平成27年度水産防疫対策事業実施報告書概要

○水産動物疾病のリスク評価

1. リスク評価のための基礎調査

(1) 管理対象疾病の情報収集調査

コイヘルペスウイルス病、キセノハリオチス感染症等国内でまん延防止措置が講じられている疾病の病原体について、現在の分布や病原性の変化の有無等養殖場や周辺水域における状況について情報収集し、まん延防止措置の効果を確認するとともに今後のリスク管理の改善に役立てることを目的とした。

コイヘルペスウイルス病では、茨城県および長野県水産試験場からの情報提供によれば、ここ数 年における KHV 発生状況に変化は無いことが分かった。また、千葉県を含めた 3 県における KHV 発生事例数においても、増加傾向は認められなかった。以上の情報から、昇温処理魚を種苗として 霞ヶ浦で生産された活マゴイが KHV の感染源になる可能性は低いものと考えられた。その原因と して、免疫獲得魚体内で KHV 感染粒子が存在できないことがあげられる。また、昇温処理から出荷 までの期間が 2 年間と長く、この間に KHV ゲノムさえも体内から消えていく可能性が十分に考え られる。今後の問題点としては、民間種苗生産場における効率的な KHV 感染魚作出法の開発であ る。現在実施されている自然感染法では昇温処理魚体内に十分な免疫が誘導されない可能性がある。 キセノハリオチス症では、「水産動物疾病の診断・予防・まん延防止に関わる技術開発等」の報告 の通り、今年度の確定診断件数は2都県からの4事例のみであったが、いずれも例年通り病気の臨 床的な発症の報告はない。また、今年度不明病診断依頼があったアワビ類において、キセノハリ オ チスは検出されず、本疾病が発生した報告はない。確定診断事例のうち1件は天然のフクトコブシ のサーベイランスによる陽性事例であり、30 個体中 16 個体が陽性で、病気の発症はなかったとい う情報を得ている。実施した東京都によるとキセノハリオチス症発見後、陽性種苗の放流を行って こなかったが、それにより天然フクトコブシの陽性率が低下したという証拠は得られなかったとい うことであり、本細菌は天然フクトコブシに一定の割合で共生しているものと推察される。

(2) カキヘルペスウイルスに対するリスク評価

海外ですでに病原性など特性が明らかにされた高病原性株 (μ Var) と国内株のウイルス (JPType1) を国内在来カキ類に接種し、ウイルス株間による病原性の評価、比較を行った。その結果、供試したマガキ、イワガキとも両ウイルスに感受性を示し、JPType1 と μ Var による死亡率は同等であった。何れのウイルスでも死亡した個体からは高濃度のウイルスゲノム(DNA 1ng あたり 104 コピー以上)が検出され、カキヘルペスウイルスによる死亡であることが確認できた。死亡率およびウイルス量の測定結果から、JPType1 は μ Var と同等の病原性を有していることが示唆された。

(3) アユのエドワジエラ・イクタルリ感染症の発生メカニズムの研究

これまでの研究により弱毒株では、病原因子(Ⅲ型分泌装置及びⅥ型分泌装置の構成タンパク質)の産生量が強毒株より低くなっていることを確認している。両株間で生じた病原因子の産生量の差に関わる要因を明らかにするために、DNAの塩基配列の比較解析を行った。その結果、Ⅲ型分泌装置及びⅥ型分泌装置の産生に関与する遺伝子や DNA 領域の塩基配列に差異は認められなかった。

尚、弱毒株では、強毒株の DNA に対して 6 箇所で 1 塩基変異が検出されたが、各変異が発生した 領域や遺伝子の機能についてⅢ型分泌装置やⅥ型分泌装置との関連性は見られなかった。塩基配列 の変化を伴わない変異である塩基のメチル化等が、Ⅲ型分泌装置及びⅥ型分泌装置に関わる DNA の 領域に関与している可能性が疑われた。

2. リスクプロファイルシート等の作成

最新の海外情報及び研究知見を踏まえ我が国でリスク評価すべき疾病 OIE (国際獣疫事務局) が 定めた疾病 (魚類、軟体動物類、甲殻類の指定疾病)、及び情報収集すべき新たな疾病など、我が国 の養殖業に影響を及ぼす可能性のある疾病について、委託元の指示に従い 17 疾病の病性鑑定指針を 作成した。

