第 12 回コイヘルペスウイルス病に関する技術検討会 資料一覧

議事次第

委員名簿

資料 1 KHV 病感染コイの発見状況総括表(平成 19 年 12 月末現在)

資料2 試験・研究について

資料 3 今後のまん延防止措置の具体的進め方(第 12 回検討会)

第12回コイヘルペスウイルス病に関する技術検討会 議事次第

日時:平成20年3月18日14:00~17:00

場所:農林水産省消費・安全局第4・5会議室

(農林水産省本館地下)

- 1. 開会
- 2. 議事
- (1) 現状報告について
- (2) 試験・研究について
- (3) まん延防止措置について
- (4) その他

コイヘルペスウイルス病に関する技術検討会委員名簿

	No.	氏	名	現 職
座長	1	青木	宙	東京海洋大学大学院海洋科学研究科教授
副座長	2	飯田	貴次	独立行政法人水産総合研究センター 養殖研究所 病害防除部長
	3 .·	大川	雅登	茨城県内水面水産試験場長
	4	田中	深貴男	埼玉県農林部生産振興課副課長 ・
	5	野島	幸治	千葉県内水面水産研究所長
	6	畑井	喜司雄	日本獣医生命科学大学教授
副座長	7	福田	穎穂	東京海洋大学海洋科学部海洋生物資源学科教授
	8	細江	昭	長野県水産試験場諏訪支場長
	9	兵藤	則行	新潟県内水面水産試験場 病理環境課長

参考委員

No.	氏 名	現職
1.	橋本。啓芳	全国内水面漁業協同組合連合会専務理事
2	吉田 俊一	全日本錦鯉振興会副理事長

KHV病感染コイの発見状況総括表(平成19年12月末現在)

単位:件

	養殖場等						天然水域等					7.04	A=1	単位:件	
発生時期	養殖場	(経営体数)	蓄養場	釣り堀	公園	個人池	小計	河川	湖沼	ため池	水路	小計	その他	合計	十 発見都道 府県数
15年合計	12	(69)	12	26	2	13	65	25	2	1	- 1	29	2	96	22
16年合計	<u>38</u>	(34)	10	17	60	436	561	230	16	32	71	349	0	<u>910</u>	39
17年合計	<u>30</u>	(30)	2	7	13	184	230	57	3	11	7	78	0	<u>308</u>	41
H18.1	0	(0)	1	0	0	1	2	0	0	0	0	0	0	2	. 2
2	0	(0)	0	0	0	0	0	0	0	0	0	0	0	. 0	0
3	0	(0)	0	. 0	0	0	0	0	0	0	0	0	0	0	0
4	0	(0)	0	0	0	0	0	2	0	0	0	2	0	2	1
5	0	(0)	1	0	1	4	6	4	0	1	0	5	0	11	. 9
6	5	(5)	0	1	2	13	21	9	1	0	2	12	. 0	33	19
7	13	(13)	1	0	2	34	50	7	2	0	2	11	0	61	21
8	3	(3)	0	0	1	17	21	5	0	. 0	1	6	0	27	11
9	1	(1)	1	0	2	15	19	2	0	0	0	2	0	21	8
10	1	(1)	1	0	0	3	5	2	0	0	1	3	0	8	7
11	5	(5)	0	0	. 0	7	12	1	. 0	0	1	2	0	14	11
12	2	(2)	0	0	0	1	3	0	0	0	0	0	0	3	3
18年合計	<u>30</u>	(25)	5	- 1	8	95	139	32	3		7	43	0	<u>182</u>	38
H19.1	3		1	0	1	1	6	0	0	0	0	0	0	6	4:
2	1	(1)	0	0	0	0	1	0	0	0	0	0	0	1	1
3	1	(1)	0	0	0	1	2	0	0	0	0	0	0	2	2
4	1	(1)	0	0	0	0	1	0	0	0	0	0	0	1	1.
5	1	(1)	0	0	1	2	4	0	0	1	0	1	0	5	4
6	6	(4)	1	0	4	18	29	3	0	1	1	5	0	34	15
7	6	(4)	1	1	2	18	28	3	0	0	2	5	0	33	19
8	0	(0)	0	0	0	18	18	1	0	1	2	4	0	22	10
9	0	(0)	0	0	3	10	13	1	0	0	0	1	0	14	9
10	0	(0)	0	0	3	6	9	2	0	0	. 0	2	0	.11	8
- 11	1	(1)	. 0	0	.0	. 1	2	0	0	0	0	0	0	2	2
12	0	(0)	0	0	0	1	1	1	0	0	0	1	0	. 2	2
19年合計	20	(15)	3	L	14	76	114	11	0	3	5	19	0	<u>133</u>	30
合計	130	(169)	32	46	97	804	1109	355	24	48	91	518	2	1629	47

