第7. \ \ 章

アニマルウェルフェアと豚生産システム

第7.X.1条

定義

豚生産システムは、肉の生産を意図して行われる豚<u>(Sus scrofa)</u>の繁殖、育成及び管理の一部又はすべての作業を含むあらゆる商業上の生産システムと定義される。

本章の目的上、管理とは、農場レベルでの管理及び家畜飼養管理者レベルでの管理と定義される。農場レベルでの管理では、人材の管理(<u>飼養管理者</u>の人選、訓練を含む)および動物の管理(舎飼及び飼養管理の最善の取組、ウェルフェアの手順の実施及び監査)はすべてアニマルウェルフェアに影響を与える。家畜飼養管理者レベルでの管理では、よく発達した飼養管理の技術及び動物の世話をするための知識が求められる。

本章の目的上、環境改良とは、正常な行動の促進、<u>認知活性化、</u>異常な行動の軽減及び認知活性化のために、動物の環境の複雑さ(たとえば、飼料の機会、群による舎飼)を高めることと定義される。改善の<u>目的向かう先</u>は、動物の生理機能を向上<u>するされる</u>ものとする(Newberry, 1995)。

本章の目的上、常同性とは、既知の要因(欲求不満、対処方略又は中枢神経系の機能障害等)によって生ずる、異常な、反復的な、不変の行動の一連である。豚に通常観察されるいくつかの常同性は、かじるふり、石かじり、舌遊び、歯ぎしり、棒かじり、床なめ等として観察される(NFACC, 2014; Tuyttens, 2007; Mason and Latham, 2004)。

本章の目的上、無関心とは、通常は反応を喚起するような刺激に対して、反応するのを やめることを意味する(Wood-Gush and Vestergaard, 1989)。さらに、無関心な行動は、 活動低下、興味又は関心の欠如(すなわち、無関心)及び感覚又は感情の欠如(すなわ ち、無感動)によって示される異常な又は不適応の行動として説明されている。

本章の目的上、反抗的な行動とは、闘争状態で現れる行動の連続であり、攻撃、防御及び服従又は逃走の要素を含む。関連する行動は、接触(噛む、押す等)又は非接触(体の姿勢や身振りによる威嚇等)を含む場合がある。攻撃的な行動は、反抗的な行動の要素の一つである(Petherick and Blackshaw, 1987)。

適用範囲

本章は、<u>飼養されている</u>豚の生産におけるウェルフェアの観点から取り扱う。ただし、 捕獲された野生の豚は除かれる。

第7.X.3条

商用豚生産システム

商用生産における豚生産システムには以下のものがある。

1. 屋内型

このシステムでは、豚は、屋内で飼養され、飼料、水などの動物が最低限必要とするものの提供を完全に人に依存している。豚舎の種類は、環境、気候条件及び管理システムによって決まる。動物は群又は個別で飼養される。

2. 屋外型

このシステムでは、豚は、居住場所又は日陰のある屋外で飼われ、収容場所や日陰の利用に関してある程度自律しておりいるが、飼料、水などの動物が最低限必要とするものの提供を完全に人に依存していることもある。豚は、通常、育成ステージによって囲い又は放牧場の中で飼養される。動物は群又は個別で飼養される。

3. 複合型

このシステムでは、豚は、気候条件又は育成ステージに応じて、屋内及び屋外の生産システムのさまざまな組み合わせにより管理される。

第7. X. 4条

豚のウェルフェアの基準(測定指標)

以下の結果に基づく基準 (又は測定指標)、とりわけ豚の状態に係る基準は、アニマルウェルフェアの実用的な指標になり得るものである。本指標及びその適切な閾値の使用は、豚が管理されるさまざまな状態に合わせて適合されるものとする。システムの設計にも配慮が払われるものとする。設計及び管理がアニマルウェルフェアに影響を与え得ることを考慮すると、これらの基準は両者の効果を監視する道具とみなすことができる。

1. 行動

いくつかの行動は、*アニマルウェルフェア*上の問題を示している場合がある。これには、飼料摂取量や飲水量の変化、運動行動や<u>又は</u>姿勢の変化、横臥時間の変化、

呼吸数の変化、あえぎ呼吸、咳、ふるえ、身の寄せ合い、<u>特定の鳴き声をあげる、</u> <u>及び</u>反抗的な行動の増加(<u>攻撃を含む</u>)や、常同性の行動の増加、無関心な行動の 増加、又はその他の異常な行動(尾の噛みつき等)の増加がある。

<u>いくつかの行動は、良好なアニマルウェルフェアをの指針となる。これらは、良好な社会行動及び遊びの行動を含む。</u>

常同症とは、動物が、明らかな利益や目的なしに、不変の行動を連続して行うことと定義される。いくつかの常同症は、通常、かじるふり、舌遊び、歯ぎしり、棒かじり、床なめ等として観察される。

2. 罹病率

伝染性又は代謝性の疾病、跛行、産後又は術後の合併症等、損傷及びその他の罹病<u>の割合</u>は、一定の閾値を超えた場合には、群全体<u>レベル</u>のアニマルウェルフェアの 状態を示す直接的又は間接的な指標になることがある。疾病又は一連の徴候の原因 を理解することが、潜在的なアニマルウェルフェア上の問題を発見するために重要 である。乳房炎、子宮炎、肢蹄<u>の問題、成熟雌豚の肩の潰瘍、皮膚病変、呼吸器及</u> び消化器の疾病及び繁殖性疾病はまた、豚にとって、とりわけ重要な動物衛生上の 問題でもある。体型、跛行、損傷等の評価システム<u>、及びと畜場で収集された情報</u> が、追加情報を提供する場合もある。

臨床<u>及びと畜後の病理学的</u>検査及び病理は、いずれもが疾病、損傷、アニマルウェルフェアを損ねるおそれのあるその他の問題の指標として活用されるものとする。

3. 死亡率及び淘汰率

死亡及び淘汰率は、更新産次の長さに影響し、罹病率と同様に、<u>群レベルの</u>アニマルウェルフェアの状態を示す直接的又は間接的な指標になることがある。その生産システムにもよるが、死亡及び淘汰率の推定値が、死亡及び淘汰の原因や特定の期間や場所における発生パターンの分析を通じて得られる場合もある。死亡率及び淘汰率、及びその原因(判明している場合)は、定期的に(毎日等)記録され、モニタリング(毎月、毎年等)に利用されるものとする。

剖検は死亡原因の確定に有益である。

4. 体重及び体型の変化

成長期の動物では、期待される発育速度から外れた体重変化、特に急激かつ極端な 体重の減少は、不十分なアニマルウェルフェアと健康の指標である。

成熟した動物では、許容範囲を超える体型<u>又は群の中の個々の動物間の大きな変動</u>が、アニマルウェルフェア<u>及び</u>健康、<u>成熟した動物の</u>繁殖効率が損なわれていることの指標になる場合がある。

5. 繁殖効率

繁殖効率が、アニマルウェルフェア及び動物の健康の状態の指標になる場合がある。 成熟雌豚又は未経産雌豚の将来の成績は、異なる育成ステージにおける栄養の不足 又は過剰によって影響を受ける場合がある。その品種又は交雑種に期待される標準 値と比較して繁殖性<u>効率</u>が悪いということが、アニマルウェルフェアの問題を示し ている場合もある (Hemsworth et al., 1981, 1986, 1989, 1994, Munsterjelm et al., 2006)。

例としては以下のものをあげることができる。

- 一 低い受胎率
- 一 高い流産率
- 一 子宮炎及び乳腺炎
- 一 小さい産仔のサイズ(産仔の合計)
- 一 低い生存産仔数
- 一 高い死産数やミイラ胎子数

6. 外観

外観は、動物の健康及び*アニマルウェルフェア*の指標になりうる。ウェルフェアが 損なわれていることを示唆する外観の特性には、以下のものがある。

- 一 体型
- 一 外部寄生虫の存在
- 一 異常な被毛の質感又は脱毛
- 一 糞による過度な汚れ(屋内型の場合)
- 一 赤みがかった皮膚の変色
- 一 異常な腫脹、損傷又は病変
- 分泌物 (たとえば、鼻、目からの分泌物) (Telkänranta et al., 2016)
- 一 肢蹄の異常
- 異常な姿勢(たとえば、背中を丸める姿勢、頭を下げる姿勢)
- 一 削痩及び脱水(仔豚において)

7. 取扱時の反応

不適切な取扱<u>又は人との接触の欠如</u>が、豚に恐怖と苦悩をもたらす場合がある。人への恐怖は、不十分な*アニマルウェルフェア*及び動物の健康の指標になりうる。指標には以下のものがある。

- 移動させられた時や動物飼養管理者が<u>ふれあってきた</u>豚房に入ってきた時に 示す<u>顕著な取扱者からの回避及び鳴き声</u>不安の行動等のような、人と豚との関係 が希薄であったことの証拠
- 一 取扱時に滑っている又は倒れている豚
- 一 挫傷、裂傷、肢骨折等の取扱中の損傷
- 一 保定又は取扱中に異常又は過剰な鳴き声をあげる豚

8. 跛行

豚は、さまざまな伝染性及び非伝染性の筋骨格障害に影響を受けやすい。これらの障害は跛行や歩行異常につながるを引き起こすことがある。跛行や歩行異常の豚は、飼料や水に届くのが難しくなる場合があるし、苦痛<u>及び苦悩</u>を感じる場合もある。筋骨格異常は多くの原因(遺伝、栄養、衛生、床の性質及びその他の環境及び管理の要因等)によって起こりうる。歩行の評価システムがいくつかある。

9. 処置による合併症

飼養管理を円滑化し、市場<u>又は環境</u>の要件を満たし、人の安全及び<u>又は</u>アニマルウェルフェアを向上させる<u>守る</u>ために、外科的去勢、断尾、切歯、牙切り、個体標識、 鼻輪、蹄の処置等が通常、豚に行われる。

ただし、これらの処置が適切に実施されない場合には、*アニマルウェルフェア*及び 動物の健康が<u>不必要に</u>損なわれることもある。

そのようなこれらの処置に関連する問題の指標には以下のものがある

- 一 処置後の感染、腫脹
- 一 処置後の跛行
- 一 苦痛、恐怖及び苦悩を示す行動
- 一 罹病率、死亡率及び淘汰率
- 一 摂食量及び飲水量の減少
- 一 処置後の体型及び体重減少

勧告

豚の高度なウェルフェアの確保は、システム設計、環境管理、動物飼養管理(責任ある 畜産及び適切な飼養を含む)といった複数の管理要因に依存する。これらの要素が一つ 以上欠けている場合には、どのようなシステムであっても、深刻な問題が生じる場合が ある。

第7. X. 6条から第7. X. 26条では豚に適用される措置の勧告が示されている。

各勧告には、第7. X. 4条から得られる動物の状態に係る関連<u>基準(</u>又は測定指標<u>)</u>が含まれている。

関連測定指標は適宜使用されるその他の措置を排除するものではない。

第7. X. 6条

舎飼

新たな施設を計画又は既存の施設を改修する場合には、アニマルウェルフェア及び動物 衛生に関して設計上の専門的な助言が求められるものとする。

舎飼システム及びその構成要素は豚の損傷、疾病又はストレスのリスクを軽減するよう な方法で設計され、建築され、定期的に検査され、維持されるものとする。畜舎は安全、 効率的、人道的な管理や豚の動きを可能にするものとする。

