豚アクチノバシラス・プルロニューモニエ(1・2・5型、 組換え型毒素) 感染症・マイコプラズマ・ハイオニューモ ニエ感染症混合(アジュバント加) 不活化ワクチン(シード)

令和2年10月2日(告示第1865号)新規追加

1 定義

シードロット規格に適合したアクチノバシラス・プルロニューモニエ(以下この項において「App」という。)1型菌、2型菌及び5型菌の培養菌液を不活化したもの、同規格に適合した組換え大腸菌で産生される無毒変異型App毒素(rApx I、rApx II 及びrApxⅢ)を可溶化したもの並びに同規格に適合したマイコプラズマ・ハイオニューモニエ(以下この項において「Mhp」という。)の培養菌液を不活化したものにそれぞれアルミニウムゲルアジュバントを添加し、これらを混合したワクチンである。

- 2 製法
- 2.1 製造用株
- 2.1.1 App 1 型菌
- 2.1.1.1 名称

App 41-1株(血清型1型)又はこれと同等と認められた株

2.1.1.2 性状

細胞毒素Apx I 及びApx II を産生する。感受性豚の気管内に接種すると、胸膜肺炎を惹起する。

- 2.1.1.3 マスターシード菌
- 2.1.1.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、チョコレート寒天培地(付記1)又は適当と認められた培地で増殖させ、保存用の容器に分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60[°]C以下又は凍結乾燥して5[°]C以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.1.4 ワーキングシード菌
- 2.1.1.4.1 増殖、継代及び保存

ワーキングシード菌は、適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.1.5 プロダクションシード菌
- 2.1.1.5.1 増殖及び保存

プロダクションシード菌は、適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して -60° C以下又は凍結乾燥して 5° C以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

2.1.2 App 2 型菌

2.1.2.1 名称

App SHP-1株(血清型2型)又はこれと同等と認められた株

2.1.2.2 性状

細胞毒素ApxⅡ及びApxⅢを産生する。感受性豚の気管内に接種すると、胸膜肺炎を惹起する。

- 2.1.2.3 マスターシード菌
- 2.1.2.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、チョコレート寒天培地又は適当と認められた培地で増殖させ、保存用の容器に分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.2.4 ワーキングシード菌
- 2.1.2.4.1 増殖、継代及び保存

ワーキングシード菌は、適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.2.5 プロダクションシード菌
- 2.1.2.5.1 増殖及び保存

プロダクションシード菌は、適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して-60[°]C以下又は凍結乾燥して5[°]C以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.1.3 App 5 型菌
- 2.1.3.1 名称

App Ng-2株(血清型5型)又はこれと同等と認められた株

2.1.3.2 性状

細胞毒素Apx I 及びApx II を産生する。感受性豚の気管内に接種すると、胸膜肺炎を惹起する。

- 2.1.3.3 マスターシード菌
- 2.1.3.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、チョコレート寒天培地又は適当と認められた培地で増殖させ、保存用の容器に分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.3.4 ワーキングシード菌
- 2.1.3.4.1 増殖、継代及び保存

ワーキングシード菌は、適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して−60℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.3.5 プロダクションシード菌
- 2.1.3.5.1 増殖及び保存

プロダクションシード菌は、適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して−60℃以下又は凍結乾燥して5℃以下で保 存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.1.4 rApx I 産生組換え大腸菌
- 2.1.4.1 名称

rApx I 産生組換え大腸菌ESN1113株又はこれと同等と認められた株

2.1.4.2 性狀

アンピシリン及びテトラサイクリン耐性を示し、App41-1株染色体DNA由来 $apx\ I$ A遺伝子を挿入したプラスミドpSN110を有する。イソプロピルチオガラクトシド(以下この項において「IPTG」という。)を添加した培地により発育させると、 $rApx\ I$ たん白を産生することがSDS-ポリアクリルアミドゲル電気泳動法により確認される。

