15 October, 2018
OIE Regional Short-term Training on AMR, Tokyo

Food Safety Risk Assessment in Japan ∼ Foodborne AMR bacteria ∼

Dr. Hisako OKURA

Deputy Director, Second Risk Assessment Division Food Safety Commission Secretariat Cabinet Office, Government of Japan

Topics covered

- 1) FSCJ who we are? how we work?
- 2) Foodborne AMR risk assessment at FSCJ
- 3) 《Example》 Colistin risk assessment incl. following FSCJ's research and survey program

- Food Safety Basic Act enforced (1 July 2003)
 - ✓ Principle: protection of our citizen's health is a top priority
 - ✓ Introduction of Risk Analysis to food safety administration

✓ Food Safety Commission of Japan (FSCJ) established as a part of Japanese Cabinet Office, independently from risk managing ministries such as MHLW and MAFF (1 July 2003)

Relationship between FSCJ and other ministries

Request for risk assessment

Scientific

Notification of risk assessment/opinion/recommendation

FSCJ

Risk assessment

(Assessment of effects of food on human health)

Neutral Fair

Gathering

and exchange

of information

Foreign governments, international organizations among others

Risk Communication

Consumer Affairs Agency (CAA)

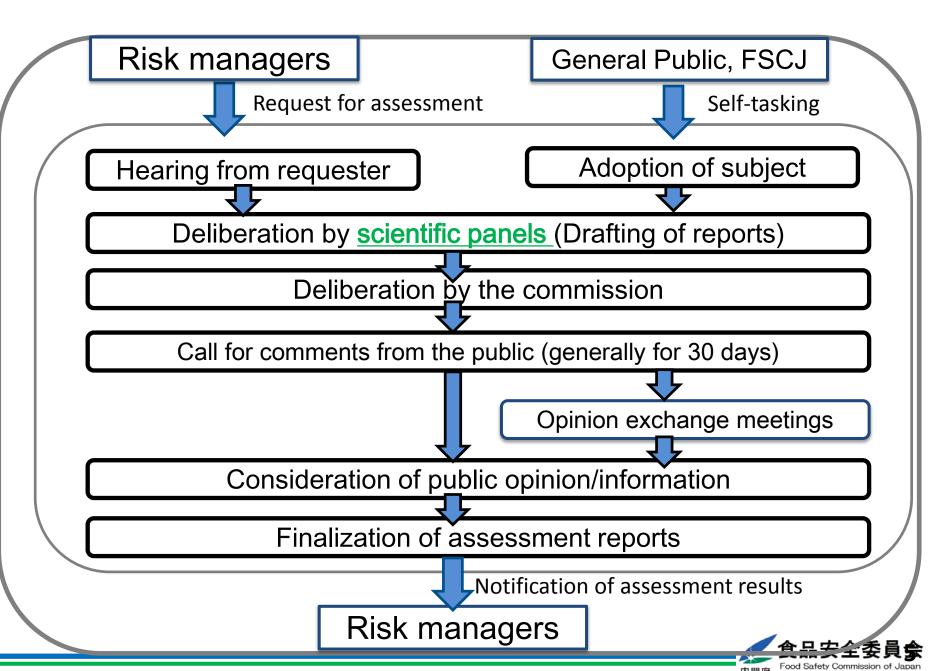
Risk management in relation to Foods for Specified Health Uses (FOSHU)

Ministry of Agriculture, Forestry and Fisheries (MAFF)

- Approval of VMPs
- Designation of feed additives
- JVARM

etc.

Ministry of Health, Labour and Welfare (MHLW)


- Setting MRLs
- AMR monitoring in medical settings

etc.