病気の豚や損傷を受けた豚を処置し観察するための隔離された区域を設けるものとする。隔離された区域は、動物が必要とするすべてのもの(たとえば、横臥している動物や歩行困難な動物、重大な傷を負った動物には、追加の敷料又は代替の床の表面が必要な場合がある)を備えているものとする。

豚は通常の舎飼システムにおいて繋がれるべきではない。

良好なアニマルウェルフェアの成果は舎飼システムによって得られる。そのシステムの 設計や管理は適正なアニマルウェルフェア及び健康の成果を得るために重要である。

豚は社会的な動物であり、群で生活することを好むため、成熟雌豚や未経産雌豚が群で 飼われるような舎飼システムが推奨される。

結果に基づく基準(又は測定指標):外観(損傷)、行動、体重及び体型の変化、取扱時の反応、繁殖効率、跛行及び罹病、死亡率及び淘汰率

職業訓練

豚は、動物のウェルフェア及び健康を維持するために必要な能力、知識及び適性を集合的に有している十分な数の人によって世話されるものとする。

豚に対し責任のあるすべての者は、その責任に応じて、公式な訓練や実際の経験を通じて能力を有しているものとする。これには、豚の取扱、栄養、繁殖管理技術、行動、バイオセキュリティ、疾病の徴候並びに、ストレス、痛み、不快等のアニマルウェルフェアの低さの指標及びその緩和に関する理解や技術を含むものとする。

結果に基づく基準(又は測定指標):取扱時の反応、外観、行動、体重及び体型の変化、 繁殖効率、跛行及び罹病、死亡率及び淘汰率及び処置による合併症

第 7. X. <u>87</u>条

取扱及び検査

豚は、飼料、水といった基本的なものの提供を人に完全に依存している場合、ウェルフェア及び健康の問題の特定のため、少なくとも一日一回検査されるものとする。

動物によっては、さらに頻繁に検査を受けるものとする。たとえば、分娩した豚、新生 仔、離乳したての子豚、新たに混合された未経産雌豚及び成熟雌豚<u>、病気にかかった又</u> は損傷を受けた豚及び異常行動(尾かじり等)を示している豚がこれに該当する。

病気にかかった又は損傷を受けていることが確認された豚は、できるだけ早い機会に、 有能な*家畜飼養管理者*による適切な治療を受けるものとする。家畜飼養管理者が適切な 治療ができない場合には、獣医師による処置が求められるものとする。

豚の取扱に係る勧告は、第7.3章にも見られる。とりわけ痛み及び苦悩を与えるおそれのある取扱補助器具(たとえば、電気突き棒)は、<u>他の方法が失敗して極端な場合、当該動物が自由に移動できるときにのみ使用されるものとする。電気突き棒の使用は避けるものとし(第7.3.8条第3項参照)、いかなる場合であっても同じ動物に繰り返して使ってはならず、</u>乳房、顔、目、鼻、肛門性器等の敏感な部位を突くべきではない。

突然の移動又は視覚的コントラストの変化に豚を曝すことは、ストレスや恐怖の反応を防ぐため、可能な場合には最低限に抑えるものとする。豚を<u>不適切又は</u>攻撃的に扱うべきではない(たとえば、蹴られる、<u>投げられる、落とされる、</u>上を歩かれる、1本の前足や耳又は尾をつかまれる又は引っ張られる)。取扱中に苦痛を受けた豚は直ちに看護されるものとする。

豚は必要な場合にのみ拘束され、適切な場合にのみ、手入れの行き届いた拘束装置を使 うものとする。

よく設計され、整備された取扱設備は、適切な取扱を促進する。

結果に基づく基準(又は測定指標):外観、行動、体重及び体型の変化、取扱時の反応、 繁殖効率、跛行及び罹病、死亡率及び淘汰率

第7. X. 98条

痛みを伴う処置

外科的去勢、断尾、切歯、牙切り、個体標識、鼻輪等の処置は豚に対して一般的に行われる。これらの処置は飼養管理を円滑にするため、また市場<u>又は環境</u>の要件を満たすため、人の安全及び又はアニマルウェルフェアを向上する守る。ためにのみ行われるものとする。

これらの処置は<u>痛みを伴う、又は</u>苦痛をもたらす可能性があるため、<u>必要な場合に限って、</u>動物への痛み及び苦痛を最低限にする方法<u>(たとえば、獣医師の勧告又は監視の下での麻酔又は鎮痛の使用)</u>で行われるものとする。

当該行為に関連して、アニマルウェルフェアを強化するための選択肢には、国際的に認識されている「3 つの R」、代替(<u>たとえば、</u>去勢豚よりもむしろに対して(去勢等の処置を行っていない)雄豚又は免疫的去勢豚<u>の使用</u>)、削減(<u>たとえば、</u>必要な場合のみの断尾及び切歯)、改善(<u>たとえば、獣医師の勧告の下での</u>鎮痛又は麻酔)等がある(Bonastre et al., 2016 and Hansson et al., 2011)。

結果に基づく基準(又は測定指標): 飼養管理上の処置による合併症、罹病率、死亡率 及び淘汰率、異常行動、外観、体重及び体型の変化

第 7. X. <u>9</u>10-条

動物への飼料、水の給与

いかなる飼養管理システムでも豚が必要とする飼料や栄養の量は、気候、飼料の栄養組成や品質、豚の週齢、性別、<u>遺伝、</u>大きさ及び生理状態(たとえば、妊娠、泌乳<u>、成長</u>)、健康状態、成長率、過去の摂餌レベル、活動及び運動のレベル等の要因によって影響を受ける。

すべての豚は、以下の目的のために、適切な<u>量及び質</u>の飼料及び栄養を毎日提供される ものとする。

- 一 健康を維持すること
- 一 その生理的及び行動の要求を満たすこと、かつ
- 一 代謝や栄養の障害を防ぐこと

飼料及び飲水の給与は、不当な競争や損傷を防ぐ方法で提供されるものとする。

豚の胃潰瘍を可能な限り防ぐため、十分な繊維を含んだ飼料を給与するものとする -(Hedde *et al.*, 1985)。

すべての豚は、飲水を妨げない温度の、豚の生理学的要求に適合した、豚の健康に有害や汚染物質のない、飲みやすい飲用に適した</u>水の適切な供給を利用できるものとする(Patience, 2013)。

結果に基づく基準(又は測定指標):体重及び体型の変化、<u>外観(仔豚の脱水症状)、行動(</u>飼料・飲水場所での反抗的な行動及び尾の噛みつきのような異常行動<u>)</u>、死亡率及び淘汰率、罹病率(胃潰瘍)

第 7. X. <u>10</u>11 条

環境改良

動物は、正常な行動<u>(たとえば、鼻で地面を掘る、かじる、噛む)</u>の促進、異常な行動 <u>(たとえば、尾、耳、肢、横腹にかみつく、無関心な行動)</u>の軽減及び生理学的機能の 向上のため、複雑さ<u>操作可能性</u>及び認知活性化(たとえば、飼料の機会、群による舎 飼)を提供されるものとする<u>(Dudnik et al., 2006; Elmore et al., 201; Newberry,</u> 1995; Van de Weerd et al., 2006; Wittaker et al., 1999)。

豚は、<u>動物のその</u>ウェルフェアを向上することを目的とした、物理的及び社会的な環境 の改良をさまざまな方法で提供されるものとする。例としては以下のものをあげること ができる。

- 生まれながらの要求(動物の餌(食べられる物質)を探検して探すこと、噛むこと(噛める物質)、鼻で地面を掘る(探すことが可能な物質)、操る(操れる物質))を満たすために十分な量の適切な物質(Bracke et al., 2006); 目新しさは、物質の供給において関心を保つという重要なもう一つの面である(Trickett et al., 2009; Abou-Ismaila and Mendl, 2016; Tarou and Bradshaw 2007)。
- 一 群飼いの豚又は個別に飼われている豚を視覚的、嗅覚的、聴覚的に他の豚と接触させる社会的な改良
- 好意的な人間との接触(たとえば、<u>機会があったときに、</u>軽くたたく、さする、話しかける)(Hemsworth and Coleman, 2011; Hemsworth and Coleman, 1994)

結果に基づく基準(又は測定指標):外観(損傷)、行動(常同性、尾のかみつき)、体 重及び体型の変化、取扱時の反応、繁殖効率、跛行及び罹病、死亡率及び淘汰率

第 7. X. <u>11</u>12条

異常行動の防止

豚生産においては、適切な管理手順によって防ぐ又は軽減できる異常行動が多くある。

これらの問題の多くは多要因によるものであり、発生を軽減するには環境全体やいくつかの管理要因の検査が必要である。しかし、<u>これらのいくつかの行動の問題の</u>発生を軽減しうるするためのいくつかの勧告には以下のものをあげることができる。

- 1) 大人の豚による口を使う常同症(たとえば、棒かじり、かじるふり、過剰な飲水)は、環境改良の提供、給餌時間の延長、飼料中の繊維含有量又は飼料の粗さの増加によって、軽減することができる(Robert et al., 1997; Bergeron et al., 2000)。
- 2) 尾の噛みつきは、適切な改良物質及び適切な飼料(ナトリウム又は必須アミノ酸の不足を避ける)を提供すること、密飼いや飼料・水の競争を避けることによって軽減できることがある(Walker and Bilkei, 2005)。他の考慮すべき要因には、動物の特性(品種、遺伝、性別)や社会的環境(群の大きさ、混合した動物)(Schroder-Petersen and Simon sen, 2001; EFSA, 2007; Taylor et al., 2010)、全般的な健康、温度の快適さ及び空気の性状がある。
- 3) ベリーノージング(訳注)及び耳なめは、離乳時期を遅らせること、飼料の急激な変化を避けるために離乳前に仔豚に飼料を給与することによって軽減できることがある(Marchant-Forde, 2009; Sybesma, 1981; Worobec, 1999)。 (訳注):子豚を母豚から早期に離乳することによる発現する問題行動の1つであり、鼻を使い他の子豚の腹部を持ち上げ母豚の乳房を探すような行動。
- 4) 外陰部の噛みつきは、給餌区域の競争を低減することによって軽減できることがある (Bench *et al.*, 2013; Leeb *et al.*, 2001; Rizvi *et al.*, 1998)。
- 5) 結果に基づく基準(又は測定指標):外観(損傷)、行動(異常行動)、罹病率、死亡率及び淘汰率、繁殖効率、体重及び体型の変化

第7. X. 612条

舎飼(屋外型生産システムを含む)

新たな施設を計画又は既存の施設を改修する場合には、*アニマルウェルフェア*及び動物 衛生に関して設計上の専門的な助言が求められるものとする。

舎飼システム及びその構成要素は豚の損傷、疾病又は<u>及び</u>ストレスのリスクを軽減するような方法で設計され、建築され、定期的に検査され、維持されるものとする。畜舎は安全、効率的、人道的な管理や豚の動きを可能にするものとする。<u>豚が天気の悪い状態</u>にさらされる可能性がある場合は、温度のストレスや日焼けを防ぐための収容場所を利