- 2.1.4.3 マスターシード菌
- 2.1.4.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、LB-Amp寒天培地(付記2)又は適当と認められた培地で増殖させ、保存用の容器に分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.4.4 ワーキングシード菌
- 2.1.4.4.1 増殖、継代及び保存

ワーキングシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.4.5 プロダクションシード菌
- 2.1.4.5.1 増殖及び保存

プロダクションシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して-60[°]C以下又は凍結乾燥して5[°]C以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.1.5 rApx II 産生組換え大腸菌
- 2.1.5.1 名称

rApx Ⅱ産生組換え大腸菌ESN1074株又はこれと同等と認められた株

2.1.5.2 性状

アンピシリン及びテトラサイクリン耐性を示し、App Ng-2株染色体DNA由来apx II A遺伝子を挿入したプラスミドpSN63を有する。IPTGを添加した培地により発育させると、rApx II たん白を産生することがSDS-ポリアクリルアミドゲル電気泳動法により確認される。

- 2.1.5.3 マスターシード菌
- 2.1.5.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖させ、保存用の容器に

分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.5.4 ワーキングシード菌
- 2.1.5.4.1 増殖、継代及び保存

ワーキングシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して-60[°]C以下又は凍結乾燥して5[°]C以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.5.5 プロダクションシード菌
- 2.1.5.5.1 増殖及び保存

プロダクションシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.1.6 rApxⅢ産生組換え大腸菌
- 2.1.6.1 名称

rApx Ⅲ産生組換え大腸菌ESN1166株又はこれと同等と認められた株

2.1.6.2 性状

アンピシリン及びテトラサイクリン耐性を示し、App SHP-1株染色体DNA由来*apxⅢ A*遺伝子を挿入したプラスミドpSN148を有する。IPTGを添加した培地により発育させると、rApxⅢたん白を産生することがSDS-ポリアクリルアミドゲル電気泳動法により確認される。

- 2.1.6.3 マスターシード菌
- 2.1.6.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖させ、保存用の容器に 分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-60^{\circ} \circ 以下又は凍結乾燥して5 \circ \circ \circ 以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.6.4 ワーキングシード菌
- 2.1.6.4.1 増殖、継代及び保存

ワーキングシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖及び継代する。

ワーキングシード菌は、凍結して-60℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.6.5 プロダクションシード菌
- 2.1.6.5.1 増殖及び保存

プロダクションシード菌は、LB-Amp寒天培地又は適当と認められた培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して -60° 以下又は凍結乾燥して 5° 以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.1.7 Mhp
- 2.1.7.1 名称

Mhp MI-3株又はこれと同等と認められた株

2.1.7.2 性狀

Mhp基準株に一致する生物学的性状を示す。

- 2.1.7.3 マスターシード菌
- 2.1.7.3.1 作製、保存及び小分製品までの最高継代数

マスターシード菌は、適当と認められた液状培地で増殖させ、保存用の容器に分注する。

分注したマスターシード菌は、特定の製造番号又は製造記号を付し、凍結して-70℃以下又は凍結乾燥して5℃以下で保存する。

マスターシード菌について、3.1.1の試験を行う。

マスターシード菌は、ワクチンの製造以外の目的で継代しない。マスターシード菌から小分製品までの最高継代数は、10代以内でなければならない。ただし、農林水産大臣が特に認めた場合には、その継代数以内とする。