3. 国内外の疾病の発生状況調査・情報収集

(1) ブリ類の難治癒疾病に関する調査

九州・四国地方のカンパチ養殖場で問題となっているカンパチの眼球炎について、発症の要因と考えられる眼球の外傷の発生理由及び原因菌の検証を行った。また、ブリのべこ病について、疫学調査に必要な原因体の検出方法及び飼育環境における病原体の分布状況を調査するとともに、主漁場において疫学調査により疾病の広がりを調査するとともにその原因の解明を試みた。

① カンパチの眼球炎の発生理由及び原因菌の検証

カンパチの眼球炎では、自然感染魚から V. harveyi、Shewanella haliotis 及び Pseudomonas sp. がそれぞれ 7、6 および 1 個体から分離された。感染初期には主に少数の V. harveyi が分離されたが、潰瘍形成および乾酪形成期には重度の V. harveyi、と S. haliotis の混合感染が認められた。一方、耐過期に分離される菌数は僅かで、傷口が修復した回復魚からは菌が分離されなかった。また、これまで収集した眼球炎分離菌(Vibrio harveyi 3 株、S. haliotis 1 株および Pseudomonas sp. 1 株)、他のカンパチの細菌性疾病原因菌である Photobacterium damselae および Lactococcus garvieae をカンパチ幼魚の眼球内に注射し、症状が再現される菌種を特定したところ、眼球炎の症状(眼球潰瘍)は V. harveyi 接種及び S. haliotis 接種でのみ再現された。他の細菌性疾病原因菌である Photobacterium damselae および Lactococcus garvieae を接種した場合には、前者では眼球潰瘍を示す個体の割合が少なく、後者では全身感染を引き起こして高い死亡率を示し、何れも眼球炎の自然感染例の症状とは異なっていた。以上の結果より、V. harveyi の感染が眼球炎形成に大きく関与していると考えられた。

② ブリのべこ病の検出技術の開発

原因体の検出法では、これまでの研究でリアルタイム PCR 法によるカンパチに感染する Microsporidium seriolae の定量検出系が構築されているため、本検出法によりブリに寄生する M. seriolae が検出可能か検証した。リアルタイム PCR 法により、ブリに寄生する M. seriolae のリボソーム RNA 遺伝子が定量的に検出され、本法はブリに感染する M. seriolae も検出可能であること を明らかにした。

また、M. seriolae は多くの養殖対象種に寄生することが知られているが、各魚種に対して宿主特異性を有しているかは不明である。そこで、各魚種に寄生する M. seriolae の遺伝的多様性について調査した。ブリ類、クロマグロおよびシイラ等から採取された 19 検体の M. seriolae リボソーム RNA遺伝子の部分塩基配列の制限酵素処理パターンに多型が認められたが、採取地や魚種との関連

は無かった。次世代シーケンサーによる網羅的な遺伝子解析により、ブリ由来 M. seriolae から 88、593、カンパチ由来 M. seriolae から 87、519 のコンティグを得た。他種の微胞子虫ゲノム情報データベースを基に M. seriolae の遺伝子予測を行った。ブリ由来株とカンパチ由株に共通の遺伝子の相同性解析において多型性が認められた 22 遺伝子を抽出した。

飼育環境における病原体の分布状況調査では、べこ病の原因体である微胞子虫 M. seriolae は魚から魚へ水平感染はしないことが実験的に証明されており、中間宿主が存在することが疑われるが、生活環については何も分かっていない。これまで、生け簀周辺に生息する無脊椎動物から M. seriolae 遺伝子が検出された例があることから、中間宿主の特定を目的に、ブリ稚魚と生け簀付着物との同居飼育試験を行った。その結果、本試験条件では、べこ病の発症は認められなかった。べこ病が高率で見られる時期、場所で再試験を行う必要があると考える。