<u>用できるものとする。</u>

病気の豚や損傷を受けた豚<u>又は異常な行動を示す豚</u>を<u>隔離し、</u>処置し、観察するための 隔離された<u>囲い又は</u>区域を設けるものとする。<u>動物によっては個別に保つ必要がある場合がある。</u>隔離された区域は、動物が必要とするすべてのもの(たとえば、横臥している動物や歩行困難な動物、重大な傷を負った動物には、追加の敷料又は代替の床の表面が必要な場合がある。<u>また、水と飼料が手の届く場所になければならない。</u>)を備えているものとする。

豚は通常の舎飼システムにおいて繋がれるべきではない。

良好な*アニマルウェルフェア及び健康*の成果は舎飼システムの範囲内で得られる。システムの設計や管理は適正なアニマルウェルフェア及び健康の成果を得るために重要である。

<u>雌豚及び未経産雌豚</u>は社会的な動物であり、群で生活することを好むため(Stolba and Wood-Gush, 1989; Newberry and Wood-Gush, 1988; Gonyou, 2001)、妊娠した成熟雌豚や未経産雌豚<u>はなるべく</u>群で飼われるような舎飼システムが推奨されるものとする (Anil et al., 2005; Barnett et al., 2001; Boyle et al., 2002; Broom et al., 1995; Karlen et al., 2007; Marchant and Broom, 1996; McGlone et al., 2004; AVMA, 2015)。 成熟雌豚及び未経産雌豚は、出産後、早期に、繁殖に影響することなくうまく混合されることができる(Spoolder et al., 2009)。

結果に基づく基準(又は測定指標):外観(損傷)、行動、体重及び体型の変化、取扱時の反応、繁殖効率、跛行及び罹病率、死亡率及び淘汰率

第7. X. 13条

空間的ゆとり

空間的ゆとりは、横臥、立位及び、摂餌<u>及び排せつ</u>のためのさまざまな空間を考慮して管理されるものとする。密飼い飼育密度が、豚の通常の行動及び横臥して過ごす時間に悪影響を与えるべきではない。

不十分で不適切な飼養スペースはストレスと損傷を増加させ、成長率、飼料効率、繁殖性や行動(歩行運動、休息、摂食、飲水、反抗的な行動や異常な行動)に悪影響を与えることがある。(Gonyou *et al.*, 2006; Ekkel, 2003; Turner, 2000)。

1. 群飼型

床の空間は、多くの要因(温度、湿度、床の種類、給餌システム)と相互に作用しあうことがある(Marchant-Forde, 2009; Verdon, 2015)。すべての豚は同時に<u>横</u> <u>臥</u>休息することができ、各動物が、横臥し、起立し、自由に動けるものとする。動物が飼料・水を利用することができ、横臥と排せつの場所を分け、攻撃的な動物を 避けるために十分な空間があるものとする。

異常<u>に攻撃的な</u>行動が見られた場合には、可能であれば、空間的ゆとりの増加やバリアを設ける等の是正措置がとられるものとする。

豚が給餌の選択に関して<u>多少</u>自律している屋外型では、飼養密度と利用可能な飼料の供給が釣り合っているものとする。

結果に基づく基準(又は測定指標):体重及び体型の減少又は変化、反抗的な及び 異常な行動(尾の噛みつき等)の増加、損傷、罹病率、死亡率及び淘汰率、外観(た とえば、体表上の過剰な糞の付着)

2. 個体別のおり・囲い

豚は、<u>必要な場合のみ個別のおり・囲いで飼われるものとし、</u>起立、回転、横臥が自然な姿勢で快適に行うことができ、排せつ、横臥、給餌の区域を分離するために、十分な空間を有するものとする。

結果に基づく基準(又は測定指標): 異常行動の増加(常同症)、罹病率、死亡率及 び淘汰率、外観(たとえば、体表上の過剰な糞の付着、損傷)

3. ストール及び(クレート)

<u>給餌、妊娠、授精用</u>ストール及び<u>分娩用クレート</u>は、豚が以下の行動をとれるよう に適切な大きさ<u>であるものとするでなければならない。</u>

- 一 ストール<u>又はクレート</u>の壁にぶつかることなく、自然な姿勢で起立できるする
- 上の棒に触れることなく、自然な姿勢で起立する
- ストール<u>又はクレート</u>の両端に同時に触れることなく、ストールの中で起立する
- 隣の豚を邪魔することなく、快適に横臥する

結果に基づく基準(又は測定指標):外観(たとえば、損傷)、異常行動の増加(常同症)、繁殖効率、跛行及び罹病率、死亡率及び淘汰率(たとえば、仔豚)

第7. X. 14条

床、敷料、寝床の表面

すべての生産方式において、豚には、水はけが良く、<u>乾燥した、</u>快適な休息場所が必要である。

屋内型システムの床の管理は、豚のウェルフェアに著しく影響することがある(Temple

et al., 2012; Newton et al., 1980)。床材、敷料、寝床の表面及び舎外の囲い地は、良好な衛生状態、快適さを確保し、疾病と損傷リスクを最小限に抑えるため、このような確証が得られる状況に清掃されるものとする。過剰な糞の集積は休息に適していない。

床は、滑り及び転倒を最小限に抑え、蹄肢の健全性を増進し、蹄の損傷のリスクを軽減 するように設計されるものとする。

舎飼システムにすのこ構造が含まれている場合には、すのこの板と隙間の幅は、損傷を 予防するため、豚の蹄のサイズに合ったものにするものとする。

<u>床</u>豚房の傾斜は、飼槽からの排水を可能にし、豚房内に水がたまらないものであるものとする。

屋外型システムでは、豚は、良好な衛生状態を確保し、疾病リスクを最小限に抑えるため、囲い又は放牧場間で移動させるものとする。

敷料<u>又はゴムマット</u>が提供されている場合は、敷料<u>又はゴムマット</u>は適切なもの(たとえば、衛生的で非毒性のもの)であり、清潔で乾燥した快適な横臥場所を豚に提供するように維持されるものとする。

結果に基づく基準(又は測定指標):外観(たとえば、損傷、体表上の糞の付着、滑液 包炎)、跛行、罹病率(たとえば、呼吸器障害、生殖器系感染症)

第7. X. 15条

空気の性状

空気の良好な性状及び換気は、呼吸器の不快、及び疾病及び異常な行動のリスクを低減するため、豚のウェルフェア及び衛生上重要である。塵、<u>毒素、</u>微生物、有毒ガス(たとえば、<u>動物のふん尿の腐敗によって生ずる</u>アンモニア、硫化水素、メタン)は、動物のふん尿の腐敗を原因とし、屋内型システムでは問題となる (Drummond *et al.*, 1980)。

空気の性状は、舎飼型の管理及び畜舎設計に強く影響される。空気の組成は、動物の飼養密度、豚の体格、床、敷料、ふん尿の管理、畜舎設計及び換気システムに影響される (Ni *et al.*, 1999)。

適切な換気は、豚の効果的な放熱、ふん尿の貯留システムからのものを含む畜舎内の流出ガス(たとえば、アンモニア及び硫化水素)及び塵芥の抑制のために重要である。非開放型畜舎内のアンモニア濃度は、25ppmを超えないものとする。有用な指標として、<u>豚レベルの</u>空気の性状が人にとって不快であれば、豚にとっても問題となる<u>可能性が高</u>いと思われる。

結果に基づく基準(又は測定指標): 罹病率、死亡率及び淘汰率、<u>外観(過度な体の汚れ及び涙の汚れ)、</u>行動(とりわけ呼吸数、又は咳<u>及び尾の噛みつき</u>)、体重及び体型の

第7. X. 16条

温度環境

豚は、想定される状況に適応する品種<u>及び豚舎</u>が用いられる場合には、とりわけ広範な 温度環境に順応できるが、温度の急変が、高温又は低温ストレスを引き起こすことがあ る。

1. <u>高温ストレス</u>

豚生産では、高温ストレスは重大な問題である。高温ストレスは、<u>重大な不快、</u>豚の体重減少や不妊、又は急死を引き起こすことがある(Werremann and Bazer, 1985)。

豚の高温ストレスのリスクは、気温、相対湿度、風速、<u>換気率、</u>飼育密度、屋外型システムでの日陰や水たまりの利用可能性等の環境側の要因、品種、週齢、体型等の動物側の要因による影響を受ける(Heitman and Hughes, 1949; Quiniou and Noblet, 1999)。

家畜飼養管理者は、高温ストレスが豚に引き起こすリスク、対応が必要になるかもしれない高温と湿度に関する閾値を理解するものとする。*家畜飼養管理者*は、高温ストレスのリスクが非常に高い水準に達する場合には、追加的な飲水の提供を優先し、屋外型システムにおける日陰や水たまり、扇風機の提供、飼育密度の緩和、<u>水を使用した冷却装置(しずく又は霧)、</u>現地の状況に応じて適切な冷却装置の設置を含む緊急時行動計画を定めるものとする。

結果に基づく基準(又は測定指標): 行動(摂食量及び飲水量、呼吸数、あえぎ呼吸、反抗的な行動)、外観(体表上の糞の付着)、罹病率、死亡率及び淘汰率、繁殖効率

2. 低温ストレス

低温の状況が、豚、とりわけ新生仔豚及び若齢豚並びに生理学的に問題のある豚(たとえば、病気の豚)のウェルフェアに深刻なリスクを与えるを損ねるおそれがある場合には、このような条件からの保護が与えられるものとする。こうした保護は、断熱、敷料の追加、暖房用マット又はランプ、屋外型システムでは自然又は人工的な居住場所によって与えることができる。(Blecha and Kelley, 1981)

結果に基づく基準(又は測定指標): 罹病、死亡率及び淘汰率、外観(長毛、起毛)、 行動(とりわけ異常姿勢、ふるえ、身の寄せ合い)、体重及び体型の変化

騒音

豚は、さまざまな<u>広範な</u>程度やタイプの騒音に<u>対処</u>順応可能である。ただし、ストレス 及び恐怖反応を抑制するため、突然又は大きな騒音に豚を曝すことは、可能な範囲で、 最小限に抑えるものとする。換気扇、給餌装置その他舎内又は舎外の機器は、騒音を最 小限にするように建設、設置、操作及び維持されるものとする(Algers and Jensen, 1991)。

結果に基づく基準(又は測定指標): 行動(たとえば、逃走、鳴き声をあげる)、外観(たとえば、損傷)、繁殖効率、体重及び体型の変化

第7. X. 18条

照明

舎飼システムでは、すべての豚がお互いに見え、周りを視覚的に調べ、その他の正常な行動パターンを示し、職員が適切な豚の観察のために明確に見えるのに十分な光のレベルとする。照明の管理体制は、健康及び行動の問題を防ぐように<u>するものとするしなければならない</u>。照明の体制は24時間周期とし、十分に連続した暗い時間と明るい時間(それぞれ6時間以上が好ましい)を含むものとする。

1日につき最低6時間、最低でも40ルクスの照明が推奨される(Martelli *et al.*, 2005; Taylor *et al.*, 2006)。

人工的な照明源は豚にとって不快にならないような場所に置くものとする。

結果に基づく基準(又は測定指標): 行動(跛行)、罹病率、繁殖効率、外観(損傷)、 体重及び体型の変化

第7. X. 19条

分娩及び泌乳

成熟雌豚及び未経産雌豚は、分娩前に分娩舎に順応するための時間を必要とする。分娩場所の材を可能であれば分娩の何日か前に提供するものとする(Yun et al., 2014)。成熟雌豚<u>及び未経産雌豚</u>は、出産予定時期に近くなったら頻繁に観察するものとする。成熟雌豚及び未経産雌豚によっては分娩時に補助が必要なので、十分な空間及び職員が必要である。