- 2.1.7.4 ワーキングシード菌
- 2.1.7.4.1 増殖、継代及び保存

ワーキングシード菌は、適当と認められた液状培地で増殖及び継代する。

ワーキングシード菌は、凍結して-70℃以下又は凍結乾燥して5℃以下で保存する。

ワーキングシード菌について、3.1.2の試験を行う。

- 2.1.7.5 プロダクションシード菌
- 2.1.7.5.1 増殖及び保存

プロダクションシード菌は、適当と認められた液状培地で増殖する。

プロダクションシード菌を保存する場合は、凍結して-70^{\circ}以下又は凍結乾燥して5^{\circ}以下で保存する。

プロダクションシード菌を保存する場合について、3.1.3の試験を行う。

- 2.2 製造用材料
- 2.2.1 培地
- 2.2.1.1 App 1、2及び5型菌

製造に適当と認められた寒天培地及び液状培地を用いる。

2.2.1.2 組換え大腸菌

製造に適当と認められた寒天培地及び液状培地を用いる。

2.2.1.3 Mhp

製造に適当と認められた液状培地を用いる。

- 2.3 原液
- 2.3.1 App 1、2及び5型菌
- 2.3.1.1 培養

App各株のプロダクションシード菌をそれぞれ寒天培地に接種し、培養したものを液状培地に接種し、培養する。これを更に液状培地に接種し、培養したものを各株の培養菌液とする。

培養菌液について、3.2.1の試験を行う。

2.3.1.2 不活化及び集菌

各株の培養菌液をホルマリン又は適当と認められた不活化剤で不活化した後、遠心して得られた 菌体を、リン酸緩衝食塩液(付記3)に均一に浮遊し、チメロサール又は適当と認められた保存剤 を添加したものを、各株の不活化菌液とする。

不活化菌液について、3.3の試験を行う。

2.3.1.3 濃度調整

各株の不活化菌液を総菌数が規定量となるようにリン酸緩衝食塩液で希釈し、チメロサール又は 適当と認められた保存剤を添加したものを、各株の原液とする。

原液について、3.6.1の試験を行う。

2.3.2 rApx I、II 及びIII たん白

2.3.2.1 培養

組換え大腸菌各株のプロダクションシード菌をそれぞれ寒天培地に接種し、培養したものを液状培地に接種し、培養する。これを更に液状培地に接種し、培養したものを、各株の培養菌液とする。 培養菌液について、3.2.2の試験を行う。

2.3.2.2 発現培養

各株の培養菌液にIPTGを添加した液状培地を加えて培養した菌液を、各株の発現菌液とする。 発現菌液について、3.4の試験を行う。

2.3.2.3 集菌及び破砕

各株の発現菌液を遠心し、菌体を発現菌液量の1/25~1/100量の適当と認められた緩衝液に浮遊し、これにリゾチームを添加し、撹拌する。これに適当と認められた緩衝液を加え、高圧細胞破砕装置により処理を行ったものを、各株の破砕菌液とする。

破砕菌液について、3.5の試験を行う。

2.3.2.4 rApxたん白の回収と可溶化

各株の破砕菌液を遠心し、各rApxたん白を発現菌液量の1/100~1/250量の滅菌蒸留水に浮遊する。 これに、適当と認められた可溶化剤を加えて可溶化し、遠心する。得られた上清を、各rApxたん 白の原液とする。

原液について、3.6.1、3.6.2及び3.6.3の試験を行う。

2.3.3 Mhp

2.3.3.1 培養

プロダクションシード菌を培地に接種して増菌・継代培養後、更に培地に接種して培養したもの を培養菌液とする。

培養菌液について、3.2.3の試験を行う。

2.3.3.2 原液の調製

培養菌液にホルマリン又は適当と認められた不活化剤を加えて不活化した後、水酸化アルミニウムゲルを加えて菌体を吸着させる。菌体吸着水酸化アルミニウムゲルを回収してリン酸緩衝食塩液に懸濁し、ホルマリン及びチメロサール又は適当と認められた保存剤を添加したものを原液とする。原液について、3.6.1、3.6.4及び3.6.5の試験を行う。

2.4 最終バルク

2.4.1 Appバルク

App各株の原液をリン酸緩衝食塩液及び水酸化アルミニウムゲルで総菌数が規定濃度になるように希釈して調製する。これにホルマリン及びチメロサール又は適当と認められた保存剤を添加したものを、各株のAppバルクとする。