③ ブリのべこ病に関する主漁場での疫学調査

愛媛県の漁場では、天然ブリ種苗の追跡調査を実施し、採捕直後のブリ稚魚の筋肉および採捕時の海水からは M. seriolae 遺伝子は検出されなかった。天然種苗では採捕後の沿岸漁場で 5 月上旬以降に M. seriolae に感染したと推察された。人工種苗の感染時期の試験では、7 月沖だし区と 8 月沖だし区では感染率、シスト形成率ともに大きな違いはみられず、8 月以降も海水中から M. seriolae 遺伝子が検出されていることから、同漁場では 8 月以降も感染が成立する可能性が示された。また、体重 100g 以下の個体で M. seriolae 遺伝子の検出頻度が高く、M. seriolae の感染には魚体サイズが大きく関わっていると考えられた。9 月以降に、筋肉内にシストが観察されるもののシストを除く筋肉中からは M. seriolae 遺伝子が検出されない事例が観察された。感染終期には魚体内での M. seriolae の浸潤が終息しているため採材部位からは M. seriolae 遺伝子が検出されなかったと推察された。

大分県の漁場では、海水からの検出の結果、べこ病が発生しにくいといわれる海域においても一定量の M. seriolae 遺伝子が検出され、同海域では原因虫は 6、7月頃に環境水中に多いことが示唆された。感染魚体内の寄生虫の分布を経時的に調査したところ、心臓から筋肉へ移行することが推測される。原因虫が高濃度に感染した個体では筋肉内にシストが形成されると考えられる。心臓から遺伝子が検出された検体でも、血液からは検出されなかったことから、原因虫は心筋に感染していた可能性が高いと思われる。

宮崎県の漁場では、海水を用いた分析や飼育試験によるブリのべこ病の発生状況把握を試みた。 海水からのリアルタイム PCR におよる M. seriolae 遺伝子の検出結果より、4月~7月に採取された海水サンプルから陽性が確認され、コピー数は4月から5月の海水サンプルで高い傾向にあった。 導入時期検討試験では7月以降に導入した飼育群では感染が確認されなかった。海水中のコピー数も7月以降は低い傾向であることや Yokoyama et al. (2011)は7月下旬には感染が減少する可能性を報告していることから、感染履歴のないブリ種苗を7月以降に導入すれば、本漁場ではべこ病の発生を予防または軽減できる可能性があると考えられた。ただ、平成27年度はべこ病の発生率が低かったことから、複数年の検証が必要であると考えられる。

鹿児島県の漁場では、4 月から 11 月の海水サンプルから M. seriolae 遺伝子が検出された。これら海水中の M. seriolae 遺伝子は水温が $22\sim25$ ℃の範囲で最も検出量及び検出頻度が高い傾向が窺われた。べこ病寄生率の推移を調査したところ、池入れ後 $3\sim4$ 週間で感染していると推察された。寄生レベルの判定基準の策定のためブリ種苗のべこ病のシストの体内分布調査したところ、背肉部分の頭部側に最も多くシストが分布していることが確認され、PCR 検査時のサンプル採取部位にも

同部位が適していると思われた。

④ 海外で発生している重要疾病の現地調査

海外で発生している重要疾病について現地への訪問等を行い、疾病の発生並びに防疫対策およびその効果に関する知見を調査および収集することを目的とした。海外で発生している重要疾病として新規リスク管理対象疾病への指定が予定されている IMN(infectious myonecrosis、 伝染性筋肉壊死症)および NHP (necrotising heaptobacterium、壊死性肝膵臓炎))の現地調査を、米国、アリゾナ州、ツーソン市、アリゾナ大学獣医微生物学(Department of Veterinary Science & Microbiology) Kathy Tang-Nelson 博士を訪問し実施した。IMN および HNP はともに、南北アメリカを中心に発生が確認されている病原体が引き起こすエビ類の疾病であり、現地における被害は大きい。それぞれの疾病について診断法を構築するため、 Kathy Tang-Nelson 博士から現地における両疾病に関する発生状況や我が国のエビ類への両疾病の影響の可能性について意見交換するとともに、固定標本(陽性対照)を入手し、診断法に関する情報を収集した。

4. 国内外の疾病の発生状況調査

その他、必要な国内外の疾病の発生状況調査等を行うことを目的とした。全国で開催される魚病 ブロック会議に出席するとともに、必要に応じ国内外の魚病関連学会や会議に出席し、緊急的な魚 病対策のために必要な魚病発生状況やその対策についての情報収集等を行った。