Ministry of the Environment

Risk management in relation to environment protection

Scientific Panels

(on-going as of October 2018)

- Food additives
- Pesticides
- Veterinary Medicinal Products
- Apparatuses, Containers and Packages
- Contaminants in Foods
- Microorganisms and Viruses
- Prions
- Natural Toxins and Mycotoxins

- Genetically Modified Foods
- Novel Foods
- Feeds and Fertilizers

(Working Group)

- Food Additives as Nutrients
- Antimirobial-Resistant Bacteria
- New Risk Assessment Methodology Development
- Hexavalent Chromium
- Food Allergy (new)
- Flavouring Substances in Foods (new)

Risk Assessment AMR in FSCJ

- Food Safety Basic Act (Jul. 2003) enforced to protect nation's health
- Risk Analysis introduced to food safety administration inc. AMR issues
- > According to the Act, MAFF has requested FSCJ for risk assessment for:

AMR bacteria selected by the use of antimicrobial <u>feed additives</u> and <u>VMP</u> <u>of the same class</u> (<u>Dec. 2003</u>)

[Zinc-bacitracin, monencin Na, etc.:
26 antibiotics, 11 classes]

Antimicrobial <u>veterinary medicinal</u> <u>products (VMP) on approval and reexamination</u>

[fluoroquinolones, tulathromycin, pirlimycin, etc.]

FSCJ's task

Possibility and degree of <u>reduction or loss of clinical effectiveness</u> of human antibiotics when a person has developed an <u>infectious disease due to AMR bacteria selected in animals and transmitted via food</u>, using the Guideline & CIA List

➤ MAFF formulates and implements risk management (RM) measures according to the results

AMR risk management measures taken by MAFF based on risk assessment results

FACJ risk	Examples of risk management		
assessment results	Veterinary medicinal products	Feed additives	
High	Revocation of approvalTemporary ban of use		
	Restriction of the usageShortened application periods	- Revocation of designation	
Medium	 Strict use as a second choice drug Enhanced monitoring (e.g. increasing number of samples) 		
Low	Continued monitoring		
Negligible	- Continued monitoring	- Continued monitoring	

Food Safety Commission Establishing assessment guideline

"Assessment Guideline for the Effect of Food on Human Health regarding Antimicrobial-Resistant Bacteria Selected by Antimicrobial Use in Food Producing Animals"

(30 Sep. 2004, Decision, FSCJ)

<Assessment body>
Food Safety Commission

"WG on Antimicrobial-resistant Bacteria"
(Until 30 Sep. 2004, Joint Expert Committee on Feed and Fertilizer, etc. / Microorganisms and Viruses)

Assessment Guideline

- Approved by the Commission in 2004
- Based on Codex, VICH, and OIE guidelines
- Aims to assess the effect of food-borne resistant bacteria on human health
- Chapter 1: General Rules
 - Intro, Definitions, etc.
- Chapter2: Detailed Expositions
 - Hazard identification, Risk
 Assessment, Other
 discussions

Approved by the Food Safety Commission on September 30, 2004

Assessment guideline for the Effect of Food on Human Health Regarding Antimicrobial-Resistant Bacteria Selected by Antimicrobial Use in Food Animals

Chapter 1 General Rules

1. Introduction

Antimicrobials have been used in the process of food animal or fish farming in Japan for more than half a century. The purposes are either to "improve feed efficiency and promote growth, etc. in food animal" as "feed additives" based on the "Law Concerning Safety Assurance and Quality Improvement of Feeds (Law No. 35, 1953) or to "treat diseases" as "veterinary medicinal products" based on the "Pharmaceutical Affairs Law" (Law No. 145, 1960).

It is well known that antimicrobial-resistant bacteria are selected by the use of antimicrobials¹. Therefore these days, both in Japan and abroad, there are questions regarding the potential of these antimicrobial-resistant bacteria, especially in farming, to be selected for resistance and to spread that resistance among humans through food commodities; thus, affecting human health. The Office International des Epizooties (OIE), Food and Agriculture Organization of the United Nations / World Health Organization (FAO / WHO), and various international organizations in the European Union (EU) and the U.S., etc. have been performing investigations to develop risk analyses and preparing guidelines regarding antimicrobial-resistant bacteria derived from food animals, and, in some cases, actually working on risk analyses. Moreover, from the aspect of health protection in both animals and humans, the "responsible and prudent use" of veterinary antimicrobials, in order to suppress and reduce the selection of antimicrobial resistance, as well as the collection of further information regarding antimicrobial-resistant bacteria, have been encouraged, mainly by

Factors considered in assessment

Assessment human health food

Hazard Identification

Release Assessment

- Emergence of AMR* bacteria
- Resistance rate, susceptibility
- Other factors

Exposure Assessment

- Biological feature
- Contamination
- Other factors

Consequence Assessment

- FSC-CIA** list
- Severity of diseases
- Other factors

* antimicrobialresistant

Risk Estimation

** critically important antimicrobials

内関府 Food Safety Commission of J

FSCJ List of Critically Important Antimicrobials

Ranking of the Importance of Antimicrobials against Bacteria which Affect Human Health through Food (13 Apr. 2006, Decision, FSCJ)

I: Critically important

The antimicrobial is used as the <u>sole medicine</u> for treatment pf a specific human disease, or <u>few alternatives</u> are available.