2.4.2 rApxバルク

rApx I、Ⅱ及びⅢたん白の各原液をそれぞれたん白濃度を調整して混合した後、適当と認められた溶媒及び水酸化アルミニウムゲルを加えて感作し、各rApxたん白を水酸化アルミニウムゲルに吸着させる。遠心によりrApxたん白の吸着した水酸化アルミニウムゲルを回収し、元の量の1/2量~等量のリン酸緩衝食塩液に再浮遊する。これに、ホルマリン及びチメロサール又は適当と認められた保存剤を添加したものを、rApxバルクとする。

2.4.3 Mhpバルク

原液をリン酸緩衝食塩液及び水酸化アルミニウムゲルで総菌数が規定濃度になるように希釈して

調製する。これに、ホルマリン及びチメロサール又は適当と認められた保存剤を添加したものを、 Mhpバルクとする。

2.4.4 最終バルク

Appバルク、rApxバルク及びMhpバルクを混合したものを最終バルクとする。

2.5 小分製品

最終バルクを小分容器に分注し、小分製品とする。 小分製品について3.7の試験を行う。

- 3 試験法
- 3.1 製造用株の試験
- 3.1.1 マスターシード菌の試験
- 3.1.1.1 同定試験
- 3.1.1.1.1 App菌株の同定試験

シードロット規格の1.4.2.4.1.1を準用して試験するとき、適合しなければならない。

3.1.1.1.2 組換え大腸菌株の同定試験

シードロット規格の1.4.2.5.2.1.1を準用して試験するとき、適合しなければならない。

3.1.1.1.3 Mhpの同定試験

シードロット規格の1.4.2.4.1.1を準用して試験するとき、適合しなければならない。

- 3.1.1.2 夾雜菌否定試験
- 3.1.1.2.1 App菌株の夾雑菌否定試験
 - 一般試験法の無菌試験法1を準用して試験するとき、適合しなければならない。
- 3.1.1.2.2 組換え大腸菌株の夾雑菌否定試験
 - 一般試験法の無菌試験法1を準用して試験するとき、組換え大腸菌以外の発育を認めてはならない。
- 3.1.1.2.3 Mhp菌株の夾雑菌否定試験
 - 一般試験法の無菌試験法1を準用して試験するとき、適合しなければならない。
- 3.1.1.3 組換え遺伝子等安定性確認試験
- 3.1.1.3.1 組換え大腸菌株の組換え遺伝子等安定性確認試験
 - 一般試験法の組換え遺伝子等安定性確認試験法を準用して試験をするとき、適合しなければならない。
- 3.1.2 ワーキングシード菌の試験
- 3.1.2.1 夾雑菌否定試験
 - 3.1.1.2を準用して試験するとき、適合しなければならない。
- 3.1.3 プロダクションシード菌の試験

貯蔵するものについて次の試験を行う。

- 3.1.3.1 夾雜菌否定試験
 - 3.1.1.2を準用して試験するとき、適合しなければならない。
- 3.2 培養菌液の試験
- 3.2.1 App菌株の夾雑菌否定試験
 - 3.1.1.2.1を準用して試験するとき、適合しなければならない。
- 3.2.2 組換え大腸菌株の夾雑菌否定試験
 - 3.1.1.2.2を準用して試験するとき、適合しなければならない。
- 3.2.3 Mhp培養菌液の試験
- 3.2.3.1 夾雜菌否定試験
 - 3.1.1.2.3を準用して試験するとき、適合しなければならない。
- 3.2.3.2 同定試験