- 注1、公園には、便宜上、学校・浄水場等公共的施設の池を含めた。
- 注2. 個人池には、便宜上、法人・寺等の池を含めた。
- 注3. ため池には、便宜上、堀・池等と呼称されているものを含めた。
- 注4. 水路には、便宜上、OO用水等と呼称されているものを含めた。
- 注5. 溝、芝生に放置されていたものをその他とした。
- 注6. 経営体数については、延べ数ではないため、月毎の合算と合計が一致しない場合がある。

(参考1)KHV感染コイ発見養殖経営体数の推移

年(平成)	H15年 H16年		H17年	H18年	H19年	累計	
感染コイ発見養殖経営体数	69	34	30	. 25	15	169	
感染コイ発見養殖経営体比率	4.8%	2.4%	2.1%	1.8%	1.1%	11,9%	

- 注1. 感染コイ発見コイ養殖経営体数は、上記の表の養殖場 169件に係るもの
- 注2. 感染コイ発見養殖経営体比率は、2003年(第11次)漁業センサス(平成15年11月1日現在)のコイ養殖を営んだ経営体数(1, 426)に対する比率。

(参考2)KHV感染コイ発見1・2級河川水系数の推移

年(平成)	H15年	H16年	H17年	H18年	H19年	累計
感染コイ発見1・2級河川水系数	12	72	45	33	12	144
感染コイ発見1・2級河川水系比率	0.4%	2.5%	1.6%	1.2%	0,4%	5.1%

- 注1. 窓染コイ発見1・2級河川水系数は、上記の表の河川355件、湖沼24件が属する水系のうち、1・2級河川水系の数
- 注2. 感染コイ発見1・2級河川水系比率は、平成13年4月現在の全国1・2級河川水系数2.831(国土交通省資料)に対する比率。

先端技術を活用した農林水産研究高度化事業リスク管理型研究 「コイヘルペスウイルス病のまん延防止技術の開発」

(独) 水産総合研究センター養殖研究所

研究期間: 2007 年度~2010 年度 (4年間)

中核機関・研究総括者:(独) 水研センター養殖研究所 三輪 理

協同機関:(国)東京海洋大学

(国) 北海道大学

茨城県水産試験場

新潟県水産試験場

滋賀県水産試験場

岡山県水産試験場

(株) アーク・リソース

I. 試験研究の全体計画

1. 研究目的

本研究では、

- 1. KHV 感染耐過魚からのウイルス検出技術の確立。
- 2. 養殖・加工施設からのまん延防止法の確立。
- 3. 天然水域における KHV サーベイランス。

により、感染耐過魚のウイルス潜伏器官および天然水域における KHV の動態を解明し、感染耐過魚からのウイルス検出技術、垂直感染防止技術の開発、および養殖・加工施設からのまん延防止法の確立を目標とする。

その結果

- 1. KHV 病によるペット、および野生ゴイ被害の低減とコイ養殖やニシキゴイ輸出産業の振興。
- 2. 天然水域の野生ゴイにおけるウイルスの生息状況の把握とこれ以上のまん延の防止。 が期待される。

2. 研究内容

1. KHV 感染耐過魚からのウイルス検出技術の確立

KHV に感染、発症後治癒し、通常のエラやヒレ等から行う PCR ではウイルスが検出できなくなったコイにおいて、潜伏しているウイルスの検出技術の開発や血中抗体価を測定することにより感染歴を判定できる手法のキット化を行う。

(1) PCR による検査技術の開発

これまで KHV 発症魚からのウイルスの検出は、発症時に最もウイルス量の多いエラないしヒレを用いて行ってきたが、感染耐過魚ではこれらの器官からは検出困難となりウイルスは内部臓器に潜伏している可能性が高い。そこで感染耐過魚の種々の器官を調べ、どの器官から最も高率にウイルスが検出できるかを調べるとともに、潜伏状態にあるウイルスを再活性化して検出する技術を開発する。

(2) 抗体検出法のキット化

これまでコイ血中の抗 KHV 抗体価を測定する ELISA を開発し、血中抗体価から感染履歴 の推定が可能になったが、中核機関においては抗原に用いる KHV の大量精製が難しいため 普及が困難な状態にある。そこで当初は中核機関で精製した KHV を用いて ELISA の条件検 討を行いつつ、最終的には ELISA の固相化用の抗原や、抗コイ IgM マウスモノクローナル 抗体等を大量に作成し、試薬をまとめてキット化する。

2. 養殖・加工施設からのまん延防止法の確立

養殖・加工施設等において感染耐過魚からの垂直感染あるいはそれらの加工品を通じたまん延を防ぐための方策を確立し、さらにこれらの施設からの排水による疾病の蔓延を防ぐため排水中の KHV を効率的に処理するシステムの開発を行う。

(1) 卵の安全で簡便な消毒方法の確立

これまでの研究によりコイの卵やふ化仔魚は KHV に対する感受性がないことが判明している。従って採卵時の消毒さえしっかり行えば垂直感染が阻止できると考えられる。そこで卵の安全で簡便な消毒法の基準を確立する。