(e.g. 15-membered macrolides, fluoroquinolones, 3rd- & 4th-generation cephalosporins, etc.)

II: Highly important

<u>Alternative</u> antimicrobials are <u>available</u> for treatment of human diseases due to the antimicrobial-resistant bacteria, but <u>their number is extremely limited</u> compared to those ranked as III.

(e.g. Streptomycin, 2nd-generation cephalosporins, erythromycin, etc.)

III: Important

<u>Alternative</u> antimicrobials are <u>available sufficiently</u> either from the same or other classes of the antimicrobial, for treatment of human diseases due to the antimicrobial-resistant bacteria.

(e.g. Kanamycin, sulfonamides, 1st-generation cephalosporins, etc.)

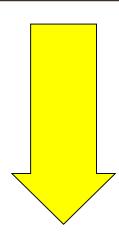
Risk assessment

Antimicrobial-resistant Bacteria Arising from the Use of Colistin Sulfate in the Livestock (Antimicrobial-resistant Bacteria)

Summary

Food Safety Commission of Japan

The Food Safety Commission of Japan (FSCJ) conducted a risk assessment on antimicrobial-resistant bacteria arising from the use of colistin sulfate, which is used as a feed additive and veterinary medicinal products in the livestock. Both Salmonella and E. coli were considered as potential antimicrobial-resistant bacteria to be selected under the use of colistin sulfate in the livestock. As only limited reports were available on the colistin-resistance in Salmonella, FSCJ conducted a risk assessment focusing on E. coli as a hazard, on which the information was rather available. In the release assessment, the degree of possible selection of the hazard was evaluated as "Medium". Considering proper cooking of the livestock products, the degree of possible human exposure to the resistant bacteria via livestock products was evaluated as "Low". The degree of


3) 《EXAMPLE》 RISK ASSESSMENT REPORT OF COLISTIN SULFATE

Example of our risk assessment: Colistin sulfate in the livestock (Jan. 2017)

[Hazard Identification]

AMR bacteria arising from the use of colistin sulfate in livestock, potentially affecting human health via food

Criteria for a hazard:

- ✓ Found in target animals
- ✓ Selected and gain resistance by colistin use
- ✓ Transmitted by food to humans
- ✓ Human infectious disease for which colistin can be used
- ⇒Data availability on susceptibility to colistin & resistance genes?

Commensal E. coli

(Not enough information for Salmonella to conduct a risk assessment)

Release Assessment

 The degree of possible selection of the hazard was evaluated as "Medium".
 More than one "Moderate"

Relevant parameter	Some points from discussion	– Concern
1) Emerge- nce	 2% of mcr-1 positive E. coli isolates from healthy livestock in 2015 mcr-1 can be horizontally transferred among E. coli and other Enterobacteriaceae Uncertainty in fitness cost, role of mcr-1 in susceptible isolates 	Moderate
2) Susceptibility	 Colistin-susceptibility in <i>E.coli</i> from healthy livestock in 2000-2015 remained high (MIC≥4 µg/mg: 1.0-4.7%) Relatively high resistance rate (MIC≥4 µg/mg) in <i>E.coli</i> (w/ or w/o <i>mcr-1</i>) from diseased livestock (pigs: 40%, cattle: 20%, chickens: 2%) 	Moderate
3) Other factors	 Prescription VMP: increase at 3,5→10 t in 2005-2014 Feed additive: decrease at 32→28 t in 2005-2015, with high amount of use in pigs and chickens (more mcr-1) 	Moderate

Exposure Assessment

• The degree of possible human exposure to the resistant bacteria via livestock products was evaluated as "Low".