以下の試験方法で試験するとき、適合しなければならない。ただし、農林水産大臣が特に認めた場合には、その試験方法とする。

3.2.3.2.1 試験材料

検体をトリプトース・ホスフェイト・ブロスで10倍階段希釈したものを試料とする。

3.2.3.2.2 試験方法

BHL寒天培地(付記4)及び抗Mhp兎免疫血清(付記5)を染み込ませたろ紙ディスクを用い、 試料についてマイコプラズマ発育阻止試験(付記6)を実施する。

3.2.3.2.3 判定

試料のいずれかにおいて、ろ紙ディスクの周辺に明瞭な発育阻止帯を認めなければならない。

- 3.2.3.3 総菌数試験
- 3.2.3.3.1 試験材料

検体を遠心し、得られた沈渣を適当量のリン酸緩衝食塩液に浮遊したものを試料とする。

3.2.3.3.2 試験方法

分光光度計を用い、試料の吸光度を測定する。

3.2.3.3.3 判定

標準検量線及び吸光度値から総菌数を算出するとき、検体中の総菌数は、 $1\,\mathrm{mL}$ 中 $1.4\,\times10^{\,8}$ 個以上でなければならない。

- 3.3 App菌株の不活化菌液の試験
- 3.3.1 不活化試験
- 3.3.1.1 試験材料

検体及び製造に適当と認められた液体培地を用いる。

3.3.1.2 試験方法

検体0.5mLずつを20mLの培地2本以上に接種し、37℃で2日間培養する。

3.3.1.3 判定

菌の発育を認めてはならない。

- 3.3.2 総菌数試験
- 3.3.2.1 試験材料

検体をリン酸緩衝食塩液で適度に希釈したものを、試料とする。

3.3.2.2 試験方法

試料の吸光度を分光光度計で測定する。

3.3.2.3 判定

標準検量曲線、吸光度の測定値及び検体の希釈倍率から総菌数を算出する。

検体中の総菌数は、 $1\,\mathrm{mL}$ 中 3×10^{10} 個以上でなければならない。

- 3.4 発現菌液の試験
- 3.4.1 発現たん白確認試験
- 3.4.1.1 試験材料

大腸菌各株の発現菌液に等量のサンプルバッファー(付記7)を加えて煮沸したものを試料とする。

3.4.1.2 試験方法

試料の 10μ Lを10w/v% SDS-ポリアクリルアミドゲルで電気泳動した後、クマシー・ブルー染色により泳動像を観察する。

3.4.1.3 判定

ESN1113株及びESN1074株の検体には分子量約105kDaの位置に、ESN1166株の検体には分子量約120kDaの位置に明瞭なバンドを認めなければならない。

3.5 破砕菌液の試験

- 3.5.1 破砕確認試験
- 3.5.1.1 試験材料

破砕菌液を試料とする。

3.5.1.2 試験方法

検体0.01mLをスライド・グラス上に1 cm 2 の区画に塗抹し、乾燥させ、火炎固定し、ギムザ染色又はグラム染色する。

3.5.1.3 判定

鏡検により、ほぼ全ての菌体の破砕像が観察されなければならない。

- 3.6 原液の試験
- 3.6.1 無菌試験

一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

- 3.6.2 同定試験
- 3.6.2.1 試験材料

各rApxたん白の原液を水又は $2 \sim 4 \text{ mol/L}$ 尿素液によりたん白量 $300 \, \mu \, \text{g/mL}$ となるように希釈したものを、試料とする。

3.6.2.2 試験方法

3.4.1.2を準用して試験する。

3.6.2.3 判定

rApx I 及びⅡ たん白の試料には分子量約105kDaの位置に、rApxⅢ たん白の試料には約120kDaの位置に、明瞭なバンドを認めなければならない。

- 3.6.3 たん白定量試験
- 3.6.3.1 試験材料

検体を $20\sim 200 \mu \text{ g/mL}$ となるように 2 倍階段希釈したものを試料とする。

3.6.3.2 試験方法

Lowry法により吸光度を測定し、原液 1 mL中のたん白量を算出する。

3.6.3.3 判定

各rApxたん白の原液のたん白量は、1mL中4mg以上でなければならない。

- 3.6.4 不活化試験
- 3.6.4.1 試料

検体を用いる。

3.6.4.2 試験方法

BHL培地(付記8)に試料を接種し、37℃で14日間培養する。培養中に培地の黄変が認められたときは、BHL寒天培地に塗抹し、37℃で14日間微好気的に培養して、Mhpの発育の有無を調べる。

