

(1)緩効性窒素肥料について

資料 6

- ① 初めに
- ② 緩効性窒素肥料の二一ズと機能
- ③ 緩効性窒素肥料の種類、登録状況、生産量
- ④ 種類別緩効性窒素肥料の特徴
- ⑤ 機能表示の留意事項と課題

(2)肥料制度に係る課題など

- ① 肥料生産に当たっての、 公定規格等の制度上の課題
- ② 「肥料制度を巡る事情と課題」についての意見

ジェイカムアグリ(株) 技術管理本部日本肥料アンモニア協会 農事部会

(1)緩効性窒素肥料について

① 初めに

化学肥料は、有効成分が高く安全で安価であり、 その利用により世界の人口増を支えてきた。

今後、益々その需要は増大すると予測されるが、 化学肥料の原料は天然由来の石油や鉱物であり、 有限資源である。

よって、持続的作物生産に肥料が貢献するためには、 肥料成分を含む産業副産物の有効利用の推進と共に、 『化学肥料の有効活用技術を構築していく』ことが、 肥料生産業者の使命と認識している。

② 緩効性窒素肥料のニーズと機能

ニーズ

施肥労力減への対策必要

重労働(追肥)回避要望 農業就業人口減少(農水省HPより) 261万(H22)→182万(H29)

生産コストの低減

施肥労力減、少量施肥によるコスト減 作物の生産性向上と食味向上

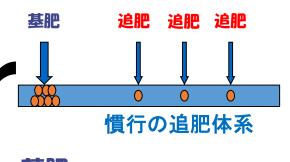
有限資源の有効活用と 環境負荷低減

機能

作物の養分要求特性に適合

=作物が必要な時に養分を供給

基肥一発施肥が可能

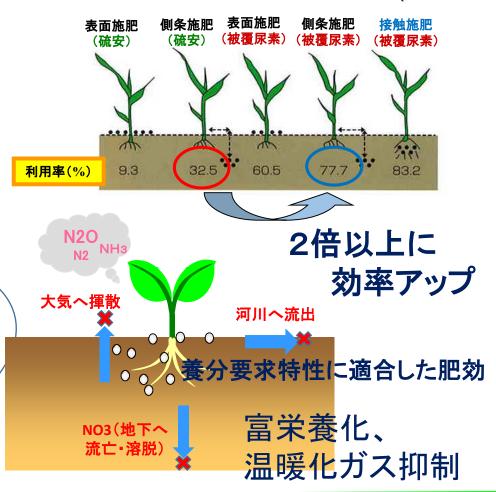

肥料利用効率の向上

BB原料として高品質

原料用に造粒、吸湿性低下

基肥一発による 施肥労力削減・ 生産コスト低減

^{基肥} 追肥作業不要


基肥一発施肥体系

* 濃度障害も発生しない

緩効特性/養分要求特性より、緩効性肥料種/施肥量を選択し、必要な肥料を一度に施肥する

肥料利用率向上による 少量施肥・環境負荷低減

施肥位置、肥料の種類と水稲による窒素利用率(金田1995)

③ 緩効性窒素肥料の種類、登録状況、生産量

単肥、化成原料として 広く使われている

* 化学合成緩効性窒素肥料

		ᅏᇶᄼᅺ	登録	登録 生産量(トン)					原料使用
		件数	H22	H23	H24	H25	H26	登録数(件)	
尿	示素/アルデヒド縮合物								
	イソブチルアルデヒド 縮合尿素(IBDU)	ジェイカムアグリ	4	6,717	7,838	8,095	6,649	6,950	「IB」名称で39 件
	アセトアルデヒド 縮合尿素(CDU)	ジェイカムアグリ	9	3,044	3,775	3,417	4,051	4,192	「CDU」名称で 39件
	ホルムアルデヒド 加工尿素肥料(UF)	朝日工業、サンアグロ 下関三井化学、住友化学 TGアルバ	10	2,309	2,178	1,325	1,783	1,716	「ホルム」名称 で47件
	メチロール尿素 重合肥料	エムシー・ファーティコム、 みのり化学	5	-	-	-	-	13	
上	上記以外								
	石灰窒素	日本カーバイド工業 片倉コープアグリ、デンカ	20	52,847	50,900	43,491	38,245	41,266	「石灰窒素」名 称で39件
	オキサミド	宇部興産、 エムシー・ファーティコム	4	325	364	493	447	437	「オキサミド」名称で20件
	硫酸グアニル尿素	片倉コープアグリ、 エムシー・ファーティコム	3	-	-	-	-	-	
	グリオキサール 縮合尿素	(登録なし)	0	_	_	-	_	-	
	出曲・ポケット即判更覧	-2015/2016- (農林統計協会) 農太	オル帝士日	5 冬 紀 牧 太	五給索シス	<u> 구 /, (FAN</u>	MIC)	Г

出典;ポケット肥料要覧 -2015/2016- (農林統計協会)、農林水産大臣登録銘柄検索システム(FAMIC)

備考

*被覆肥料

肥料の種類(通称)

NPK肥料、BB原料として広く使われている

生産量(トン)

