安全な農畜水産物安定供給のための包括的レギュラトリーサイエンス研究推進委託事業

「持続可能な農林水産業推進とフードテック等の振興に対応した未来の食品安全プロジェクトのうち、 脂溶性貝毒アザスピロ酸のモニタリング技術の高度化」

令和6年度 研究実績報告書

課題番号	23812757
課題名	脂溶性貝毒アザスピロ酸のモニタリング技術の高度化
研究実施期間	令和5年度~令和9年度(5年間)
代表機関	国立研究開発法人 水産研究・教育機構 水産技術研究所
研究総括者	松嶋 良次
共同研究機関	国立大学法人 東京大学 大学院農学生命科学研究科
	国立大学法人 高知大学 教育研究部自然科学系農学部門

<別紙様式2>研究実績報告書

令和6年度 安全な農畜水産物安定供給のための 包括的レギュラトリーサイエンス研究推進委託事業

「持続可能な農林水産業推進とフードテック等の振興に対応した未来の食品安全プロジェクトのうち、 脂溶性貝毒アザスピロ酸のモニタリング技術の高度化」

研究実績報告書

I. 研究の進捗状況等

令和6年度はムラサキイガイおよびカキに培養アザスピロ酸(AZA)生産藻類*Azadinium poporum*の給餌を行い、軟体部を部位ごとに分け各部位のAZAを測定した。ムラサキイガイおよびカキにおけるAZA群の分布を明らかにし、AZAの蓄積率を算出した。ムラサキイガイからAZA群の代謝物と推定されるピークを検出した。

前年度に作成した定量PCR(qPCR)用のプライマーとプローブを用い、環境DNA試料からのアンフィドマ科渦鞭毛藻の定量検出を実施し、検出精度の確認を進めた。アンフィドマ科の培養株作成を継続し、日本周辺海域より出現が確認されているAmphidomaの1種を記載報告した。前年度に決定した28S rDNA D2領域を解析対象とする定量メタバーコーディングを開発するために、内部標準として用いるDNA3種を設計・調製した。これを現場試料に添加することに先立ち、現場試料に含まれる、rDNA総量を定量可能なqPCRを開発し、海水試料に含まれるrDNA総量を網羅的に解明した。ろ過海水に培養アザスピロ酸産生藻類を添加し、プランクトンネット等によるろ過濃縮条件を検討した。アザスピロ酸産生藻類を含む海水を5μmメッシュのプランクトンネットでろ過濃縮し、計数によるアザスピロ酸産生藻類の回収率は約60%で、AZA2量は約15%と低い回収率を示した。

1. アザスピロ酸の二枚貝の複数種への蓄積特性の解明

令和6年度はムラサキイガイおよびカキにアザスピロ酸生産藻類*Azadinium poporum*を連続した4日間給餌し、軟体部を部位ごとに分けて分析試料を調製した。各部位の定量値からムラサキイガイおよびカキにおけるAZA群の分布を明らかにし、給餌した*A. poporum*の毒量から蓄積率を算出した。ムラサキイガイからAZA2の代謝物と推定されるピークが検出された。

2. アザスピロ酸のモニタリング手法の開発

前年度に作成したqPCR用のプライマーとプローブを用い、環境DNA試料からのアンフィドマ科渦鞭毛藻の定量検出を実施し、検出精度の確認を進めた。qPCR用の現場海水試料は相模湾と浦ノ内湾から毎月入手し、環境DNAを抽出して保存している。アンフィドマ科の培養株作成を継続し、日本周辺海域より出現が確認されているAmphidomaの1種を記載報告した。

有毒なアンフィドマ科を解析対象とする定量メタバーコーディング解析を行うに際し、前年度に決定した28S rDNA D2領域を解析対象とする定量メタバーコーディングに用いる内部標準としてDNA3種を設計・調製した。現場試料に含まれるrDNA総量を定量可能なqPCRを開発し、海水試料に含まれるrDNA総量を網羅的に解明した。また、高知県浦ノ内湾において定期的にプランクトン試料を採取しこれらを保存した。さらに、本藻の増殖に適した培地選抜試験を実施し、その増殖に適した培地を選抜した。

令和6年度はろ過海水に培養アザスピロ酸産生藻類を添加し、プランクトンネット等によるろ 過濃縮条件を検討した。前処理としては $95\,\mu m$ メッシュのプランクトンネットが適していると考えられた。次に約 $1\,cells/mL$ のアザスピロ酸産生藻類を含む海水を $5\,\mu m$ メッシュのプランクトンネットでろ過濃縮し、計数によるアザスピロ酸産生藻類の回収率と、ろ過濃縮物から検出された AZA2量を確認した。