3.6.4.3 判定

Mhpの発育を認めてはならない。

- 3.6.5 アルミニウム定量試験
 - 一般試験法のアルミニウム定量法を準用して試験するとき、アルミニウムの含有量は、1 mL中 36mg以下でなければならない。
- 3.7 小分製品の試験
- 3.7.1 特性試験

一般試験法の特性試験法を準用して試験するとき、固有の色調を有する液体でなければならず、 異物及び異臭を認めてはならない。小分容器ごとの性状は、均一でなければならない。

- 3.7.2 pH測定試験
- 一般試験法のpH測定試験法を準用して試験するとき、pHは、固有の値を示さなければならない。 3.7.3 無菌試験

一般試験法の無菌試験法を準用して試験するとき、適合しなければならない。

3.7.4 チメロサール定量試験

一般試験法のチメロサール定量法を準用して試験するとき、適合しなければならない。

3.7.5 ホルマリン定量試験

一般試験法のホルマリン定量法を準用して試験するとき、ホルマリンの含有量は、0.25vol%以下でなければならない。

3.7.6 アルミニウム定量試験

一般試験法のアルミニウム定量法を準用して試験するとき、アルミニウムの含有量は1mL中3.3mg以下でなければならない。

3.7.7 毒性限度確認試験

一般試験法の毒性限度確認試験法1を準用して試験するとき、適合しなければならない。ただし、 注射後の体重測定は、4日目とする。

- 3.7.8 力価試験
- 3.7.8.1 App感染症力価試験
- 3.7.8.1.1 試験材料
- 3.7.8.1.1.1 注射材料

試験品をリン酸緩衝食塩液又は適当と認められた希釈液で20倍に希釈したものを注射材料とする。

3.7.8.1.1.2 試験動物

約3週齢のマウスを用いる。

3.7.8.1.1.3 攻擊用菌液

App 1 型菌AH-1株又は適当と認められた株、App 2 型菌SHP-1株又は適当と認められた株及びApp 5 型菌Ng-2株又は適当と認められた株をそれぞれ試験用培地 1 (付記 9) に移植し、37℃で16時間 培養する。集落を釣菌して試験用培地 2 (付記 10) に移植し、37℃で 4~8 時間振とう培養したものを各攻撃用菌液とする。

3.7.8.1.2 試験方法

試験動物70匹以上を試験群、70匹以上を対照群とする。

注射材料0.5mLずつを試験群の腹腔内に注射する。

注射後14日目に、試験群及び対照群をそれぞれ10匹ずつの7群、計14群に分ける。1型菌攻撃用菌液及び2型菌攻撃用菌液をハートインフュジョン培地で2段階、5型菌攻撃用菌液をハートインフュジョン培地で3段階に希釈し、更にこれらの希釈菌液を10w/v%ムチン液で10倍に希釈したものを、試験群及び対照群にそれぞれ0.5mLずつ腹腔内に注射して攻撃した後、7日間臨床観察する。