新たな建物が計画される場合には、分娩する成熟雌豚及び未経産雌豚のための開放(ルース)舎飼システムを検討するものとする(Baxter et al., 2012; Cronin et al., 2014; KilBride et al., 2012; Morrison et al., 2013; Weber, 2007)。

結果に基づく基準(又は測定指標):死亡率及び淘汰率(仔豚)、罹病率(子宮炎及び乳腺炎)、行動(常同症落ち着きのなさ、どう猛さ)、繁殖効率、外観(損傷)

第 7. X. 20 条

離乳

離乳は、母豚及び仔豚の双方にとってストレスがかかる時期であり、良好な管理が求められる。離乳にかかる問題は、一般的に仔豚のサイズや生理学的成熟に関するものである。早期の離乳システムは、豚の良好な管理と栄養が必要になる。

平均の<u>仔豚は、</u>離乳週齢は3週齢又はそれ以上<u>で離乳されるものとする</u>が推奨される (Hameister et al., 2010; Smith et al., 2010; Gonyou et al., 1998; Worobec et al., 1999)。

<u>離乳を4週齢又はそれ以上に遅らせることは、腸管免疫、下痢の低減及び抗菌剤の使用</u> <u>の低減等の利益をもたらす場合がある (EFSA, 2007; Hameister et al., 2010; McLamb</u> et al., 2013; Smith et al., 2010; Gonyou et al., 1998, Bailey et al., 2001)。

週齢にかかわらず、低体重の仔豚は追加の世話が必要であり、共通の飼養区域に移せるようになるまで、特別な囲いの中で小さな群で飼養されることは効果がある。

新たに離乳された仔豚は疾病に感染しやすいので、高水準の衛生予防計画書の順守<u>及び</u> 適切な食餌が重要である。仔豚が離乳される場所は、清潔で乾燥して<u>おり暖かい</u>いることが確実になっているものとする。

すべての新たに離乳された豚を、離乳後2週間は体調不良<u>又は異常なストレス</u>の兆候がないかどうか監視するものとする。

結果に基づく基準(又は測定指標): 仔豚の死亡率及び淘汰率、罹病率(呼吸器疾病、下痢)、行動(ベリーノージング(注 1)及び耳なめ)、外観(損傷)、体重及び体型の変化

第7. X. 21 条

混合

なじみのない豚との混合は、優越順位を確立するための闘争行動に繋がるため、混合は可能な限り最小限に抑えるものとする(Moore *et al.*, 1994; Fabrega *et al.*, 2013)。混合する際は、攻撃及び損傷を低減するための戦略を実施し、するものとする。動物<u>は、</u>混合後は観察され、攻撃が激しい又は長引いて、豚が損傷する場合は介入するを管理するものとする。

過剰な闘争及び損傷を防ぐための措置としては以下のものをあげることができる(Arey

and Edwards, 1998, Verdon et al., 2015).

- 一 追加の空間及び滑らない床の提供
- 一 混合前の給餌
- 一 混合区域での床の上での給餌
- 一 混合区域でのわら又はその他の適切な改良材の提供
- 視覚的バリアの設置等による、逃走や他の豚から隠れる機会の提供
- 一 可能な場合、既になじみのある動物との混合
- 若齢動物は可能な限り離乳後すぐに混合するものとする
- 1又は少数の動物を大きな確立したグループに混合するのを避ける

結果に基づく基準(又は測定指標): 死亡率、罹病率及び淘汰率、行動(反抗的な)、外観(損傷)、体重及び体型の変化、繁殖効率

第7. X. 22条

遺伝学的選択

特定の場所又は生産方式に合った品種又は交雑種を選択する場合には、生産性及び成長率のほかに、ウェルフェア及び健康が考慮されるものとする。

品種改良、たとえば、母性行動、仔豚の生存力、気質、ストレスや疾病への抵抗性、尾の噛みつき、攻撃的な行動の低減を向上させる選択を行うことで、豚のウェルフェアを向上させることができる(Turner *et al.*, 2006)。

結果に基づく基準(又は測定指標):外観、行動<u>(たとえば、母性及び反抗的な行動)</u>、 体重及び体型の変化、取扱時の反応、繁殖効率、跛行、罹病率、死亡率及び淘汰率

第7. X. 23条

捕食動物及び害虫からの保護

屋外型と混合型では、豚は捕食動物から保護されるものとする。

豚はまた、過剰な数のハエ及び力等の害虫か<u>ら保護されるものとする。</u>

結果に基づく基準(又は測定指標): 罹病率、死亡率及び淘汰率、行動、外観(損傷)

バイオセキュリティ及び動物の健康

1. バイオセキュリティ及び疾病予防

バイオセキュリティプランは、*動物群*のあり得る最高の衛生状態、利用可能な資源 及び社会基盤並びに現在の疾病リスクに応じて、また 0IE *リスト疾病*の場合には、 *陸生コード*に見られる関連の勧告に従い、設計、実施及び維持されるものとする。

当該バイオセキュリティプランは、病原体のまん延に係る以下の主な感染源及び感 染経路の管理に焦点を当てるものとする。

- 一 豚、当該動物群への導入(特に異なる導入元から)を含む
- 一 さまざまな導入元に由来する若齢動物精液
- その他の家畜、*野生生物*及び害虫
- 一 衛生業者を含む人
- 一 輸送手段を含む設備、器具及び施設
- 一 *輸送手段*
- 一 空気
- 一 空気、給水、精液、飼料及び敷料
- 一 排せつ物 (堆肥を含む)、排せつ物ごみ及び死亡畜処理
- 一 精液

結果に基づく基準(又は測定指標): 罹病率、死亡率及び淘汰率、繁殖効率、体重及び体型の変化、外観(疾病の兆候)

a) 動物衛生管理

動物衛生管理は、群における<u>豚の身体的及び生態的な</u>健康及びウェルフェアを 最適化するものとする。それには、*疾病*及び当該*動物群*に影響する健康問題(と りわけ、呼吸器系、繁殖性及び胃腸の疾病)の予防、治療及び管理が含まれる。

疾病及び健康問題を予防及び治療するために、適宜獣医師の診察に基づき考えられた有効なプログラムが整備されるものとする。当該プログラムには、生産データ(たとえば、雌豚頭数、年間当たり1頭の雌豚当たりの子豚数、飼料要求率、離乳時の体重)、罹病率、死亡率、淘汰率及び獣医学的治療の記録が含まれ

るものとする。それは、*家畜飼養管理者*によって更新されるものとする。記録の定期的な監視は、管理の一助となり、速やかに対応すべき改善点を明らかにする。

寄生虫による負荷(たとえば、内部寄生虫、外部寄生虫及び原虫)<u>及びハエの管理</u>に関しては、監視、管理及び治療のためのプログラムが適宜実施されるものとする。

跛行は、豚にとって問題である。 *家畜飼養管理者*は、蹄及び爪の状態を監視し、 跛行を予防する措置をとり、蹄の衛生を保全するものとする。

豚の飼養の責任者は、疾病又は苦痛の初期における特有の症状(たとえば、咳、流産、下痢、運動行動の変化、無感情の行動)並びに摂餌及び飲水の減少、体重及び体型の変化、行動の変化又は外観の異常等の非特定症状を承知しているものとする。

疾病又は苦痛のリスクが高い豚に対しては、家畜飼養管理者によるより頻繁な観察が必要になる。家畜飼養管理者は、疾病の存在を疑う又は疾病若しくは苦痛の原因を改善できない場合には、獣医師その他資格あるアドバイザー等訓練を受けた経験を有する者に適宜助言を求めるものとする。

歩行困難豚は、治療<u>、回復</u>又は診断のため絶対的に必要な場合を除き、輸送又は移動されないものとする。それらは、その場合の移動は、引きずり、又は<u>さらなる苦痛、苦悩又は</u>損傷の悪化を起こすような持ち上げ方を避ける方法により、慎重に行われるものとする。

家畜飼養管理者は、第7.3章に規定されるとおり、輸送の適合性を評価する能力 も有しているものとする。

慢性的な疾病又は損傷の場合で、治療が失敗した<u>若しくは実行可能でない</u>、又は回復が見込めない時には(たとえば、自力で起立不能又は摂餌若しくは飲水を拒絶する豚)、当該動物は、第7.5章又は第7.6章に従い、可能な限り早く人道的に殺処分されるものとする。

結果に基づく基準(又は測定指標): 罹病率、死亡率及び淘汰率、繁殖効率、行動(無感情な行動)、跛行、外観(損傷)、体重及び体型の変化

b) 疾病発生に備えた緊急時計画

緊急時計画は、緊急の疾病発生に直面した農家における管理であって、国家プログラム及び*獣医サービス*の勧告と適宜整合しているものとする。

緊急時計画

豚生産者は、電気、水及び<u>又は</u>飼料の供給システムの機能停止が、*アニマルウェルフェア*を損ねるおそれがある場所では、それらシステムの機能停止を補う緊急時計画を整備するものとする。当該計画には、不具合を検出する警報器、予備用発電機、主なサービス事業者の連絡先情報、農場の貯水能力、水運搬サービスの利用、適切な農場内飼料保管及び代替飼料の供給が含まれる場合もある。

緊急時の予防措置は、結果ではなく、原因に基づきとられるものとする。緊急時計画は、 文書化され、すべての関係者に伝達されるものとする。警報及び予備用システムは、定 期的に点検されるものとする。

第7. X. 26条

災害管理

災害(たとえば、地震、火事、洪水、吹雪、台風)の影響を最小限に抑え、緩和するための計画が施行されているものとする。そのような計画には、避難手順、高台の確認、 緊急備蓄飼料及び水の供給、必要に応じた淘汰及び人道的殺処分が含まれる場合がある。

病気又は傷ついた豚の人道的殺処分手順は、当該災害管理計画の一部とされるものとする。

緊急時計画の参照は、第7. X. 25 条に見ることができる。

第7. X. 27条

安楽死(人道的殺処分)

疾病の又は損傷した動物を不必要に生かすのは受け入れられない。そのため、疾病又は 傷ついた豚に対しては、当該動物を治療するか又は人道的殺処分するかを決定するため、 すみやかな診断が行われるものとする。

動物の人道的殺処分の決定及びその手順自体は、能力のある者が請け負うものとする。

豚の苦痛を与えない殺処分の受け入れられる方法の詳細は、第7.6章を参照のこと。

家畜飼養施設は、農場での人道的殺処分について文書化された手順を整備するものとする。職員は、各クラスの豚に適した人道的な殺処分手順について訓練を受けるものとする。

人道的殺処分の理由には、以下のものがある場合がある。

- 一 重度な削痩、歩行不能又はそのおそれのある虚弱な豚
- 一 立ち上がろうとせず、摂食又は飲水を拒絶し、<u>又は</u>治療に反応しない、<u>重度の損傷</u> <u>豚又は</u>歩行不能豚
- 一 治療の甲斐ない容態の急速な悪化
- 一 衰弱を引き起こす深刻な痛み
- 一 複雑 (開放) 骨折
- 一 脊髄損傷
- 一 中枢神経系の疾病
- 一 慢性的な体重の減少を伴う多関節*感染症*
- 一 生き延びる可能性のない未熟仔豚又は衰弱を引き起こす先天性障害を持つ仔豚
- 一 災害管理対応の一部として

豚の人道的殺処分の受け入れ可能な方法の記述に関しては、第7.6章を参照されたい。

DRAFT CHAPTER 7.X.