One "Moderate" and two "Little"

Relevant parameter	Some points from discussion	Concern
1) Biological properties	 E. coli survives occasionally in meat Unknown colonization of colistin-resistant E.coli in human gut flora mcr-1 has been shown to be transferred among E. coli and Salmonella 	Moderate
2) Food contaminations	 Colistin-resistant strains have been scarcely isolated from meat, though minced meat with <i>E. coli</i> positive is 60-70% 	Little
3) Other factors	 E. coli on/in meat is generally non-pathogenic Proper cooking reduces a chance of colonization of colistin-resistant E. coli 	Little

Consequence Assessment

 The degree of possible reduction or loss of clinical effectiveness was evaluated as "<u>High</u>"
 More than one "Great"

Relevant parameter	Some points from discussion	Concern
1) Importance in clinical use	Ranked as "Critically Important" in FSCJ CIA ListLast resort for CRE infection	Great
2) Severity of infectious diseases	 MDR bacteria with colistin-resistance as a cause of nosocomial infection could have an impact on clinical treatment Incidence of foodborne (nosocomial) <i>E. coli</i> infection is unknown Scarce reports of deaths by infection with colistin-resistant <i>E. coli</i> 	Moderate
3) Other factors	 MDR bacteria with colistin-resistance might lead to loss of alternatives 	Great

Risk Estimation for colistin sulfate

RA component		E. coli			
Outcome	Release (Score)	Medium (2)	 Emergence: Moderate Susceptibility: Moderate Other factors: Moderate 		
	Exposure (Score)	Low (1)	 Biological properties: Moderate Food contaminations: Little Other factors: Little 		
	Consequence (Score)	<u>High (3)</u>	 Importance in clinical use: Great Severity of infectious diseases: Moderate Other factors: Great 		
	Total score	(6)			
Risk Estimation results		Medium			

[※] Result of each RA component is expressed as "high (3)"; "medium (2)"; and "low (1)", and the Risk Estimation is a sum of these components.

RA is comprehensively described by the total score: 8-9 (High); 5-7 (Medium); 2-4 (Low); and 0-1 (Negligible).

Foodborne AMR risk assessment: Other discussions on colistin sulfate

- ➤ Considering the importance of colistin in human medicine, stricter risk management for colistin as feed additive should be carefully considered.
- Cooperate with relevant risk management agencies to <u>continue</u> monitoring of AMR bacteria (esp. mcr-1)
- Collect state-of-the-art scientific knowledge on mcr-1 and other colistin resistance genes

To fill data gaps

Following collaborative actions by respective agencies

- ➤ Guidelines on risk management measures to tighten the use of antimicrobials as feed additive; ban the use of colistin as feed additive
- ➤ Collaborative AMR monitoring among human, food and animals (i.e. One Health surveillance)
- Research project on colistin and the resistance gene (mcr-1)

Following research and survey program

- Research on the prevalence and characterization of colistin resistant bacteria (FY 2017-2019)
- Characterization of plasmid-mediated genes associated with colistin resistance among Enterobacteriaceae isolated from food producing animals.
- ➤ Isolation of colistin resistant bacteria from livestock products and from humans
- ➤ Illustrate the effect of the plasmid-mediated genes associated with colistin resistance on MIC

Result	Item (Year of notification)	Class/Rank in CIA List		
Medium	Fluoloquinolone for cattle and pigs (2010, 2015), for chickens (2013)	VMP	FQs	Ι
	Tulathlomycin (2012) and Gamithlomycin (2017) for pigs	VMP	15-membered MLs	Ι
	Ceftiofur (2015) and Cefquinome (2016) for cattle and pigs	VMP	Ceps (3 rd & 4 th)	I
	Virginiamycin for pigs and chickens (2016)	FA	Streptogramin s	П
	Colistin sulfate for livestock (2017)	VMP/ FA	Polypeptides	I
Low	Pirlimycin hydrochloride for intramammary infusion (2013)	VMP	Lincosamides	П
	Gamithlomycin (2014) and Tulathlomycin (2015) for cattle	VMP	15-membered MLs	I

Completed works so far – cont'd.