3.7.8.1.3 判定

各攻撃菌株の対照群の80%以上が死亡した攻撃菌量において、試験群では80%以上が耐過生存しなければならない。

- 3.7.8.2 Mhp感染症力価試験
- 3.7.8.2.1 試験材料
- 3.7.8.2.1.1 注射材料

試験品を注射材料とする。

3.7.8.2.1.2 試験動物

6~7週齢のマウスを用いる。

3.7.8.2.2 試験方法

試験動物の20匹を試験群とし、5匹を対照群とする。

注射材料1.0mLずつを試験群の腹腔内に注射する。注射後4週間目に試験群及び対照群から得られた各個体の血清について、二抗体サンドイッチELISAを行う。

試験群及び対照群の血清並びに参照陽性血清(付記11)を希釈液(付記12)で10倍に希釈したも

のを、更に希釈液で2倍階段希釈する。これらの血清希釈液を抗原吸着プレート(付記13)の穴に $100\,\mu$ Lずつ加え、希釈液のみの穴を血清対照とする。 $4\,\mathrm{C}$ で18時間反応させた後、洗浄液(付記 14)で3回洗浄する。次に各穴に標識抗体(付記15)を $100\,\mu$ Lずつ加え、 $37\,\mathrm{C}$ で90分間反応させた後、洗浄液で3回洗浄する。その後、基質液(付記16)を各穴に $100\,\mu$ Lずつ加え、 $37\,\mathrm{C}$ で30分間反応させた後、 $3\,\mathrm{mol/L}$ 水酸化ナトリウム溶液を各穴に $50\,\mu$ Lずつ加えて反応を停止させ、波長 $405\,\mathrm{nm}$ で各穴の吸光度を測定する。

3.7.8.2.3 判定

血清対照の各穴の吸光度値の平均値+0.5以上の吸光度値を示した血清の最高希釈倍数を抗体価とする。

試験群では、70%以上が抗体価2,560倍以上でなければならない。この場合、対照群では、全て抗体価320倍以下でなければならない。また、参照陽性血清は、抗体価 $2,560\sim5,120$ 倍を示さなければならない。

4 貯法及び有効期間

有効期間は、製造後3年間とする。ただし、農林水産大臣が特に認めた場合には、その期間とする。

付記1 チョコレート寒天培地

1,000mL 中

加温溶解した後、121℃で15分間高圧滅菌を行う。約80℃に冷却した後、馬脱線維血を10vol%となるように添加する。

付記2 LB-Amp寒天培地

1,000mL中

カゼインペプトン10 g酵母エキス5 g塩化ナトリウム5 g寒天15 g水残 量

加温溶解した後、pHを7.4~7.6に調整し、121^{\mathbb{C}}で15分間高圧滅菌する。寒天が固まらない程度に冷却した後、アンピシリンを最終力価250 μ g/mLとなるように添加する。

付記3 リン酸緩衝食塩液

1,000mL 中

塩化ナトリウム8.5 gリン酸水素ニナトリウム十二水和物2.435 gリン酸ニ水素カリウム0.435 g水残量

pH を6.8 ~7.2 に調整して、121 ℃で20 分間高圧滅菌又はろ過滅菌する。

付記4 BHL寒天培地

BHL培地1,000mL分の基礎培地に精製寒天4.0gを加え、加温溶解した後、115℃で15分間滅菌する。寒天が固まらない程度に冷却し、あらかじめろ過滅菌された付記8と同様の添加物を混合し、直径90mmのシャーレに分注する。

付記5 抗Mhp兎免疫血清

製造用株で兎を免疫して得た血清であって、少量に小分けして−20℃に保存したものである。 1 mL当たり約106個の菌液を用いた発育阻止試験においては、約5 mmの阻止帯を示す。

付記6 マイコプラズマ発育阻止試験

寒天平板の一端に試料を約0.05mL滴下し、培地を傾けて試料を他端に向け流下させる。表面 が乾燥した後、あらかじめ抗Mhp兎免疫血清を浸み込ませて乾燥させたろ紙ディスクを流線の 中央に置き、37℃で14 日間、微好気的に培養する。培養後観察すると、ディスクから拡散した 抗血清によりその周辺におけるMhpの集落の発育が阻止され、阻止帯が形成される。Mhp以外 のマイコプラズマに対しては、発育阻止は起こらない。

付記7 サンプルバッファー

1.000mL中

0.25mol/Lトリス塩酸緩衝液(pH 6.8)	500 mL
20w/v%ラウリル硫酸ナトリウム溶液	260 mL
グリセリン	200 mL
ジチオスレイトール	1.54 g
ブロムフェノールブルー	1.00 g
水	残 量