ANIMAL WELFARE AND PIG PRODUCTION SYSTEMS

Article 7.X.1.

Definitions

'Pig production systems' are defined as all commercial systems in which the purpose of the operation includes some or all of the breeding, rearing and management of pigs (<u>Sus scrofa</u>) intended for production of *meat*.

For the purposes of this chapter, 'management' is defined at the farm management level and at the *animal handler* level. At the level of farm management, human resources management practices, including selection and training of handlers, and animal management practices, such as best practice in housing and husbandry and implementation of welfare protocols and audits, all have an impact on animal welfare. At the animal handler level this requires a range of well-developed husbandry skills and knowledge to care for animals.

For the purposes of this chapter, 'environmental enrichment' means increasing the complexity (e.g. foraging opportunities, social housing) of the animal's environment to foster the expression of normal behavior, <u>provide cognitive stimulation</u> and reduce the expression of abnormal behaviour and provide cognitive stimulation. The endpoint <u>aim</u> of <u>providing</u> enrichment should be to improve the biological functioning of the animal (Newberry, 1995).

For the purposes of this chapter stereotypy is as a sequence of abnormal, repetitive and unvarying behaviours caused by known factors such as frustration, coping attempts, or dysfunction of the central nervous system. Some stereotypies commonly observed in pigs include sham chewing, stone chewing, tongue rolling, teeth grinding, bar biting and floor licking (NFACC, 2014; Tuyttens, 2007; Mason and Latham, 2004).

For the purposes of this chapter apathy means that the animal ceases to respond to stimuli that would normally elicit a response (Wood-Gush and Vestergaard, 1989). Furthermore, apathetic behaviour has been described as an abnormal or maladaptive behaviour, indicated by reduced activity, lack of interest or concern (i.e. indifference) and lack of feeling or emotion (impassiveness).

For the purposes of this chapter agonistic behaviour is a continuum of behaviours expressed in conflict situations, and includes offence, defence and submissive or escape components. The behaviours involved may include contact, such as biting and pushing, or non-contact, such as threats in the form of body postures and gestures. Aggressive behaviour is a component of agonistic behaviour (Petherick and Blackshaw, 1987).

Article 7.X.2.

Scope

This chapter addresses the welfare aspects of <u>domestic</u> pig production systems. <u>However, <u>Captive</u> wild pigs are not considered.</u>

Article 7.X.3.

Commercial pig production systems

Commercial pig production systems include:

1. Indoors

These are systems in which pigs are kept indoors, and are fully dependent on humans to provide for basic animal needs such as <u>food feed</u> and water. The type of housing depends on the environment, climatic conditions and management system. The animals may be kept in groups or individually.

Outdoors

These are systems in which pigs live outdoors with shelter or shade, have some autonomy over access to shelter or shade, and but may be fully dependent on humans to provide for basic animal needs such as feed feed and water. They Pigs are typically confined in paddocks or pastures according to their production stage. The animals may be kept in groups or individually.

3. Combination systems

These are systems in which pigs are managed in any combination of indoor and outdoor production systems, depending on weather or production stage.

Article 7.X.4.

Criteria (or measurables) for the welfare of pigs

The following outcome-based criteria (or measurables), specifically animal-based criteria, can be useful indicators of *animal welfare*. The use of these indicators and their appropriate thresholds should be adapted to the different situations in which pigs are managed. Consideration should also be given to the design of the systems. These criteria can be considered as a tool to monitor the efficiency of design and management, given that both of these can affect *animal welfare*.

Behaviour

Certain behaviours could indicate an *animal welfare* problem. These include changes of <u>in</u> feed and water intake, altered locomotory behaviour and <u>or</u> posture, altered lying time, altered respiratory rate and panting, coughing, shivering and huddling, <u>certain vocalisations</u>, and increased agonistic <u>behaviours</u> (<u>including</u> aggression), and stereotypic, apathetic or other abnormal behaviours (<u>e.g. tail biting</u>).

<u>Certain behaviours are indicators of good animal welfare. These may include positive social behaviour and play behaviour.</u>

Stereotypy is defined as a sequence of invariant motor acts, which provide no obvious gain or purpose for the animal. Some stereotypies commonly observed in pigs include sham chewing, tongue rolling, teeth grinding, bar biting and floor licking.

Morbidity rates

Rates of ihrfectious and metabolic diseases, lameness, peri partum peripartum and post-procedural complications, injury and other forms of morbidity, above recognised thresholds, may be direct or indirect indicators of the animal welfare status of the whole at the herd level. Understanding the aetiology of the disease or syndrome is important for detecting potential animal welfare problems. Mastitis and metritis, leg and hoof problems, shoulder ulcers in sows, skin lesions, respiratory and digestive diseases, and reproductive diseases are also particularly important animal health problems for pigs. Scoring systems, such as for body condition, lameness and injuries, and information gathered at the slaugtherhouse/abattoirs, can provide additional information.

Both clinical <u>and post mortem pathologic</u> examination and pathology should be utilised as indicators of disease, injuries and other problems that may compromise *animal welfare*.

3. Mortality and culling rates

Mortality and culling rates affect the length of productive life and, like morbidity rates, may be direct or indirect indicators of the animal welfare at the herd levelstatus. Depending on the production system, estimates of mortality and culling rates can be obtained by analysing the causes of death and culling and their temporal and spatial patterns of occurrence. Mortality and culling rates, and their causes, when known, should be recorded regularly, e.g. daily, and used for monitoring e.g. monthly, annually.

Necropsy is useful in establishing the cause of death.

4. Changes in body weight and body condition

In growing animals, body weight changes outside the expected growth rate, especially excessive sudden weight loss, are indicators of poor animal welfare and health.

In mature animals, $b\underline{B}$ ody condition outside an acceptable range or large variation amongst individual animals in the group may be an indicator of compromised animal welfare, and health, and reproductive efficiency in mature animals.

5. Reproductive efficiency

Reproductive efficiency can be an indicator of *animal welfare* and health status. Future performance of sews or gilts can be affected by under or over nutrition at different stages of rearing. Poor reproductive performance of sews of rearing.

Examples may include:

- low conception rates,
- high abortion rates,
- metritis and mastitis,
- low small litter size (total born),
- low numbers born alive,
- high numbers of stillborns or mummies.

Physical appearance

Physical appearance may be an indicator of *animal welfare* and health. Attributes of physical appearance that may indicate compromised welfare include:

- body condition,
- presence of ectoparasites,
- abnormal texture or hair loss,
- excessive soiling with faeces in indoor systems,
- reddish skin discolouration,
- swellings, injuries or lesions,
- discharges (e.g. from nose or eyes, including tear staining) (Telkänranta et al., 2016).
- feet and leg abnormalities,
- abnormal posture (e.g. rounded back, head low),
- emaciation or dehydration (in piglets).

7. Handling response

Improper handling <u>or lack of human contact</u> can result in fear and distress in pigs. Fear of humans may be an indicator of poor *animal welfare* and health. Indicators include:

- evidence of poor human-animal relationship, such as <u>marked avoidance of handlers and vocalisation</u> disturbed behaviour when being moved or when animal handlers interact with pigs enter a pen,
- animals slipping or falling during handling,
- injuries sustained during handling, such as bruising, lacerations and fractured legs,
- animals vocalising abnormally or excessively during restraint and handling.

8. Lameness

Pigs are susceptible to a variety of infectious and non-infectious musculoskeletal disorders. These disorders may lead to <u>cause</u> lameness and to-gait abnormalities. Pigs that are lame or have gait abnormalities may have difficulty reaching food feed and water and may experience pain <u>and distress</u>. Musculoskeletal problems have many causes, including genetic, nutrition, sanitation, floor quality, and other environmental and management factors. There are several gait scoring systems available.

9. Complications from common procedures

Some procedures such as surgical castration, tail docking, teeth clipping or grinding, tusk trimming, identification, nose ringing and hoof care are eemmonly-performed in pigs to facilitate management, to meet market or environmental requirements and improve human safety or and safeguard animal welfare.

However, if these procedures are not performed properly, *animal welfare* and health can be <u>unnecessarily</u> compromised.

Indicators of such problems associated with these procedures could include:

- post-procedure infection and swelling,
- post-procedure lameness,
- behaviour indicating pain, fear and distress,
- morbidity, mortality and culling rates,
- reduced feed and water intake,
- post procedure body condition and weight loss.

Article 7.X.5.

Recommendations

Ensuring good welfare of pigs is contingent on several management factors, including system design, environmental management, and animal management practices which include responsible husbandry and provision of appropriate care. Serious problems can arise in any system if one or more of these elements are lacking.

Articles 7.X.6. to 7.X.26. provide recommendations for measures applied to pigs.

Each recommendation includes a list of relevant outcome-based <u>criteria (or</u> measurables) derived from Article 7.X.4.

This does not exclude other criteria being used where or when appropriate.

Article 7.X.6.

Housing

When new facilities are planned or existing facilities are modified, professional advice on design in regards to welfare and health of animals should be sought.

Housing systems and their components should be designed, constructed and regularly inspected and maintained in a manner that reduces the risk of injury, disease or stress for pigs. Facilities should to allow for the safe, efficient and humane management and movement of pigs.

There should be a separate area where sick and injured animals can be treated and monitored. When a separated space is provided, this should accommodate all the needs of the animal e.g. recumbent or lame animals or animals with severe wounds may require additional bedding or an alternative floor surface.

Pigs should not be tethered as part of their normal housing systems.

Good outcomes in the welfare and health of animals can be achieved in a range of housing systems. The design and management of the system are critical for achieving that.

Pigs are social animals and prefer living in groups, therefore housing systems where pregnant sows and gilts can be kept in groups are recommended.

Outcome based criteria (or measurables): physical appearance (injuries), behaviour, changes in body weight and body condition, handling response, reproductive efficiency, lameness and morbidity, mortality and culling rates.

Article
$$7.X.\frac{76}{6}$$
.

Training of Ppersonnel training

Pigs should be cared for by a sufficient number of personnel, who collectively possess the ability, knowledge and competence necessary to maintain the welfare and health of the animals.

All people responsible for pigs should be competent through formal training or practical experience in accordance with their responsibilities. This includes understanding of and skill in animal handling, nutrition, reproductive management techniques, behaviour, *biosecurity*, signs of disease, and indicators of poor *animal welfare* such as stress, pain and discomfort, and their alleviation.

Outcome-based criteria (or measurables): handling response, physical appearance, behaviour, changes in body weight, body condition, reproductive efficiency, lameness and morbidity, mortality and culling rates <u>and complications from common procedures</u>.

Article
$$7.X.87$$
.

Handling and inspection

Pigs should be inspected at least once a day when fully dependent on humans to provide for basic needs such as food and water and to identify welfare and health problems.