(2) 排水の効率的な処理方法の開発

これまで市販の種々の消毒剤や物理的処理に対する KHV の感受性を明らかにしてきたが、日常、飼育施設の排水を消毒剤のみで処理するのはコストや手間の点で難しい。そこでこれら物理化学的処理法と常在細菌のウイルス不活化作用を組み合わせ、KHV を効率的に不活化できる排水処理システムを確立する。

(3) 加工処理方法の確立

平成17年の持続的養殖生産確保法改正により、まん延防止措置として、焼却・埋却処分 以外の「病原体の感染力を失わせる方法」が追加された。これを踏まえ、加工品の感染性を 検査し、製品に感染力が残存しないような加工処理基準を作成する。

3. 天然水域における KHV サーベイランス

これまで KHV 病が発生した天然水域においては、コイの移動禁止や放流禁止などの措置が執られているが、いったん大量死が発生した水域で2度目の大量死が生じたことは無く、それらの水域でウイルスの存在状況がどうなっているのか不明であるため、我が国の代表的な水系においてコイを採集し、 KHV のサーベイランスを行う。中課題1の技術を応用して行うため2年目から4年目にかけて行う。結果は随時、消費・安全局主催の KHV 技術検討会に提出するとともに、最終的には天然水域でのまん延防止策をどのようにすべきか検討を行う。

(1) 霞ヶ浦におけるサーベイランス

霞ヶ浦ではKHVにより養殖ゴイの大量死が起きたことはよく知られているが、同湖に生息する天然ゴイには目立った死亡はない。そこで継続的に天然ゴイを採捕し、随時中課題1で得られた成果を取り入れつつ、PCRや抗体検査によるKHVのサーベイランスを行う。

- (2) 琵琶湖におけるサーベイランス 霞ヶ浦と同様に行う。
- (3) 児島湖・宮川におけるサーベイランス 霞ヶ浦と同様に行う。
- (4) サーベイランスの結果のとりまとめと解析

最終年度において、それまでの各水系のサーベイランスを通して得たデータを解析し、 KHV がある水系に侵入後どのような経緯をたどるのか、何らかの共通したパターンを示す のか、あるいは各水系に独特な消長を示すのか等をまとめ、それに応じて、天然水域でのま ん延防止策をどのようにすべきか検討を行う。

||. 19 年度計画・成果概要

- 1. KHV 感染耐過魚からのウイルス検出技術の確立
- (1) PCR による検査技術の開発

計画:

これまで KHV 発症魚からのウイルスの検出は、発症時に最もウイルス量の多いエラないし ヒレを用いて行ってきたが、感染耐過魚ではこれらの器官からは検出困難となり、ウイルスは 内部臓器に潜伏している可能性が高い。本研究ではウイルス検出をどの臓器から行うのがもっ とも高率的かを明らかにすることを研究目的とし、そのために感染耐過ゴイにおけるウイルス の潜伏組織を明らかにすることを目標とする。

成果:

感染7日後、10尾の各5臓器から、PCRによりウイルスゲノム検出を試みた結果、全個体において各臓器から明瞭なPCRバンドが得られ、この時期にはウイルスが全身に感染していることが再確認された。

感染30日後、水槽に横たわる個体1尾の鰓および脳からRT-PCRにより、それぞれウイルスゲノムおよびウイルスmRNAを検出した結果、mRNAは脳からのみ検出された。すなわち、感染後1ヶ月程度の生残魚における感染粒子の有無について、鰓から検出されない場合にも、脳内には存在する場合があることが示唆された。

感染70日後の生残魚4尾の鰓および脳に含まれるウイルスゲノム量について、定量PCRにより測定した結果、脳に含まれるウイルスゲノム量が鰓に含まれる量より、明らかに多かった。 感染126日後の生残魚5尾の脳について、それぞれ摩砕し、ウイルスゲノムおよびウイルスmRNAを検出すると共に、そのろ液を健康ニシキゴイに接種する方法を用いて、病原性を確認した。その結果、全個体の脳からウイルスゲノムは検出されたが、mRNAの検出および病原性の確認はできなかった。このことから、耐過魚の脳内に存在するウイルスは複製せず、病原性粒子を含まない状態であることが示唆された。

感染 145 日後の生残魚 4 尾の各臓器からウイルスゲノムを検出した結果、4 個体の脳および 2 個体の腸管から検出されたが、その他の臓器からは検出不能であった。定量 PCR の結果、脳内では嗅葉および嗅球内のウイルスゲノム量が他の部位より多い傾向が認められた。これに対し、腸管におけるウイルスゲノム量は最大で 100 コピー/0.5mg 組織湿重量と、脳内に含まれる量と比較して僅かであった。