5. 水産動物疾病の浸潤状況調査

本年度は日本水産資源保護協会が実施した「ホタテガイのパーキンサス・クグワディ感染症」を 対象にした調査に協力した(実施報告は日本水産資源保護協会が行う)。

○水産動物疾病の診断・予防・まん延防止に係る技術開発等

1. 水產動物疾病等緊急対策

(1) 特定疾病、OIE リスト疾病、不明病等診断及び緊急対策

都道府県からの依頼に応じ、都道府県が実施した持続的養殖生産確保法に基づく特定疾病(主にコイヘルペスウイルス病)及び OIE(国際獣疫事務局)リスト疾病の診断結果の確認並びに都道府県において判断が不可能であった水産動物の疾病の診断又は死因の分析を行うとともに、緊急的に生じた防疫対策の取組を行った。

各都道府県から送付された検査試料について、特定疾病ガイドラインに従って PCR 法による KHV 確定診断を実施した。平成 27 年度(2 月 15 日現在)での総依頼件数は 16 件、総診断尾数は 46 尾であった。本年度の陽性事例数は昨年度の 28 事例より減少し、過去最低の 16 事例となった。 形態別にみると、例年通り養殖場(5 事例)と個人池(6 事例)で多く、全体の 69%を占めていた。 県別にみると、新潟県で 6 事例と最も多く、過去 2 年間に多数の発生が認められた岐阜県(一昨年度 4 事例、昨年度 9 事例)では 2 事例に留まった。一方で、過去数年間に発生のみられなかった東京都、徳島県、千葉県、茨城県及び青森県で KHV が検出されていることから、KHV が終息したとは言えず、引き続き、まん延防止対策の継続が必要であると考えられる。キセノハリオチス症では 2 都県より 4 事例について診断依頼を受け、4 事例 について陽性を確定し、回答した。

増養殖魚介類の不明病診断・分離病原体同定に関しては、都道府県や公的機関・団体から 22 件の依頼を受け (3月1日現在)、を行い、現在までにその内 21 件を依頼元に回答した。不明病の診断では、状況に応じて病理組織観察、ウイルス分離、細菌分離、遺伝子診断等を実施した。内訳は二枚貝 2 件、アワビ類 1 件、アユ 2 件、マス類 2 件、ブリ 2 件、カンパチ 2 件、ヒラメ 1 件、その他魚介類 6 件、分離病原体の同定 4 件であった。

緊急対応として、昨年発生したレッドマウス病の疫学調査を実施し、発生地近隣の河川で採取したアユ、ウグイ、カジカ、ボラ及びカマツカの腸管から、増菌培養後に PCR で検出する方法により、原因菌 Yersinia ruckeri を検出した。何れの魚種も腎臓から原因菌は検出されなかった。また、発生地に遡上したシロザケ親魚について、腎臓、腸管、精子あるいは未受精卵について保菌検査を行ったところ、メスの未受精卵と腸管から同様の PCR 検出法により原因菌が検出された。また、国内のシロザケ分離株のニジマスに対する病原性を明らかにするため、同株を用い感染実験を実施したところ、米国ニジマス由来の菌株を用いた攻撃区では死亡が認められ、死亡魚は全てレッドマウス病の症状を示したが、シロザケ分離株では病魚、死亡魚ともに認められず、攻撃菌も再分離されなかった。以上の結果は、シロザケ分離株はニジマスに対する病原性は米国ニジマス由来の菌株より低いことを示している。

この他、緊急対応として、異体類のアクアレオウイルス感染症に関する情報交換会を開催しアンケートによる疫学情報の収集及び今後必要な研究課題について意見交換を行うとともに、アクアレオウイルス感染症の PCR 法による診断マニュアルを作成し配付した。

(2) コイヘルペスウイルス病技術認定テスト及び技術指導

コイヘルペスウイルス病について、都道府県の魚病担当者の診断技術の精度を確認するため技術 認定テストを実施し、診断技術が不十分と判断された者及び希望する都道府県の魚病担当者に対し、 診断技術の維持・向上のための技術指導を行った。 平成 27 年 6 月 25 日~7 月 6 日、「KHV 病診断技術認定(確認)テスト」を実施し、19 都県水産 試験場より 23 名が参加し、内 10 名が技術認定され、2 名が技術確認試験に合格した。また、「KHV 病診断技術認定(確認)テスト」の結果、診断技術が不十分と判断された県診断担当者 3 名および 一般受講者 6 名の計 9 名に対して、「KHV 病診断技術講習会」を実施した。当該講習会(実習なら びに講義)は平成 27 年 7 月 22 日~23 日及びに 8 月 27 日~28 日の 2 回、増養殖研究所 魚病診 断・研修センター研修室にて行った。