Some animals should be inspected more frequently, for example, farrowing sows, new born piglets, newly weaned pigs, and newly-mixed gilts and sows, sick or injured animalspigs and pigsthose showing increased abnormal behaviours such as tail nibbling.

Pigs identified as sick or injured should be given appropriate treatment at the first available opportunity by competent *animal handlers*. If *animal handlers* are unable to provide appropriate treatment, the services of a *veterinarian* should be sought.

Recommendations on the handling of pigs are also found in Chapter 7.3. In particular handling aids that may cause pain and distress (e.g. electric goads) should be used only when other methods fail in extreme circumstances and provided that the animal can move freely. The use of electric prods goads should be avoided (see also point 3 of Article 7.3.8.), and in any case should not be repeatedly used on the same animal, and not be used in sensitive areas including the udder, face, eyes, nose or ano-genital anogenital region.

Exposure of pigs to sudden movement or changes in visual contrasts should be minimised where possible to prevent stress and fear reactions. Pigs should not be <u>improperly or aggressively</u> handled aggressively (e.g. kicked, <u>thrown, dropped,</u> walked on top of, held or pulled by one front leg, ears or tail). Pigs that become distressed during handling should be attended to immediately.

Pigs should be restrained only for as long as necessary and only appropriate, well-maintained restraint devices should be used.

Well designed and maintained handling facilities assists proper handling.

Outcome-based criteria (or measurables): physical appearance, behaviour, changes in body weight and body condition, handling response, reproductive efficiency, lameness and morbidity, mortality and culling rates.

Article 7.X.98.

Painful procedures

Some procedures such as surgical castration, tail docking, teeth clipping or grinding, tusk trimming, identification, and nose ringing are commonly performed in pigs. These procedures should only be performed to facilitate management, to meet market or environmental requirements and improve human safety or and safeguard animal welfare.

These procedures <u>are painful or</u> have the potential to cause pain and thus should be performed <u>only when</u> <u>necessary and</u> in such a way as to minimise any pain and distress to the animal, <u>e.g.</u> <u>using anaesthesia or</u> analgesia under the recommendation or supervision of a <u>veterinarian</u>.

Options for enhancing *animal welfare* in relation to these procedures include the internationally recognised 'three Rs' <u>which involves</u>: replacement (<u>e.g. using</u> entire or immunocastrated males <u>vs. rather than</u> castrated males), reduction (<u>e.g.</u> tail docking and teeth clipping only when necessary) and refinement (<u>e.g.</u> providing analgesia <u>or erand</u> anaesthesia <u>under the recommendation of a veterinarian</u>) (<u>Bonastre et al., 2016 and Hansson et al., 2011).</u>

Outcome-based criteria (or measurables): complications from common procedures, morbidity rates, mortality and culling rates, abnormal behaviour, physical appearance and changes in weight and body condition.

Article 7.X.910.

Feeding and provision of watering of animals

The amount of feed and nutrients pigs require in any management system is affected by factors such as climate, the nutritional composition and quality of the diet, the age, gender, <u>genetics</u> size and physiological state of the pigs (e.g. pregnancy, lactation, <u>growth</u>), and their state of health, growth rate, previous feeding levels and level of activity and exercise.

All pigs should receive adequate quantities quantity and quality of feed and nutrients each day to enable each pig to:

- maintain good health;
- meet its physiological <u>and behavioural requirements</u> demands; and.
- avoid metabolic and nutritional disorders.

Feed and water should be provided in such a way as to prevent undue competition and injury.

Annex 28 (contd)

Pigs should be fed a diet with sufficient fibrous feedstuffs in order to reduce as much as possible the occurrence of qastric ulcers (Hedde *et al.*,1985).

All pigs should have access to an adequate supply of palatable drinkable water at a temperature that does not inhibit drinking and that meets their physiological requirements and is free from contaminants hazardous to pig health (Patience, 2013).

Outcome-based criteria (or measurables): changes in body weight and body condition, <u>physical appearance</u> (<u>dehydration in piglets</u>), <u>behaviour (agonistic behaviour at feeding and watering places and abnormal behaviour such as tail biting)</u>, mortality and culling rates, and morbidity rates (gastric ulcers).

Article 7.X.1011.

Environmental enrichment

Animals should be provided with an environment that provides complexity, manipulability and cognitive stimulation (e.g. foraging opportunities, social housing) to foster normal behaviour (e.g. rooting, and biting/ or chewing), reduce abnormal behaviour (e.g. tail, ear, leg and flank biting and apathetic behaviour) and improve biological function (Dudnik et al., 2006; Elmore et al., 201; Newberry, 1995; Van de Weerd et al., 2006; Wittaker et al., 1999).

Pigs should be provided with multiple forms of enrichment that aim to improve the <u>ir</u> welfare of the animals through the enhancement of their physical and social environments, such as:

- sufficient quantity of suitable materials to enable pigs to fulfil their innate needs to explore and look for feed (edible materials), bite (chewable materials), root (investigable materials) and manipulate (manipulable materials) (Bracke et al., 2006); novelty is another aspect that is very important in so as to maintaining interest in the provided material(s) (Trickett et al., 2009; Abou-Ismaila and Mendl, 2016; Tarou and Bradshaw 2007);
- social enrichment which that involves either keeping pigs in groups or individually with visual, olfactory and auditory contact with other pigs;
- positive human contact (such as pats, rubs and talking <u>when the opportunity arises</u>) (Hemsworth and Coleman, 2011; Hemsworth and Coleman, 1994).

Outcome-based criteria (or measurables): physical appearance (injuries), behaviour (stereotypies, tail biting), changes in body weight and body condition, handling response, reproductive efficiency, lameness and morbidity, mortality and culling rates.

Article 7.X.1112.

Prevention of abnormal behaviour

In pig production there <u>are is</u> a number of abnormal behaviours that can be prevented or minimised with <u>appropriate</u> management procedures.

Many of these problems are multifactorial and minimising their occurrence requires an examination of the whole environment and of several management factors. However some recommendations to that may reduce their occurrence of some of these behavioural problems include:

- 1) Oral stereotypies (e.g. bar biting, sham chewing, excessive drinking) in adult pigs can be minimised by providing environmental enrichment and increasing feeding time and satiety by increasing fibre content in the diet or foraging roughage (Robert et al., 1997; Bergeron et al., 2000).
- 2) Tail biting may be reduced by providing an adequate enrichment material and an adequate diet (avoiding deficiencies of sodium or essential amino acids amino acids), and avoiding high stocking densities and competition for feed and water (Walker and Bilkei, 2005). Other factors to consider include animal characteristics (breed, genetics, gender) and social environment (herd size, mixing animals) (Schroder-Petersen and Simonsen, 2001; EFSA, 2007; Taylor et al., 2010), general health, thermal comfort and air quality.

Annex 28 (contd)

- 3) Belly nosing and ear sucking may be reduced by increasing the weaning age, and providing feed to piglets prior to weaning to avoid the abrupt change of feed (Marchant-Forde, 2009; Sybesma, 1981; Worobec, 1999).
- 4) Vulva biting may be reduced by minimising competition in accessing the feeding area (Bench *et al.*, 2013; Leeb *et al.*, 2001; Rizvi *et al.*, 1998).

Outcome-based criteria (or measurables): physical appearance (injuries), behaviour (abnormal behaviour), morbidity rates, mortality and culling rates, reproductive efficiency and changes in body weight and body condition.

Article 7.X.612.

Housing (including outdoor production systems)

When new facilities are planned or existing facilities are modified, professional advice on design in regards to welfare and health of animals should be sought.

Housing systems and their components should be designed, constructed and regularly inspected and maintained in a manner that reduces the risk of injury, disease ef and stress for pigs. Facilities should to allow for the safe, efficient and humane management and movement of pigs. In systems where pigs could be exposed to adverse weather conditions they should have access to shelter to avoid thermal stress and sunburn.

There should be a separate <u>pen or</u> area where sick and injured animals <u>or animals that exhibit abnormal behaviour</u> can be <u>isolated</u>, treated and monitored. <u>Certain animals may need to be kept individually</u>. When a separated space is provided, this should accommodate all the needs of the animal e.g. recumbent or lame animals or animals with severe wounds may require additional bedding or an alternative floor surface, <u>and water</u> and food must be within reach.

Pigs should not be tethered as part of their normal housing systems.

Good outcomes in the welfare and health of animals can be achieved in a range of housing systems. The design and management of the system are critical for achieving theseat outcomes.

Pigs Sows and gilts are social animals and prefer living in groups (Stolba and Wood-Gush, 1989; Newberry and Wood-Gush, 1988; Gonyou, 2001), therefore houseing systems where pregnant sows and gilts should preferably be housed ean be kept in groups are recommended (Anil et al., 2005; Barnett et al., 2001; Boyle et al., 2002; Broom et al., 1995; Karlen et al., 2007; Marchant and Broom, 1996; McGlone et al., 2004; AVMA, 2015). Sows and gilts can be successfully mixed early after breeding, without any reproduction consequences (Spoolder et al., 2009).

Outcome-based criteria (or measurables): physical appearance (injuries), behaviour, changes in body weight and body condition, handling response, reproductive efficiency, lameness and morbidity, mortality and culling rates.

Article 7.X.13.

Space allowance

Space allowance should be managed taking into account different areas for lying, standing and feeding and elimination. Crowding Stocking density should not adversely affect normal behaviour of pigs and durations of time spent lying.

Insufficient and inadequate space allowance may increase stress, the occurrence of injuries and have an adverse effect on growth rate, feed efficiency, reproduction and behaviour such as locomotion, resting, feeding and drinking, agonistic and abnormal behaviour (Gonyou *et al.*, 2006; Ekkel, 2003; Turner, 2000).

Group housing

Floor space may interact with a number of factors such as temperature, humidity, floor type and feeding systems (Marchant–Forde, 2009; Verdon, 2015). All pigs should be able to <u>lie down rest</u> simultaneously, and each animal lie down, to stand up and move freely. Sufficient space should be provided to enable animals to have access to feed, water, to separate lying and elimination areas and to avoid aggressive animals.

If abnormally <u>aggressive</u> behaviour is seen, corrective measures should be taken, such as increasing space allowance and providing barriers where possible.

In outdoor systems where pigs have <u>some</u> autonomy over diet selection, stocking density should be matched to the available feed supply.

Outcome-based criteria (or measurables): reduction or variation in body weight and body condition, increasing agonistic and abnormal behaviour such as tail biting, injuries, morbidity, mortality and culling rates, and physical appearance (e.g. excessive presence of faeces on the skin).

2. Individual pens

Pigs <u>should only be housed in individual pens if necessary. In individual pens, pigs mustshould</u> be provided with sufficient space so that they can stand up, turn around and lie comfortably in a natural position, and that provides <u>separate areas</u> for <u>separation of dunging elimination</u>, lying and eating <u>areas</u>.

Outcome-based criteria (or measurables): increasing abnormal behaviour (stereotypies), morbidity, mortality and culling rates, and physical appearance (e.g. <u>excessive</u> presence of faeces on the skin, injuries).