以上の結果より、自然耐過した魚からウイルスを排出する方法として、嗅球あるいは嗅葉から PCR を用いてウイルスゲノムを検出する方法が最適と判断された。

(2) 抗体検出法のキット化

計画:

ELISA の抗原として用いる KHV の大量培養と精製 (1mg)、および抗コイ IgM マウスモノクローナル抗体の大量作製と精製 (80%程度の精製で 5mg) を行なう。さらにこれらの抗原を固相化に使用し、ELISA の条件設定をおこなう。また、この ELISA は CHV に対する非特異的反応があることが判明しているため、KHV と CHV の共通抗原遺伝子を特定し、次いで KHV 特異抗原遺伝子の探索を行う。

成果:

KKE 細胞に KHV 感染をさせて大量培養を行い、培養上清よりタンパク量で 5mg のウイルスを精製できた。研究目標であった 0.5mg を達成できた。精製 KHV は SDS-PAGE 後に銀染色を行い、現行法の精製 KHV と同様のタンパク質のバンドパターンを示すことを確認した。また、2種類の抗コイ IgM マウス MoAb 抗体産生ハイブリドーマより腹水を作製し、Protein G カラム精製を行った。2種共に 90%以上の精製度で 5mg 以上の抗体が得られた。精製度の確認はSDS-PAGE にて行った。研究目標であった精製度 80%、5mg を達成できた。

本研究精製 KHV および2 種類の精製抗コイ IgM マウス MoAb 抗体を使用して ELISA(現行法) を行い, 450nm での吸光度が標準血清が 0.8~1.2, 陽性血清が標準血清値の約2 倍の値を示す事を確認した。

以上より、本研究で精製した KHV および 2 種類の抗コイ IgM マウス MoAb 抗体はキット化の試薬として使用可能であると判断した。

約85,000 クローン(KHV 染色体サイズの約70 倍に相当)に対してスクリーニングを行ったところ、合計17の陽性クローンを得た。その内15 クローンがKHV のオープンリーディングフレー

ム(ORF)62 の部分配列をコードしており、何れのクローンもこの ORF の特定の領域をコードしていた。残り 2 クローンは ORF68 の一部をコードしており、同様にこの ORF の同じ領域をコードしていた。陽性クローンのうち、ORF62 または ORF68 の部分配列をコードしたクローン(順にクローン 3-8 およびクローン 3-4)を1つずつ選び、ウエスタンブロット解析を行ったところ、両クローンとも抗 KHV ウサギ抗体と強く反応した。ORF62 のコードするタンパク質には OUT ドメインと呼ばれる構造が存在するが、陽性クローンがコードしていた領域には繰り返し配列が存在するのみで、特徴的なドメインが存在しなかった。ORF68 のコードするタンパク質には、N末端側から ATPase associated with variety of cellular activities (AAA) および膜貫通ドメインが存在しており、陽性クローンがコードしている領域が AAA と一致した。本研究により、主要抗原候補遺伝子が2つ見つかった。また、これら2つの抗原タンパク質は、KHV 感染耐過コイ血清にも認識されることを確認した。

2. 養殖・加工施設からのまん延防止法の確立

(1) 卵の安全で簡便な消毒方法の確立

計画:

KHV 病まん延防止のためには、垂直感染を防ぐ確実な手法が必要である。そこで平成 19 年度においては零細なニシキゴイ生産者でも実施可能な安全かつ簡便な卵消毒の方法を明らかにすることを目的として本研究を実施する。 感染耐過親魚からのウイルス放出の有無、ポピドンヨードによる卵消毒の効果に関するデータを得ることを目標として研究を行う。

成果:

人為攻撃をした卵および精液から得た受精卵からは KHV が検出された。

上述の受精卵を異なる濃度のヨード剤で、異なる時間消毒処理を行い、ふ化後の仔魚のウイルス保有状況を調査した。その結果、対照区も含めいずれの試験区からも KHV は検出されなかった。

卵に対するヨード剤消毒の影響は、200ppm 30mm の消毒条件では、発眼率およびふ化率が低下する傾向が認められたが、概ね卵発生に対する影響はなかった。また消毒時期の違いによる卵発生への影響も認められなかった。

(2) 排水の効率的な処理方法の開発

計画:

今年度は、飼育水および飼育排水中の KHV を不活化すべく、自然の生態系を有効活用した KHV の浄化法の検討を行う。まず、魚類飼育水、飼育水浄化槽あるいはコイの腸内容物中に 存在する細菌の数と種類を検討し、その中から抗 KHV 活性を有する細菌のスクリーニングを 行う。分離菌を対象にその有効利用法を検討する。さらに、不活化の保障として、排水の物理 処理法として何が最適かを検討する。

成果:

①コイの飼育水および飼育コイの腸内容物の細菌叢

マゴイ飼育用水中では Aeromonas 属が優勢であり、次いで Enterobacteriaceae が高い割合を示した。コイの腸内から分離した 161 株の属組成は、Aeromonas 属 103 株 (64 %)、Enterobacteriaceae 26 株 (16 %)、Pseudomonas 属 21 株 (13 %)、Achromobacter 属 5 株 (3 %)、Micrococcus 属 4 株 (2.5 %)、Flavobacterium 属 1 株 (0.6 %) であった。

②抗 KHV 活性を有する細菌のスクリーニング

供試菌 161 株のうちKHV に対して抗ウイルス活性を示したものは、Aeromonas 属 103 株

中10株 (9.7%), Enterobacteriaceae 26 株中 2 株 (7.7%), Pseudomonas 属 21 株 1 株 (3.8%), Achromobacter 属 5 株中 1 株 (20%) であった。

③サケマス孵化場の飼育排水処理施設の活性汚泥の細菌叢

北海道さけ・ますセンター伊茶仁事業所,千歳事業所,尻別事業所,北海道さけ・ます増殖協会上標津ふ化場および奥西別ふ化場の飼育排水処理施設を対象に行った調査の結果,生菌数は $3.8\times10^5\sim4.0\times10^7$ CFU/mL の範囲で測定され,Pseudomonas 属,Achromobacter 属が菌叢の主体を成し,時に Flavobacterium/Cytophaga が優勢になる検体があった。

④活性汚泥から分離した細菌のタンパク分解活性ならびに活性強度の簡易測定法

細菌培養液のタンパク質分解活性をカゼインを指標に定法により求めた。対照として用いた大腸菌と比較し、最大 10.3 倍もの活性を有する細菌が活性汚泥中の細菌から見出され、これら細菌はカゼイン添加普通寒天培地に接種した場合に巨大な透明環を形成した。透明環のサイズとコロニーの大きさの比は、上述のタンパク分解活性と一致し、多くの細菌を対象とした活性強度の簡易測定法として有用と考えられた。なお、これら細菌の培養ろ液は細胞を融解するために、抗KHV 活性測定法の検討が課題となった。

(3) 加工処理方法の確立

計画:

KHV に感染し生残したコイは、キャリアとなる可能性があるが、キャリア魚の検査方法は確立しておらず、また確立したとしても1尾ずつ食用ゴイを検査するのは実際的でない。そこで、感染耐過したコイを食用として利用する際、製品に感染力が残存しないような加工処理方法を確立する。加熱加工品であれば、ウイルスは失活していることは明らかであるので、本年度は、生の加工製品(切り身)におけるウイルスの感染力が保持されるか否かを検討する。

成果:

①KHV 感染生残魚の各部位を KHV 未感染魚水槽に収容した試験

KHV 感染後2ヶ月,6ヶ月後の生残魚の筋肉(フィレー),筋肉(鱗、鰭、骨等含),内臓(エラ、腎臓、肝膵臓等)を KHV 未感染魚収容水槽に3日間垂下し飼育したが、全試験区ともに KHV 病の発症は認められず、PCR 検査でも陰性であった。

KHV 病発症魚のエラを垂下した区及びこのエラからの抽出液(磨砕し MEM-2 で 10 倍希釈後 3,000 回転 10 分間遠心分離で得られた上清液)の 2,500 倍液に 3 時間浸漬したところ,エラ垂下区では KHV 病発症が確認されなかったが,エラ抽出液浸漬区では発症が確認された。

さらに、KHV 感染 1 ヶ月後の生残魚の各部位を使用した試験では、31 日後までに KHV 病を発症せず PCR 検査でも陰性であった。

②昇温処理生残魚の各部位をKHV未感染魚水槽に収容した試験

1と同様に昇温処理魚(KHV 感染から 76 日経過魚)の各部位を KHV 未感染魚の飼育水槽に 3日間垂下したところ、KHV 病の発症は確認されず、PCR 検査でも陰性が確認された。同時に行った KHV 発症魚のエラの垂下試験及びエラ抽出液の浸漬試験では、KHV 病の発症と PCR 検査での陽性が確認された。

③昇温処理生残魚由来の磨砕液を KHV 未感染魚に浸漬させた試験

KHV 病生残魚, 昇温処理魚の各部位を収容した試験では, 供試魚への KHV 感染は確認されなかった。このため, 昇温処理魚の各組織から調整した磨砕液を KHV 未感染魚に 3 時間浸漬後飼育し, 発症について検討した結果, 昇温処理試験魚の各部位の磨砕液から KHV 感染は確認されなかった。

④KHV 病発症魚の各部位を KHV 未感染魚飼育水槽に収容した試験

KHV 病生残魚等の各部位から KHV 未感染魚への感染は確認されなかったことから,KHV 病発症魚の各部位について KHV 未感染魚に対する感染性の検討を行ったところ,KHV 病発症魚の筋肉(フィレー),鰭・鱗・骨等を含んだ筋肉,エラ,内臓,血液の各部位を収容しても KHV 病の発症は確認されなかった。しかし,KHV 病発症魚から作成したエラ抽出液を用いた浸漬試験では,KHV 病発症が確認された。これらから,KHV 病発症魚のエラは,KHV 感染源となりうるが,その他の部位(筋肉,鰭,鱗,内臓,血液等)は,KHV 感染源となる可能性は極めて低いものと考えられた。