2. 水産防疫資材の開発促進のための基礎的な知見の収集

(1) マダイのエドワジエラ・タルダ症ワクチン開発のための基礎的な知見の収集

全長配列を決定したマダイサイトカイン遺伝子配列をもとに組換えサイトカインを調製した。次いで、粗精製の組換えサイトカインをマダイの脾臓細胞に作用させ、免疫応答を誘導するかどうかを確認した。即ち、大腸菌を使用し Interleukin-10 (IL-10)、Interleukin-18 (IL-18)、Tumor necrosis factor α (TNF α) 及び Lymphotoxin β (LT β) の組換えタンパク質を、調整することができた。ヒト胎児腎細胞由来の HEK293 細胞を使用し、IL-10、Interleukin-34 (IL-34)、TNF α 及び Interleukin-12 (IL-12) のキメラタンパク質を調整した。マダイの脾臓細胞を各組換えサイトカインで刺激したところ、大腸菌で調製した IL-10 刺激区、IL-18 刺激区及び LT8 刺激区でマダイの脾臓細胞の IL-18 遺伝子が無刺激区よりも 2~4 倍程度発現上昇していた。一方、HEK293 で調製した組換えサイトカインではマダイの脾臓細胞の IL-18 遺伝子に変動が見られなかった。IL-18 は感染初期の炎症に関わるサイトカインであり、哺乳類では、IL-18 が抗原提示細胞の活性化をもたらすことが知られている。したがって、IL-1 β の発現を誘導した組換えサイトカインを利用すれば、ワクチンの取り込みを改善できる可能性がある。

(2) 水産用医薬品調査会への協力

農林水産省の要請に応じ、抗菌剤および生物学的製剤などの水産用医薬品の治験届、承認申請等に際し、水産安全室からの依頼に応じて必要な助言、知見の提供、意見の具申を行い、必要に応じヒヤリングや水産用医薬品調査会に参加した。

3. 水産動物疾病検査法開発

(1) ヒラメのウイルス性出血性敗血症 (VHS) の簡易迅速罹病検査技術に関する他魚種への応用の検証

ヒラメに対して有効性が確認された、病原体抗原(組換え N-protein)を固定したヒツジ赤血球を用いた VHS の簡易迅速罹病検査技術について、我が国での発症が確認されている他の魚種(マダイ及びブリ)での有効性を検証した。その結果、感染実験で作出したマダイ及びブリの感染履歴魚の血清に対する当該赤血球の反応が認められ、これらの魚種での有用性が確認できた。但し、未感染魚で若干非特異的な反応が見られるため、ヒラメ以外の魚種で本検査を実施する際にはこの点に留意する必要がある。

(2) コイヘルペスウイルス病の検査法の検証及び情報収集

我が国の「特定疾病等ガイドライン」の病性鑑定指針及び国際獣疫事務局(OIE)のマニュアルで推奨される、コイヘルペスウイルス病の PCR 検査におけるプライマーセットについて、それぞれの

検査効率を比較検証するほか、非破壊検査法の開発のための情報収集を行った。

即ち、昨年度、KHV 診断 PCR 法において、9/5 法の検出感度が Sph 法に比べて劣る事例が報告されたことから、その原因を究明し対策を検討した。平成 26 年度の KHV 確定診断陽性サンプルについて、2 種類の Taq(Takara Ex Taq 及び Takara Ex Taq Hot Start Version)を用いて、改良 Sph 法及び 9/5 法の検出感度を再検証した結果、改良 Sph 法では何れの Taq を用いた場合でもすべてのサンプルで陽性バンドが確認できたが、9/5 法では複数のサンプルにおいて、Hot Start Versionでのみ陽性バンドが出現した。よって 9/5 法では Hot Start Version の Taq の使用が不可欠であることが分かった。

また、健康診断を目的とした場合には、既存の PCR 法より検出効率の高い PCR 法が求められていることから、その開発を試みた。その結果、Orf8 に設計した新たなプライマーを用いた PCR を考案し、その検出感度および反応特異性の検証を行ったところ、既存の方法より優れていることが分かった。