Stalls and (crates)

<u>Feeding, gestation and insemination stalls and farrowing crates</u> <u>Stalls</u> <u>should</u> <u>must</u> be sized appropriately to allow pigs to <u>be able to</u>:

- be able to stand up in their natural stance without contact with either side of the stall or crate,
- stand up without in their natural stance without contact with touching the top bars,
- stand in a stall without simultaneously touching both ends of the stall or crate,
- lie comfortably on their sides without disturbing neighbouring pigs.

Outcome-based criteria (or measurables): physical appearance (e.g. injuries), increasing abnormal behaviour (stereotypies), reproductive efficiency, lameness and morbidity, mortality and culling rates (e.g. piglets).

Article 7.X.14.

Flooring, bedding, resting surfaces

In all production systems pigs need a well-drained, <u>dry</u> and comfortable place to rest.

Floor management in indoor production systems can have a significant impact on pig welfare (Temple *et al.*, 2012; Newton *et al.*, 1980). Flooring, bedding, resting surfaces and outdoor yards should be cleaned as conditions warrant, to ensure good hygiene, comfort and minimise risk of diseases and injuries. Areas with excessive faecal accumulation are not suitable for resting.

Floors should be designed to minimise slipping and falling, promote foot health, and reduce the risk of claw injuries.

If a housing system includes areas of slatted floor, the slat and gap widths should be appropriate to the claw size of the pigs to prevent injuries.

Slopes of the <u>floor pens</u> should allow water to drain and not pool-in the pens.

In outdoor systems, pigs should be rotated between paddocks <u>or pastures</u> to ensure good hygiene and minimise risk of diseases.

If bedding or rubber matting is provided it should be suitable (e.g. hygienic, non-toxic) and maintained to provide pigs with a clean, dry and comfortable place on which to lie.

Outcome-based criteria (or measurables): physical appearance (e.g. injuries, presence of faeces on the skin, bursitis), lameness and morbidity rates (e.g. respiratory disorders, reproductive tract infections).

Article 7.X.15.

Air quality

Good air quality and ventilation are important for the welfare and health of pigs and reduce the risk of respiratory discomfort, and diseases and abnormal behaviour. Dust, toxins, micro-organisms microorganisms and noxious gases, including ammonia, hydrogen sulphide, and methane caused by decomposing animal waste, can be problematic in indoor systems due to decomposing animal waste (Drummond et al., 1980).

Air quality is influenced strongly by management and building design in housed systems. Air composition is influenced by stocking density, the size of the pigs, flooring, bedding, waste management, building design and ventilation system (Ni *et al.*, 1999).

Proper ventilation is important for effective heat dissipation in pigs and to prevent the build-up of effluent gases (e.g. ammonia and hydrogen sulphide), including those from manure and dust in the housing unit. The ammonia level concentration in enclosed housing should not exceed 25 ppm. A useful indicator is that if air quality at the level of the pigs is unpleasant for humans it is also most likely to be a problem for pigs.

Outcome-based criteria (or measurables): morbidity, mortality and culling rates, <u>physical appearance (excessive soiling and tear staining)</u>, behaviour (especially respiratory rate,—or coughing <u>and tail biting</u>), change in body weight and body condition.

Article 7.X.16.

Thermal environment

Although pigs can adapt to <u>different a range of</u> thermal environments, particularly if appropriate breeds <u>and housing</u> are used for the anticipated conditions, sudden fluctuations in temperature can cause heat or cold stress.

Heat stress

Heat stress is a serious problem in pig production. It can cause significant <u>discomfort, as well as reductions</u> in weight gain and fertility, or sudden death (Werremann and Bazer, 1985).

The risk of heat stress for pigs is influenced by environmental factors including air temperature, relative humidity, wind speed, ventilation rates, stocking density, shade and wallow availability in outdoor systems, and animal factors including breed, age and body condition (Heitman and Hughes, 1949; Quiniou and Noblet, 1999).

Animal handlers should be aware of the risk that heat stress poses to pigs and of the thresholds in relation to heat and humidity that may require action. If the risk of heat stress reaches too high levels the animal handlers should institute an emergency action plan that gives priority to access to additional water and could include provision of shade and wallows in outdoor systems, fans, reduction of stocking density, water-based cooling systems (dripping or misting), and provision of cooling systems as appropriate for the local conditions.

Outcome-based criteria (or measurables): behaviour (feed and water intake, respiratory rate, panting, agonistic behaviour), physical appearance (presence of faeces on the skin), morbidity, mortality and culling rates, and reproductive efficiency.

2. Cold stress

Protection from cold should be provided when these conditions are likely create a serious risk to the to compromise to the welfare of pigs, particularly in neonates and young pigs and others that are physiologically compromised (e.g. ill animals). This Protection can be provided by insulation, extra bedding, heat mats or lamps and natural or man-made shelters in outdoor systems (Blecha and Kelley, 1981).

Outcome-based criteria (or measurables): morbidity, mortality and culling rates, physical appearance (long hair, piloerection), behaviour (especially abnormal postures, shivering and huddling) and changes in body weight and body condition.

Article 7.X.17.

Noise

Pigs are <u>able to cope with a range of adaptable to different</u> levels and types of noise. However, exposure of pigs to sudden or loud noises should be minimised where possible to prevent stress and fear reactions. Ventilation fans, feeding machinery or other indoor or outdoor equipment should be constructed, placed, operated and maintained in such a way that they cause the least possible amount of noise (Algers and Jensen, 1991).

Outcome-based criteria (or measurables): behaviour (e.g. fleeing and vocalisation), physical appearance (e.g. injuries), reproductive efficiency, changes in body weight and body condition.

Article 7.X.18.

Lighting

Indoor systems should have light levels sufficient to allow all pigs to see one another, to investigate their surroundings visually and to show other normal behaviour patterns and to be seen clearly by staff to allow adequate inspection of the pigs. The lighting regime shall should be such as to prevent health and behavioural problems. It should follow a 24-hour rhythm and include sufficient uninterrupted dark and light periods, preferably no less than 6 hours for both.

A minimum of 40 lux of lighting is recommended for a minimum of 6 hours per day (Martelli et al., 2005; Taylor et al., 2006).

Artificial light sources should be located so as not to cause discomfort to the pigs.

Outcome-based criteria (or measurables): behaviour (locomotive behaviour), morbidity rates, reproductive efficiency, physical appearance (injuries) and changes in body weight and body condition.

Article 7.X.19.

Farrowing and lactation

Sows and gilts need time to adjust to their farrowing accommodation before farrowing. Nesting material should be provided where possible some days before farrowing (Yun *et al.*, 2014). Sows <u>and gilts</u> should be observed frequently around their expected farrowing times. As some sows and gilts need assistance during farrowing, there should be sufficient space and competent staff.

When new buildings are planned, loose housing systems for farrowing sows and gilts should be considered. (Baxter et al., 2012; Cronin et al., 2014; KilBride et al., 2012; Morrison et al., 2013; Weber, 2007).

Outcome-based criteria (or measurables): mortality and culling rates (piglets), morbidity rates (metritis and mastitis), behaviour (stereotypies—restlessness and savaging), reproductive efficiency, physical appearance (injuries).

Article 7.X.20.

Weaning

Weaning can be is a stressful time for sows and piglets and good management is required. Problems associated with weaning are generally related to the piglets' size and physiological maturity. Early weaning systems require good management and nutrition of the piglets.

An average Piglest should be weaneding age of at three weeks or older is recommended (Hameister et al., 2010; Smith et al., 2010; Gonyou et al., 1998; Worobec et al., 1999).

Delaying weaning to the age of four weeks or more may produce benefits such as improved bowel gut immunity and reduced less diarrhoea and less preventive use of antimicrobial agents (EFSA, 2007; Hameister et al., 2010; McLamb et al., 2013; Smith et al., 2010; Gonyou et al., 1998, Bailey et al., 2001).

Regardless of age, low weight piglets require additional care and can benefit from being kept in small groups in specialised pens until they are able to be moved to the common nursery area.

Newly weaned pigs are susceptible to disease challenges, so adherence to high-level hygiene protocols <u>and appropriate diet</u> is important. The area that piglets are weaned into should be clean, and dry and warm.

All newly weaned pigs should be monitored during the first two weeks after weaning for any signs of ill-health<u>or</u> <u>abnormal stress</u>.

Outcome-based criteria (or measurables): mortality and culling rates (piglets), morbidity rates (respiratory disease, diarrhoea), behaviour (belly nosing and ear sucking), physical appearance (injuries) and changes in body weight and body condition.

Article 7.X.21.

Mixing

Mixing of unfamiliar pigs can result in fighting to establish a dominance hierarchy, and therefore mixing should be minimised as much as possible (Moore *et al.*, 1994; Fabrega *et al.*, 2013). When mixing, strategies to reduce aggression and injuries should be implemented, and aAnimals should be observed after mixing and interventions applied if the aggression is intense or prolonged, and pigs become injured supervised.

Measures to prevent excessive fighting and injuries can include (Arey and Edwards, 1998, Verdon et al., 2015):

- providing additional space and a non-slippery floor,
- feeding before mixing,
- feeding on the floor in the mixing area,
- provision of providing straw or other suitable enrichment materials in the mixing area,
- providing opportunities to escape and to hide from other pigs, such as visual barriers,
- mixing previously familiarised animals whenever possible,
- <u>mixing</u> young animals should be mixed as soon after weaning as possible,
- avoiding the addition of adding one or small number of animals to a large established group.

Outcome-based criteria (or measurables): mortality, morbidity and culling rates, behaviour (agonistic), physical appearance (injuries), changes in body weight and body condition and reproductive efficiency.

Article 7.X.22.

Genetic selection

Welfare and health considerations should balance any decisions on productivity and growth rate when choosing a breed or hybrid for a particular location or production system.

Selective breeding can improve the welfare of pigs for example by selection to improve maternal behaviour, piglet viability, temperament and resistance to stress and disease and to reduce tail biting and aggressive behaviour (Turner *et al.*, 2006).

Outcome-based criteria (or measurables): physical appearance, behaviour <u>(e.g. maternal and agonistic behaviour)</u>, changes in body weight and body condition, handling response, reproductive efficiency, lameness, and morbidity, mortality and culling rates.

Article 7.X.23.

Protection from predators and pests

In outdoor and combination systems pigs should be protected from predators.

Pigs should also be protected from pests such as excessive numbers of flies and mosquitoes.

Outcome-based criteria (or measurables): morbidity, mortality and culling rates, behaviour, and physical appearance (injuries).

Article 7.X.24.

Biosecurity and animal health

1. <u>Biosecurity and disease prevention</u>

Biosecurity plans should be designed, implemented and maintained, commensurate with the best possible herd health status, available resources and infrastructure, and current disease risk and, for listed diseases in accordance with relevant recommendations in the Terrestrial Code.

These *biosecurity plans* should address the control of the major sources and pathways for spread of pathogen<u>ic</u> agents <u>including</u>:

- pigs, including introductions to the herd, especially from different sources.
- young <u>animals</u>semen coming from different sources,
- other domestic animals, wildlife, and pests,
- people, including sanitation practices,
- equipment, including vehicles, tools and facilities,
- vehicles,
- air,
- <u>air</u>, water supply, <u>semen</u>, feed and bedding,
- <u>waste, including</u> manure, <u>waste</u> <u>garbage</u> and disposal of dead animals,
- semen.