⑤まん延防止のための加工処理方法

上記のように感染耐過魚は生鮮魚では感染源となることはほとんどないと考えられる。万が一発症している魚が誤って原料になったとしても、エラを取り除いた切り身であれば実際上感染源となる恐れはほとんどないと考えられる。そこで以下のような方策をとることにより、より安全な加工処理方法が確立される。

- (i)加工処理に用いる魚群は目視による検査を十分に行い、発症している個体が無いことを確かめる。発症が疑われる個体があれば取り上げてエラの PCR 検査を行い、陽性の場合は加工処理を行わない。
- (ii) 魚体は生鮮状態で出荷する場合はエラを取り除いた切り身とする。
- (iii) 加工処理場からの排水は適切な処理を行う。(小課題「排水の効率的な処理方法の開発」 の成果に基づく措置を講ずる。)
- (iv) 加工残渣は極力加工場の外部あるいは屋外に出さず処理をする。やむを得ず外部に出す場合は、最低 1 日は隔離された状態におく。(前年度までの高度化事業によっても、発症個体の死亡後、エラの感染性は 1 日以内に失われることが確認されている。)

Ⅲ. 平成 20 年度計画

- 1. KHV 感染耐過魚からのウイルス検出技術の確立
- (1) PCR による検査技術の開発

嗅球、嗅葉のどの細胞にウイルスが感染するのか、また、人のヘルペスは神経節に感染・潜伏することが知られているが、コイの脊髄神経節等にも同様にウイルス感染があるのか否かを明らかにする。また、これまでの感染試験は、同一の供試魚およびウイルス株を使用し、感染後の飼育水温等の条件も一定として実験してきたが、20年度はこれらの感染実験条件が異なった場合においても脳が最終感染部位になるのかを確認することを研究目的とする。

そのために、病理組織学的に中枢神経系の感染細胞を明らかにすること、また 19 年度とは異なる系群のコイやウイルス株、飼育水温を用いて感染耐過魚を作出し、魚体内各部位のウイルス分布を明らかにすることを達成目標とする。

(2) 抗体検出法のキット化

本研究精製 KHV および2 種類の精製抗コイ IgM マウス MoAb 抗体を使用し、キット化条件の確立を行う。さらに 19 年度に作成した KHV タンパクの特異性を検定する。抗原固相化プレートの選択のため、固相化濃度、反応時間、反応温度を検討する。また、短時間で結果が得られるよう、サンプルや各抗体の濃度、反応時間の検討を行う。常に標準血清や陽性血清が安定した値を示し、また現行法と同等の値を示す条件を確立する。

- 2. 養殖・加工施設からのまん延防止法の確立
- (1) 卵の安全で簡便な消毒方法の確立

平成19年度同様、感染耐過親魚からのウイルス放出の有無を確認する。同時にヨード剤による濃度別、時間別の消毒効果および安全性に関するデータを蓄積し再現性の高い知見を得る。

さらに、生産現場で用いられている方法での実証化を試みる。 これらにより、ニシキゴイ生産者に普及可能な卵の安全で簡便な消毒法を確立する。

(2) 排水の効率的な処理方法の開発

飼育水および飼育排水中のKHVを不活化することを目的に、環境水中の常在細菌によるKHVの不活化と活性汚泥を有効活用したKHVの浄化法を検討し、物理的処理を組み合わせた効率的な処理方法のモデルを実験室レベルで構築する。

(3) 加工処理方法の確立

本小課題はもともと3年の期間を予定していたが、平成19年度の試験により、KHV感染耐 過魚の各部位によるKHV感染拡大の可能性はほとんどないこと、さらには意外にも発症魚でさ え、エラを取り除いた切り身にすれば感染の危険性は極めて低いことが確認された。

そこで本小課題では成果の項に述べるように安全性を考慮した加工処理方法を提案して当初 の目標は達成されたことから、19 年度で終了とする。

3. 天延水域における KHV サーベイランス

(1) 霞ヶ浦におけるサーベイランス

平成 15 年に KHV によるコイの大量死が発生した霞ヶ浦 (利根川水系) において, ウイルスと KHV 病, 及び KHV 感染耐過コイの存在状況を確認することを目的とし, そのために十分な個体数のコイをサンプリングし検査することを目標とする。

(2) 琵琶湖におけるサーベイランス

平成 16 年 4~7 月に KHV によるコイの大量死が発生した琵琶湖において、KHV ウイルス保有 状況と KHV 病の発生の有無および KHV 病感染耐過ゴイの存在状況を確認することを目的に、そ のために必要十分な個体数のコイを検査することを目標とする。