非破壊検査法の開発のための情報収集として非破壊検査法に関する文献情報を収集した。伊東ら (Fish Pathology 49、 p194-197、 2014)は、鰭が KHV 感染魚の PCR 診断に適用可能であると結論づけており、非破壊検査のための最適器官であることを明らかにした。また、Monaghan et al. (Journal of Fish Diseases. 38、 p303-319、 2015)は、鰭粘液、体表粘液及び鰓粘液を対象とした PCR 法は非破壊的に実施でき、かつ臓器の破壊検査に比べても高感度であることを明らかにした。粘液の採材であれば、外観的損傷も少なく、高級ニシキゴイの非破壊検査として有用である可能性がある。ただし、感染耐過魚からの検出効率については述べられていない。

4. 養殖衛生管理に関する調査・研究

(1) サケ・マス類のレッドマウス病に関する防除技術の開発

サケ・マス類のレッドマウス病について、垂直感染を防ぐ上で有用な、卵の洗卵、消毒等の有効性 の検証及びその他手法の検討を行った。即ち、原因菌である Yersinia ruckeri のシロザケ分離株に 対する国内市販消毒剤の有効性を評価したところ、有効な消毒剤は、エタノール、イソプロパノー ル、5% ヒビテン液、オスバン S、ハイアミン 10%、ロンテクト、水産用イソジン液、次亜塩素酸ナ トリウム及びアセサイドであり、クレゾール石けん及びパイセスについては、消毒効果が認められ なかった。アマゴ及びニジマスの卵に対する Y. ruckeri シロザケ分離株の人為感染実験及び人為感 染卵の消毒効果を評価したところ、国内シロザケ分離株の浸漬感染実験において、アマゴ及びニジ マスの未受精卵に対する感染が確認された。ヨード剤による卵消毒では、媒精前の未受精卵を消毒 することで消毒効果が認められ、未受精卵の消毒前に洗卵することでより効果を向上させることが できた。但し、人為感染による実験では、洗卵・消毒を行った試験区でも一部の卵から Y. ruckeri が 分離され、受精後30日の発眼卵でも保菌が確認された。以上の成果を基に、実際の遡上シロザケを 対象に孵化場における未受精卵の洗卵・消毒効果の評価したところ、洗卵・消毒前の保菌検査では、 Y. ruckeri が検出されたが、洗卵・消毒後の保菌検査では、全ての卵が陰性となった。尚、Y. ruckeri の検出は、増菌培養後に PCR により検出する方法で行った。また、同様に、シロザケ孵化場におい て、洗卵・消毒後に授精し得られた卵を発眼まで飼育し、Y. ruckeri の検出を行ったところ、洗卵・ 消毒前の未受精卵の保菌検査では陽性が確認されたが、洗卵・消毒し授精した発眼卵では、全て陰 性となった。孵化後、稚魚の一部で死亡が見られたが、Y. ruckeri の検出結果は全て陰性であった。 以上の試験により、シロザケにおける未受精卵の洗卵・消毒法による消毒効果が確認された。

この他、国内シロザケ由来 Y. ruckeri 株に対する抗血清を作成し血清型を調査した。シロザケ分離株、ATCC29473 株(I型)及び ATCC29908 株(II型)に対する各抗血清と各不活化菌体の反応性を比較したところ、シロザケ分離株は ATCC 2 株の抗血清との反応性が弱いことから、シロザケ分離株の血清型は I 型及び II 型である可能性は低いと考えられた。

(2) アユの冷水病に関する投薬技術の開発

滋賀県内の主要なアユ養殖業者を対象に、スルフィソゾールの投薬に関し聞き取り調査を実施したところ、半数以上の業者業者が「効きにくい」と回答し、多くの業者が投薬治療を複数回繰り返すうちに冷水病の病勢が弱まると回答した。広島県内の1養殖場でスルフィソゾールの投薬事例を調査したところ、冷水病に対する大量死は抑制されたが、スルフィソゾール投薬で冷水病は完治せず慢性的な死亡が続いた。その際、養殖場で投薬前及び投薬後に分離された冷水病菌は、何れもスルフィソゾールに対する感受性は有していた。また、広島県産人工アユ2系統を用いてスルフィソゾールの効果を感染実験で評価したが、投薬の効果は低かった。冷水病に対して比較的死ににくい人工アユの系統で、投薬の効果が比較的高かった。スルフィソゾール投与直後のアユでは肝臓にのみ多くの冷水病菌が存在していたことから、冷水病菌は投薬に対し肝臓に潜伏感染することが示唆された。さらに、養殖場で分離したアユ由来の冷水病菌株の薬剤感受性を調べたところ、近年分離した冷水病菌の最小発育阻止濃度が高まっている傾向が見られた。しかし、薬剤耐性化している菌株は認められなかった。一方、アユ以外の魚種に使用可能な薬剤に対する冷水病菌の感受性を調べたところ、ジョサマイシン、チアンフェニコール及びドキシサイクリンでは、スルフィソゾールよりも有効性が高い可能性が示唆された。