付記8 BHL培地

1,000mL中

基礎培地

ブルセラブロス	5.8 g
ハンクス液粉末	4.9 g
ラクトアルブミン水解物	2.0 g
水	750 mL
和物	

添

非働化豚血清 200 mL 5w/v%酵母エキス液 50 mL クロキサシリンナトリウム 100 mg

又は

アンピシリンナトリウム 250 mg

基礎培地を加温溶解した後、115℃で15分間滅菌する。冷却した後、あらかじめろ過滅菌さ れた添加物を混合し、pHを7.5~7.7に調整する。なお、添加物として2.5w/v%酢酸タリウム水 溶液を4mL加えてもよい。

付記9 試験用培地1

ハートインフュジョン寒天培地を121℃で15分間高圧滅菌し、冷却した後、ろ過滅菌した鶏 非働化血清を5 vol%及び $0.1 \text{w/v}\%\beta$ ーニコチンアミドアデニンジヌクレオチド(以下この項に おいて「 β -NAD」という。) 液を 1 vol%の割合に加えたもの。

付記10 試験用培地2

ハートインフュジョン培地を121℃で15分間高圧滅菌し、冷却後、ろ過滅菌した鶏非働化血

清を 5 vol %及び0.1w/v % β -NAD液を 1 vol%の割合に加えたもの。

付記11 参照陽性血清

Mhp J 株又はこれと同等の免疫原性を有する株で免疫したマウスの血清であって、二抗体サンドイッチELISA抗体価が2,560~5,120倍となるように濃度を調整し、凍結又は凍結乾燥したもの。

付記12 希釈液

1,000mL中

塩化ナトリウム8.0 g塩化カリウム0.2 gリン酸二水素カリウム0.2 g無水リン酸水素二ナトリウム1.15 g水残量

121℃で15分間高圧滅菌する。

付記13 抗原吸着プレート

Mhp J 株又はこれと同等の免疫原性を有する株に対する兎免疫血清(付記17)を炭酸緩衝液(付記18)で適当な濃度に希釈した後、96穴マイクロプレートの各穴に $100\,\mu$ Lずつ加え、 $4\,$ で18時間反応させる。その後、洗浄液で洗浄する。0.1 w/v%ゼラチン液(付記19)を各穴に $100\,\mu$ Lずつ加え、 $4\,$ で18時間反応させる。さらに、洗浄液で洗浄した後、ポリソルベート20抽出抗原(付記20)を希釈液でたん白量 $12.5\,\mu$ g/mLになるように希釈し、各穴に $100\,\mu$ Lずつ加え、 $4\,$ で18時間反応させた後、洗浄液で洗浄したもの。

付記14 洗浄液

ポリソルベート20 0.5mL及び希釈液1,000mLを混合したもの。

付記15 標識抗体

アルカリホスファターゼ標識抗マウスIgG抗体を希釈液で至適濃度に希釈したもの。

付記16 基質液

pーニトロフェニルリン酸二ナトリウム六水和物100mgを基質緩衝液(付記21)100mLで溶解したもの。

付記17 兎免疫血清

Mhp J 株又はこれと同等の免疫原性を有する株で免疫した兎の血清であって、マイコプラズマ発育阻止試験において直径 3 mm以上の阻止帯を示すもの。

付記18 炭酸緩衝液

A液:炭酸ナトリウム5.3gを水に溶解し、全量を1,000mLとする。

B液:炭酸水素ナトリウム4.2gを水に溶解し、全量を1,000mLとする。

A液とB液を混合し、pHを9.6に調整する。

付記19 0.1w/v%ゼラチン液

ゼラチン1.0gを希釈液1,000mLで溶解したもの。

付記20 ポリソルベート20抽出抗原

(1) トリス緩衝液

トリスヒドロキシメチルアミノメタン3.03g及び塩化ナトリウム14.61gを水に溶解し、全量を1,000mLとしたもの。

(2) 2 vol%ポリソルベート20加トリス緩衝液 ポリソルベート $20 \ 20$ mL及びトリス緩衝液980mLを混合したもの。

付記21 基質緩衝液

塩化マグネシウム六水和物0.049g及びジエタノールアミン96mLを水に溶解した後、pHを9.8に調整し、全量を1,000mLとしたもの。