(3) 児島湖におけるサーベイランス

平成 15 年に KHV によるコイの大量死が発生した児島湖においてウイルスと KHV 病, および KHV 病感染耐過ゴイの存在状況を確認することを目的とし, そのために十分な個体数のコイをサンプルし検査することを目標とする。

今後のまん延防止措置の具体的進め方(第12回検討会)

- 1. これまでの感染コイの発見状況及び感染経路調査状況を踏まえて、今後のまん延防止措置の検討に当たって留意すべき事項
- (1) 15年11月、我が国では初めてKHV病が確認され、16年は水温上昇に伴うKHVの活発化により、KHV感染コイが相当広範囲に確認されたが、17年以降、まん延防止の効果が現れて、発生件数は大幅に減少しており、我が国のコイ漁業・養殖業等への影響を最小限にするため、今後ともKHVを可能な限り封じ込めることが必要である。
- (2) これまでにKHVについて得られている知見と感染経路調査の状況から、KHV感染コイ発見水域の拡大の主たる原因はKHVに感染したコイの移動によるものであり、このうち連続していない水域への感染拡大は、感染に気づかないまま感染コイを人為的に移動させたことによるものである可能性が高いと考えられ、人為的な感染コイの移動の防止の成否が今後のまん延防止を図る上で極めて重要である。
- (3)養殖場については、KHV感染コイが発見された場合、持続的養殖生産確保法に基づく養殖コイの処分、施設の消毒等の措置がとられており、これらの措置は他の養殖場へのKHVのまん延を防止する上で有効に働いていると評価できるので、今後とも確実なまん延防止措置をとることが重要である。
- (4) 天然水域については、KHV感染コイが発見された場合、養殖場とは異なり、当該水域から感染コイを全て除去することは不可能であることから、他の水域への感染コイの人為的な移動を防止するため、漁業法に基づく委員会指示の活用などにより、当該水域からのコイの持ち出し禁止等の措置がとられており、今後とも一層の徹底が重要である。

2. 講じるべき措置

(1)養殖場等については、引き続き、導入コイの由来確認、罹患魚の早期発見等の措置を実施するとともに、KHV病が発生した養殖場等については、養殖魚の処分、施設の消毒等再発及びまん延防止のための確実な措置を実施する必要がある。とりわけ、ニシキゴイ養殖場については、発生件数の増加傾向に歯止めがかかったものの、引き続き、外部からの未検査コイの導入防止など、KHV病の発生を予防するための自主的な措置を養殖業者に普及することで、個々の事業者レベルにおける防疫対策を強化することが必要である。

また、食用ゴイ養殖場については、まん延防止措置に感染力を失わせる 処分方法が新たに加えられ、これに沿った加工技術が開発されたことを踏 まえ、これらの方法によるまん延防止措置が確実に実施されるよう、防疫 対策の指導を強化することが必要である。 (2) 天然水域については、汚染が確認された天然水域又は汚染の可能性の高い天然水域においては、コイの持ち出し禁止等まん延防止のための措置を講じるとともに、未発生の天然水域においては、罹患魚の早期発見等の対処を実施する必要がある。

なお、天然水域においては、既に KHV が相当広範囲に確認されていることに鑑み、これまでに KHV が確認されていない水域においても、KHV 感染コイが存在する可能性があることを考慮し、あらかじめ検査を行うとともに、監視体制の強化を図る等確実なまん延防止対策を講じておくことが望ましい。

3. 調査及び監視について

(1) 重点的かつ計画的な調査及び監視の実施について

別紙1「地域区分及び水域の汚染の可能性の分類方法」により都道府県ごとに作成された地域区分を活用し、別紙2「判断図」に基づき罹患魚の早期発見等により確実なまん延防止措置を講じるため、特にKHV汚染の可能性の高い地域を重点に、計画的な調査及び監視を実施することが重要である。

今後とも、KHVが活発化する水温においては、新たな水域において もKHV病が確認される可能性があるので、養殖場、天然水域ともに引 き続き綿密な監視体制を維持すべきである。

(2)養殖業者及び釣り人・コイ飼育者等への指導について

今後とも、水産試験場等と養殖業者等との連絡体制を強化し、KHV病の早期発見に努めるほか、別紙3「こいの取扱いに関して留意すべき事項」に従い、養殖業者等によるKHV病の早期発見、まん延防止措置、及び自衛措置が必要である。

特に、19年は18年に引き続き、個人池や公園などの放流が行われた水面からKHV感染コイが見つかっており、特にニシキゴイの場合、この感染拡大には、生育履歴が明確でない感染コイが持ち込まれたことが大きな要因として考えられるので、コイ飼育者などへの啓発を強化することが重要である。