以上のことから、スルフィソゾール投薬のみで冷水病に対処しようとした場合、耐性菌は出現していないものの、治療効果が得にくい傾向が見られ、スルフィソゾール以外の薬剤も選択できるよう措置を検討する必要があると考えられた。

(3) アユ冷水病に関する加温処理技術の開発

閉鎖循環飼育下において効率的にアユ冷水病を治療し、かつ耐病性を付与する加温処理方法の検討を行った。本年は琵琶湖産アユを用いて、先ず閉鎖循環系飼育下における冷水病の蔓延状況を把握し加温処理する適切な時期を調べ、次いで得られた結果を基に、閉鎖循環系飼育下において加温処理を行い、冷水病による死亡がどの程度軽減できるか検討した。その結果、体表に擦過傷等の侵入門戸を人為的に作らなくても、浸漬感染により感染 1 日後には脾臓から冷水病菌が分離されること、閉鎖循環飼育下では保菌魚が死亡した 2 日後に非感染魚への感染が起こり、死亡は保菌魚が死亡した 5 日後程度から生じることが示された。実際に閉鎖循環飼育下において、保菌魚が死亡した 2 日後から飼育水を加温し、加温処理の効果を調べたところ、冷水病による死亡は全く観察されず、無加温区の死亡率と優位差が認められた。したがって、閉鎖循環飼育下では保菌魚の 8 割程度が死亡した 2・3 日後に加温することにより、他の非感染であった魚は生存する可能性が高いと考えられた。今後は規模を大きくした閉鎖循環飼育下で加温飼育による冷水病軽減効果の検証が必要であり、加温飼育後に生残した魚が再感染後の冷水病にどの程度耐性を有しているか調べる必要がある。

5. 検査・試験材料の保存・配付

(1) 抗血清等の検査・試験材料の作成・保存・配付

都道府県等の試験研究機関の要請に応じて、OIE リスト疾病以外の魚病診断用陽性対照の作成・配付等を行った。特定疾病 29 サンプル、特定疾病以外の魚類疾病 38 サンプル、介類 21 サンプル、計 88 サンプルを各依頼都道府県に送付するとともに、その補充を行うために、新たな陽性対照を作成した。

(2) OIE リスト疾病の PCR 陽性対照等の作成・配付

コイヘルペスウイルス(KHV)病やマダイイリドウイルス病などの OIE リスト疾病について、都 道府県等の試験研究機関の要請に応じて PCR 陽性対照等の研究用試薬の作成・配付等を行った。即 ち、KHV 病診断陽性対照として、国内では 12 機関に対し、計 20 サンプルを提供し、海外では 3 機関に対して、3 サンプルを提供した。一方、RSIV 病診断陽性対照として、国内では 10 機関に対し、計 11 サンプルを提供し、海外では 10 機関に対し 12 サンプルを提供した。また、配布株の性状把握を目的として、KHV 保存株 38 株の CCB 細胞での増殖能を確認するとともに、KHV2014 年分離株について、LD50(過半数死亡濃度)を求めた。

報告書の利用についての注意・免責事項

本事業は、農林水産省消費・安全局畜水産安全管理課からの委託により、実施されたものであり、本報告書の内容は農林水産省の見解を示すものではありません。

農林水産省及び委託事業者は、本報告書の記載内容に関して生じた直接的、間接的、派生的、特別の、付随的、あるいは懲罰的損害及び利益の喪失については、それが契約、不法行為、無過失責任、あるいはその他の原因に基づき生じたか否かにかかわらず、一切の責任を負うものではありません。これは、たとえ、農林水産省及び委託事業者がかかる損害の可能性を知らされていた場合も同様とします。

本報告書は信頼できると思われる各種情報に基づいて作成されておりますが、その正確性、完全性を保証するものではありません。農林水産省及び委託事業者は、本報告書の論旨と一致しない他の資料を発行している、または今後発行する可能性があります。