2  | 7  | 7  | 0  | 1  | 0   | 0   |      |
| Gentamicin      | Dogs    | ≦2                 | ≦2                 | 1.2          |                   |      |      |      |     |   | 77 | 1  | 2  | 0  | 0  | 0  | 1   |     |      |
|                 | Cats    | ≦2                 | ≦2                 | 0.0          |                   |      |      |      |     |   | 17 | 0  | 0  | 0  | 0  | 0  | 0   |     |      |
| Kanamycin       | Dogs    | ≦4                 | 16                 | 6.2          |                   |      |      |      |     |   |    | 57 | 15 | 3  | 1  | 0  | 2   | 3   |      |
|                 | Cats    | ≦4                 | ≦4                 | 0.0          |                   |      |      |      |     |   |    | 16 | 1  | 0  | 0  | 0  | 0   | 0   |      |
| Tetracycline    | Dogs    | 32                 | 64                 | 98.8         |                   |      |      |      |     |   | 1  | 0  | 0  | 1  | 48 | 29 | 2   |     |      |
|                 | Cats    | 32                 | 64                 | 100.0        |                   |      |      |      |     |   | 0  | 0  | 0  | 0  | 13 | 4  | 0   |     |      |
| Nalidixic acid  | Dogs    | 8                  | >128               | 28.4         |                   |      |      |      |     |   |    | 3  | 49 | 6  | 5  | 7  | 1   | 10  | _    |
|                 | Cats    | 8                  | 16                 | 5.9          |                   |      |      |      |     |   |    | 0  | 11 | 5  | 0  | 1  | 0   | 0   |      |
| Ciprofloxacin   | Dogs    | ≦0.06              | 1                  | 12.3         |                   | 54   | 9    | 5    | 3   | 2 | 3  | 3  | 1  | 1  |    |    |     |     |      |
|                 | Cats    | ≦0.06              | 0.25               | 5.9          |                   | 12   | 2    | 2    | 0   | 0 | 1  | 0  | 0  | 0  |    |    |     |     |      |
| Colistin        | Dogs    | >16                | >16                | 98.8         |                   |      |      |      | 1   | 0 | 0  | 0  | 0  | 1  | 79 |    |     |     |      |
|                 | Cats    | >16                | >16                | 100.0        |                   |      |      |      | 0   | 0 | 0  | 0  | 0  | 0  | 17 |    |     |     |      |
| Chloramphenicol | Dogs    | 8                  | 64                 | 24.7         |                   |      |      |      |     |   |    | 4  | 43 | 14 | 5  | 7  | 4   | 4   |      |
|                 | Cats    | 8                  | 32                 | 17.6         |                   |      |      |      |     |   |    | 1  | 9  | 4  | 3  | 0  | 0   | 0   |      |

| Antimicrobial          |                |            |            |          |      | MIC dis | tributions |       |        |
|------------------------|----------------|------------|------------|----------|------|---------|------------|-------|--------|
| agent                  | $MIC_{50}$     | $MIC_{90}$ | %Resistant | ≦9.5/0.5 | 19/1 | 38/2    | 76/4       | 152/8 | >152/8 |
| Sulfamethoxazole/ Dogs | $\leq 9.5/0/5$ | >152/8     | 17.3       | 65       | 0    | 2       | 1          | 0     | 13     |
| Trimethoprim Cats      | $\leq 9.5/0/5$ | >152/8     | 11.8       | 15       | 0    | 0       | 0          | 0     | 2      |

MIC values equal to or lower than the lowest concentration tested are presented as the lowest concentration.

# **Editor:**

# Hideto Sekiguchi (DVM)

Section Leader

Assay Division II, Veterinary AMR Center

E-mail; hideto\_sekiguchi050@maff.go.jp

National Veterinary Assay Laboratory

Ministry of Agriculture, Forestry and Fisheries

1-15-1 Tokura Kokubunji, Tokyo 185-8511, Japan

#### **Authors:**

- · Hideto Sekiguchi (Section Leader)
- · Michiko Kawanishi (Senior Research Officer )
- Mari Matsuda (Chief Researcher)
- Yuta Hosoi (Chief Inspector)
- · Yukari Hiraoka
- · Saki Harada
- · Mio Kumakawa

# **Contributors:**

- · Erina Shudo
- · Kazue Miyazawa
- · Hitoshi Abo
- · Konomi Moriya
- · Toshiko Takaoka
- Eiko Arai (FAMIC)

This report includes data gathered between 2018 and 2019, as well as some data from 1999 onward.

This report is published by JVARM-Japanese Veterinary

**Antimicrobial Resistance Monitoring System**