Result	Item (Year of notification)		Class/Rank in CIA List		
Negligible	Monencin-Na (2006), Semduramycin-Na (2013), Lasalocide-Na (2013), Salinomycin (2013), Narasin (2013)	FA	Polyether	_	
	Nosiheptide (2012), Enramycin (2014)	FA	Peptides	Ш	
	Flavophospholipol (2013)	FA	Phosphoglycolipid	-	
	Avilamycin (2014)	FA	Orthosomysins	-	
	Florfenicol (2016)	VMP	Phenicols	П	
	Tylosin tartrate for honeybees (2017)	VMP	16-membered MLs	Ш	
No evidence of AMR	Amprolium, Ethopabate, Morantel citrate, Nicarbazin (2013.9.9)	FA	Others (anticoccidial)	-	

Way Forward

(FSCJ AMR Action Plan 2016-2020)

Tasks

(1) Data and information

- Needed for RA (e.g. aquaculture)
- State-of-the-art information

(2) International affairs

Review of the GL and CIA List
 ← GAP (e.g. WHO CIA List
 revision)

(3) Info dissemination /communication

- Public awareness-raising activities
- Int'l cooperation in the area of RA

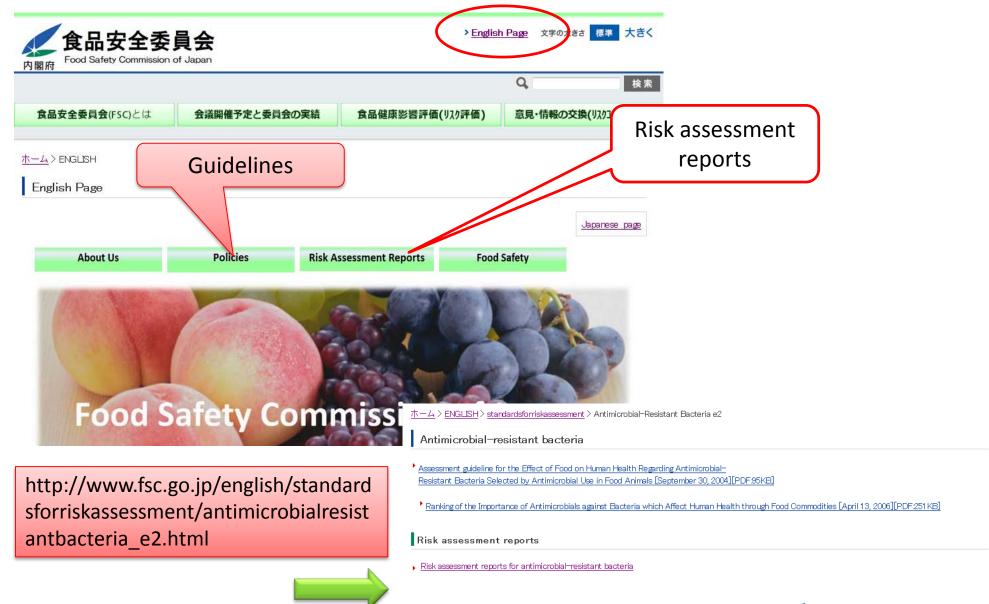
Actions

1 Risk assessment

- (1) Complete by 2020 on the items requested
- (2) Review the past reports (e.g. colistin)
- (3) Update the GL and CIA List

2 Info collection for RA

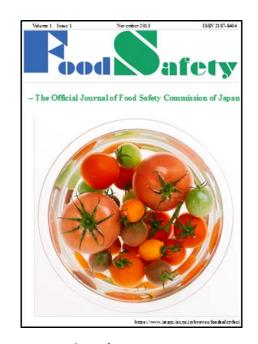
- (1) Conduct research
- (2) Join the OH Surveillance
- (3) Intra-/inter-governmental communication and collaboration with relevant agencies


3 Others

- (1) Respond to emerging issues
 - Collaboration with RM agencies
- (2) Enhance communication on AMR

English Website of FSCJ: www.fsc.go.jp/english/index.html

Official Journal – Food Safety


Food Safety is...

A peer-reviewed open-access electronic online journal in English published by the FSCJ.

(published quarterly)

This journal features four types of articles;

- > Original articles
- > Short communications
- > Reviews
- Risk assessments conducted by FSCJ.

For further information, please visit our website:

http://www.fsc.go.jp/english/topics/fsc_journal_e1.html

Thank you for your kind attention. Questions?