また、天然水域においても、パンフレットを配布すること等により、漁協や釣り人等との連絡体制を強化し、KHV病の早期発見に努めるほか、こいの持ち出し禁止等、まん延防止措置が講じられた場合には、その確実な履行が必要である。

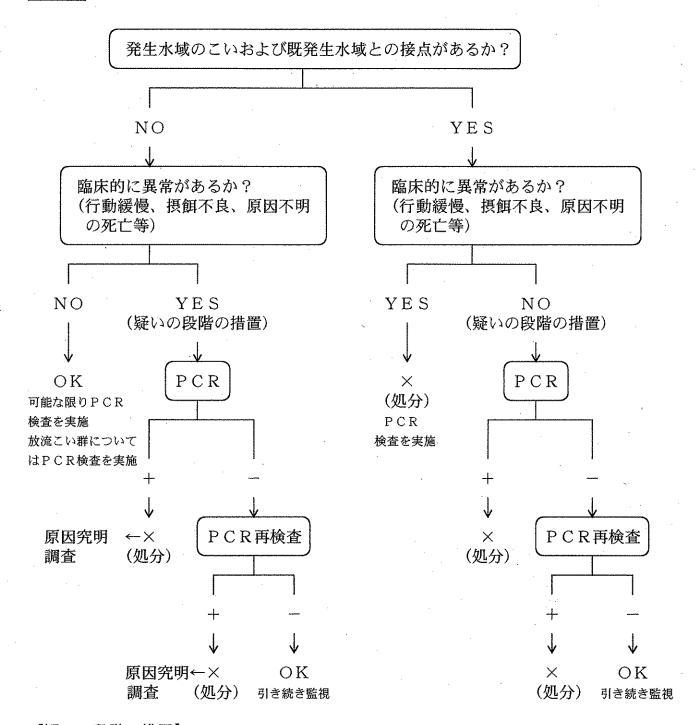
4. 今後の方向

これまでのKHV病発生の状況を踏まえると、今後更に新たな水域にKHVが拡大する恐れもあり、本年も、現在とられているまん延防止措置(特別の監視体制、養殖場における自衛措置及び感染コイの処分、感染コイが確認された天然水域におけるコイの持ち出し禁止措置、一般人に対するコイの移動についての注意等)を継続し、徹底することが必要である。

別紙1

地域区分及び水域の汚染の可能性の分類方法

- 1. 地域区分
 - 原則として、市町村境、水系等によって区分する。
- 2. 汚染の可能性の程度による分類
- (1)養殖場等の分布調査


地域内の食用こい養殖業者、錦鯉生産者、釣堀業者の位置等及びこい放流河川湖沼を把握する。

(2)養殖業者等への聞き取り調査

地域内の業者等の既発生水域との接点の有無、KHV病の症状や死亡の有無等を 調査する。

- (3) 汚染の可能性の程度の分類基準例
 - A) 地域内で確定診断でKHV病の発生が確認されている。
 - B) 地域内でKHV病が疑われる個体(症状を示す病魚やへい死魚) が認められている。
 - C) 地域内でKHV病が疑われる個体は発生していないことを聞き取り調査等により確認している。
 - D) 地域内でKHV病が疑われる個体の発生については、調査を実施しておらず不明である。

別紙2 判断図

【疑いの段階の措置】

- ①可能な限り排水流出防止
- ②生残魚に関しては、活魚・生鮮魚の出荷自粛(死亡魚が多い場合は、可能な限り処分)
- ③死亡魚に関しては、直ちに処分(焼却、埋却等)
- ④天然水域については、持ち出し・持ち込みの自粛

【×:処分】

- ①養殖こいについては、直ちに焼却、埋却等
- (2)発生養殖施設・排水の消毒等
- ③天然水域については、サンプリングによるPCR検査を実施し、必要に応じてこいの 持ち出し・持ち込みを禁止

別紙 3

こいの取扱いに関して留意すべき事項

1. 養殖場等

- (1) KHV病未発生の養殖場等
- ○導入する種苗が汚染水域由来でないことの確認。
- ○導入する種苗が、汚染水域由来のこいとの接点がないことの確認。
- ○こいに大量死亡等異常が見られた場合には、出荷・持ち出しを見合わせるとともに、 各都道府県の水産試験場等に連絡すること。
- ○養殖施設内への立入り及び用水に関する十分な注意。
- (2) KHV病既発生の養殖場等
- ○養魚施設や運搬車両等のウイルス不活化のための消毒等の確実な実施。
- ○その他、未発生の養殖場等に準ずる。

2. 天然水域

- (1) 放流について
- ○放流用のこい群が汚染水域由来でないこと、かつ、PCR検査で陰性が確認された ものであることの確認。
- ○放流用こい群が汚染水域由来のこいと接点がないことの確認。
- (2)漁業者・遊漁者等による採捕について
- ○汚染水域において採捕したこいを他の水域へ持ち出さないこと。