			件釵	H22	H23	H24	H25	H26	0
主	主に化成肥料に被覆した肥料								
	被覆複合肥料	サンアグロ、ジェイカムアグリ 片倉コープアグリ、住友化学 下関三井化学、アグリテクノ 住化農業資材、東日化成 ミズホユーキ、住友化学園芸	140	15,200	11,046	10,996	11,063	9,413	
単	肥に被覆した肥料(主に指	定配合肥料の原料として使用)						
	被覆窒素肥料	ジェイカムアグリ、サンアグロ エムシー・ファーティコム 住友化学、片倉コープアグリ セントラル化成、多木化学	216	69,610	78,685	81,285	90,915		指定配合肥料 換算で約40万 T/年相当 (原単位25%前 提)
	被覆加里肥料	ジェイカムアグリ、住友化学 多木化学	13	185	214	44	522	1,277	
	被覆りん酸肥料	ジェイカムアグリ、住友化学 多木化学	5				1	1	
	被覆苦土肥料	ジェイカムアグリ、住友化学	5	75	11	19	1	17	

登録

登録会社

出典;ポケット肥料要覧 -2015/2016- (農林統計協会)、農林水産大臣登録銘柄検索システム(FAMIC)

④ 種類別緩効性窒素肥料の特徴

肥料種で緩効性メカニズムが異なる

	肥料の種類(通称)	無機化メカニズム	緩効性の特徴			
Ì	な化学合成緩効性窒	E素肥料				
	イソブチルアルデヒド 縮合尿素(IBDU)	主に加水分解	* 緩効性とは 含有する有機態窒素の溶解性や分解性を			
	アセトアルデヒド 縮合尿素(CDU)	微生物分解 及び加水分解	調節することで、無機化を抑制し、作物への無機態窒素の供給を緩やかにすること * 緩効期間			
	ホルムアルデヒド 加工尿素肥料(UF)	主に微生物分解	普通粒で概ね100日以下 * 肥料要因緩効性調節法 単肥: 粒径(粒効果)、添加剤など			
	石灰窒素	微生物分解 及び加水分解	・ 単記: 私径(私効果)、添加削なる 化成肥料; 含有率など * 圃場条件緩効性影響因子			
	オキサミド	主に微生物分解	温度、水分、土壌pH、微生物など			

	オキサミド	主に微生物分解	温度、水分、土壌pH、微生物など			
	肥料の種類	溶出メカニズム	溶出パターンの特徴			
窒	素源を含有する被覆	肥料				
	被覆複合肥料	・被膜内部で溶解した 肥料が 被膜を通して 溶出する	* 溶出パターン 溶出型;主にシグモイド型とリニア型 溶出期間;20日間~約2年で設定可			
	被覆窒素肥料	・被膜内容や肥料種により溶出パターンが調節される	* 肥料要因溶出パターン調節法 被膜内容(種類/組成/厚さ)、肥料種 * 圃場条件溶出パターン影響因子 温度、水分、土壌pH、微生物など			

7

⑤ 機能表示の留意事項と課題

一定条件での評価による機能表示は可能だが、結果解釈にはメカニズム理解必要

	肥料の種類(通称)	公定規格内 緩効性に関連 した制限事項	の記述について 左記の妥当性 に関する意見	機能表示に関する 留意事項と課題など
主	な化学合成緩効性窒素	肥料		
	イソブチルアルデヒド 縮合尿素(IBDU)	尿素性窒素の含	水溶性の尿素性窒素による緩効性の低下	* 緩効性に関する機能表示について
	アセトアルデヒド 縮合尿素(CDU)	有率の規定あり	回避のため必要	一定条件(温度、水分、土壌 等を規定)で評価し、機能表示で
	ホルムアルデヒド 加工尿素肥料(UF)	尿素性窒素含有 率及び活性係数 の規定あり	溶解性規定等による 緩効性の低下回避 のため必要	ることは可能。但し、土壌を規定することにハードルはある。また、評価結果の解釈には、無機 化メカニズムや溶出メカニズムの
	石灰窒素	_	_	理解が必要。
	オキサミド	_	_	
窒	素源を含有する被覆肥	*ユーザーによる選択について		
	被覆複合肥料	①窒素は水溶性 であること ②窒素の初期溶	①水に溶けた窒素が 溶出するので水溶性 の規定は必要	生産業者は各種評価により特徴を明らかにし、ユーザーに説明し共有する。必要に応じて、圃場での実証試験を以て有用性をご
	被覆窒素肥料	出(水中30℃24 時間)は50%以 下であること	②本制限内容では <mark>被</mark> 覆肥料としては不十 分ではないか?	認識頂き選択頂く。

(2)肥料制度に関わる課題など

① 肥料生産に当たっての、公定規格等の制度上の課題

現状認識、課題など	意見/要望など
	肥料制度に則った分析法(サンプリング法、分析誤差など)につき、ユーザーも含めて <mark>周知を継続</mark> 頂きたい
各保証成分及び各有害成分の <mark>必要性</mark> が明確でない場合がある?	例1;可溶性りん酸保証の意義は? 例2;チタンを有害成分とする意義は?
変更届出の提出期限は現状 <mark>2週間</mark> であるが、登記簿対応もあり困難である	肥料登録、指定配合届出、販売業務開始届出につき、 変更届出の提出期限を1か月に延長して欲しい

② 「肥料制度をめぐる事情と課題」についての意見

現状認識、課題など おんしゅう	息見/妛望なと
肥料成分を含む産業廃棄物由来の有効 利用を推進中、同時に混入する有害物 質の検査も実施中	産業廃棄物由来の肥料の安全性をもっとPRすべきでは。安全性の高い化学肥料でさえ、安全性の理解が 不足している場合がある
堆肥等の土づくり効果のある肥料の活 用は重要も、 <mark>量的な把握</mark> も啓蒙すべき	土づくりのための施用量とそれに伴う成分持ち込みの理 解を啓蒙する
土壌中養分のアンバランスが問題になることがある	土壌分析を励行し、必要な肥料の種類と量をユーザー にご理解頂く