Annex 28 (contd)

Outcome-based criteria (or measurables): morbidity, mortality and culling rates, reproductive efficiency, changes in weight and body condition, physical appearance (signs of disease).

a) Animal health management

Animal health management should optimise the physical and behavioural health and welfare of the pig in the herd. It includes the prevention, treatment and control of diseases and conditions affecting the herd (in particular respiratory, reproductive and enteric diseases).

There should be an effective programme for the prevention and treatment of *diseases* and conditions, formulated in consultation with a *veterinarian*, when appropriate. This programme should include the recording of production data (e.g. number of sows, piglets per sow per year, feed conversion, and body weight at weaning), morbidity, mortality and culling rate and medical treatments. It should be kept up to date by the *animal handler*. Regular monitoring of records aids management and quickly reveals problem areas for intervention.

For parasitic burdens (e.g. endoparasites, ectoparasites and protozoa) and fly control, a programme should be implemented to monitor, control and treat, as appropriate.

Lameness can be a problem in pigs. *Animal handlers* should monitor the state of feet and legs and take measures to prevent lameness and maintain foot and leg health.

Those responsible for the care of pigs should be aware of early specific signs of *disease* or distress, such as coughing, abortion, diarrhoea, changes in locomotory behaviour or apathetic behaviour, and non-specific signs such as reduced feed and water intake, changes in weight and body condition, changes in behaviour or abnormal physical appearance.

Pigs at higher risk will require more frequent inspection by animal handlers. If animal handlers suspect the presence of a disease or are not able to correct the causes of disease or distress, they should seek advice from those having training and experience, such as *veterinarians* or other qualified advisers, as appropriate.

Non-ambulatory Nonambulatory pigs should not be transported or moved unless absolutely necessary for treatment, recovery, or diagnosis. Such movements should be done carefully using methods that avoid dragging the animal or lifting it in a way that might cause further pain, suffering or exacerbate injuries.

Animal handlers should also be competent in assessing fitness to transport, as described in Chapter 7.3.

In case of *disease* or injury, when treatment has failed, <u>is not feasible</u> or recovery is unlikely (e.g. pigs that are unable to stand up, unaided or refuse to eat or drink), the animal should be humanely killed as soon as possible in accordance with Chapter 7.6.

Outcome-based criteria (or measurables): morbidity, mortality and culling rates, reproductive efficiency, behaviour (apathetic behaviour), lameness, physical appearance (injuries) and changes in body weight and body condition.

b) Emergency plans for disease outbreaks

Emergency plans should cover the management of the farm in the event of an emergency disease outbreak, consistent with national programmes and recommendations of *Veterinary Services* as appropriate.

Article 7.X.25.

Contingency Emergency plans

Where the failure of power, water and or feed supply systems could compromise animal welfare, pig producers should have contingency plans to cover the failure of these systems. These plans may include the provision of fail-safe alarms to detect malfunctions, back-up generators, contact information for key service providers, ability to store water on farm, access to water cartage services, adequate on-farm storage of feed and an alternative feed supply.

Preventive measures for emergencies should be input-based rather than outcome-based. Contingency plans should be documented and communicated to all responsible parties. Alarms and back-up systems should be checked regularly.

Article 7.X.26.

Disaster management

Plans should be in place to minimise and mitigate the effect of disasters (e.g. earthquake, fire, flooding, blizzard and hurricane). Such plans may include evacuation procedures, identifying high ground, maintaining emergency feed and water stores, destocking and humane *killing* when necessary.

<u>Procedures for Mh</u>umane <u>killing procedures for of sick</u> or injured pigs should be part of the disaster management plan.

Reference to emergency plans can also be found in Article 7.X.25.

Article 7.X.27.

Euthanasia (Humane killing)

Allowing a sick or injured animal to linger unnecessarily is unacceptable. Therefore, for sick and injured pigs a prompt diagnosis should be made to determine whether the animal should be treated or humanely killed.

The decision to kill an animal humanely and the procedure itself should be undertaken by a competent person.

For a description of acceptable methods for humane killing of pigs see Chapter 7.6.

The establishment should have documented procedures for on-farm humane killing. Staff should be trained in the humane killing procedures appropriate for each class of pig.

Reasons for humane killing may include:

- severe emaciation, weak pigs that are non-ambulatory nonambulatory or at risk of becoming non-ambulatory nonambulatory.
- <u>severely injured or non-ambulatory</u> <u>nonambulatory</u> pigs that will not stand up, refuse to eat or drink, <u>or</u> have not responded to <u>therapy treatment</u>,
- rapid deterioration of a medical condition for which therapies have treatment has been unsuccessful,
- severe, debilitating pain,
- compound fracture,
- spinal injury,
- central nervous system disease,
- multiple joint infections with chronic weight loss,

Annov	20	(contd)	
Annex	28	(conta	۱

_	piglets that are	premature and u	ınlikely to su	irvive, or ha	ave a debilitating	congenital	defect, a	and

as part of disaster management response.

		4			4-61-	ام مطاخم مص		humana	1:11:	-f -:		Chantan	. 7 0
5	σ	acsonpti	5	accer	doic	HICKHOO	2	Hamane	Tilling	oi biq	200	Onapici	7.0

Text deleted.

Scientific references

Abou-Ismaila, U.A. and Mendl, M.T. (2016). The effects of enrichment novelty versus complexity in cages of group-housed rats (Rattus norvegicus). Applied Animal Behaviour Science 180, 130-139.

Algers, B., and Jensen, P. (1991). Teat stimulation and milk production during early lactation in sows: effect of continuous noise. Canadian Journal of Animal Science 71: 51-60.

Anil L., Anil S.S., Deen J., Baidoo S.K. & Wheaton J.E. (2005) Evaluation of well-being, productivity, and longevity of pregnant sows housed in groups in pens with an electronic sow feeder or separately in gestation stalls. American Journal of Veterinary Research 66:1630-1638.

Anil, L., S. S. Anil, and J. Deen. (2002). Relationship between postural behaviour and gestation stall dimensions in relation to sow size. *Appl Anim Behav Sci* 77:173–181.

Arey, D.S., Edwards, S.A. 1998. Factors influencing aggression between sows after mixing and the consequences for welfare and production. Livestock Production Science, 56: 61-70.

AVMA, (2015. Welfare implications of gestation sow housing. https://www.avma.org/KB/Resources/LiteratureReviews/Pages/Welfare-Implications-of-Gestation-Sow-Housing.aspx

Bailey M, Vega-Lopez MA, Rothkötter HJ, et al. (2001). Enteric immunity and gut health. In: Varley MA and Wiseman J (eds.), The Weaner Pig: Nutrition and Management (Wallingford, U.K.: CABI Publishing, pp. 207-222).

Barnett J.L., P.H. Hemsworth, G.M. Cronin, E.C. Jongman, and G.D. Hutson (2001). A review of the welfare issues for sows and piglets in relation to housing. Australian Journal of Agricultural Research 52, 1-28.

<u>Baxter</u>, E.M., Lawrence, A.B. and Edwards, S.A. (2012), 'Alternative farrowing accommodation: welfare and economic aspects of existing farrowing and lactation systems for pigs'. Animal (2012), 6, 96–117.

Bench, C. J., F. C. Rioja-Lang, S. M. Hayne, and H. W. Gonyou. 2013. Group gestation housing with individual feeding—I: How feeding regime, resource allocation, and genetic factors affect sow welfare. Livest. Sci. 152(2):208–217.

Bergeron R., Bolduc J., Ramonet Y., Meunier-Salaün M.C. & Robert S. (2000) Feeding motivation and stereotypies in pregnant sows fed increasing levels of fibre and/or food. Applied Animal Behaviour Science 70:27-40.

Blecha, Frank and Kelley, Keith W. . 1981. Cold Stress Reduces the Acquisition of Colostral Immunoglobulin in Piglets. Journal of Animal science, 52: 594-600.

Bonastre C, Mitjana O, Tejedor MT, Calavia M, Yuste AG, Úbeda JL and Falceto MV. 2016. Acute physiological responses to castration-related pain in piglets: the effect of two local anesthetics with or without meloxicam. Animal 10(9):1474-81.

Boyle, L.A., Leonard, F.C., Lynch, P.B. and Brophy, P. (2002). Effect of gestation housing on behaviour and skin lesions of sows in farrowing crates. Applied Animal Behaviour Science 76, 119–134;

Bracke, M.B.M., Zonderland, J. J., Lenskens, P., Schouten, W. G.P., Vermeer. H, Spoolder, H.A.M., Hendriks, H.J.M., Hopster, H. 2006. Formalised review of environmental enrichment for pigs in relation to political decision making. Applied Animal Behaviour Science 98: 165-182.

Broom, D.M., Mendl, M.T. and Zanella, A.J. (1995). A comparison of the welfare of sows in different housing conditions. Animal Science 61, 369-385.

Cronin, G.M., Rault, J-L. and Glatz, P.c. (2014). Lessons learned from past experience with intensive livestock management systems. Rev. sci. tech. Off. int. Epiz., 2014, 33 (1), 139-151.

Drummond, John G.; Curtis, Stanley E.; Simon, Joseph; Norton, Horace W. 1980. Effects of Aerial Ammonia on Growth and Health of Young Pigs1. Journal of Animal Science, 50: 1085-1091.

<u>Dudnik, S., Simonse, H., Marks, I., de Jonge, F.H., and Spruijt, B.M., 2006. Announcing the arrival of enrichment increases play behaviour and reduces weaning-stress-induced behaviours of piglets directly after weaning, Applied Animal Behaviour Science, 101: 86-101.</u>

EFSA, (2007), 'Scientific report on the risks associated with tail biting in pigsand possible means to reduce the need for tail docking considering the different housing and husbandry systems'. Annex EFSA J., 611, 1–13 (Question no. EFSA-Q-2006-013, 1–98).

EFSA, (2007) Panel for Animal Health and Welfare. Animal health and welfare aspects of different housing and husbandry systems for adult breeding boars, pregnant, farrowing sows and unweaned piglets. The EFSA Journal 572:1-107.

Ekkel, E.D., Spoolder, H.A.M., Hulsegge, I. and Hopster, H. (2003) Lying characteristics as determinants for space requirements in pigs. *Applied Animal Behaviour Science*. 80, 19-30.

Elmore, M.R.P., Garner, J.P., Johnson, A.K., Kirkden, R.D., Richert, B.T.and Pajor, E.A. .2011. Getting around social status: Motivation and enrichment use of dominant and subordinate sows in a group setting. Applied Animal Behaviour Science, 133, (3-4), 154-163.

Fàbrega, E., Puigvert, X., Soler, J., Tibau, J., Dalmau, A.. 2013. Effect of on farm mixing and slaughter strategy on behaviour, welfare and productivity in Duroc finished entire male pigs. Applied Animal Behaviour Science, 143: 31-39.

Gonyou HW, Beltranena E, Whittington DL, and Patience JF. 1998. The behaviour of pigs weaned at 12 and 21 days of age from weaning to market. Canadian Journal of Animal Science 78:517-523.

Gonyou, H.W., Brumm, M.C., Bush, E., Deen, J., Edwards, S.A., Fangman, T., McGlone, J.J., Meunier-Salaun, M., Morrison, R.B., Spoolder, H., Sundberg, P.L. and Johnson, A.K. (2006) Application of broken-line analysis to assess floor space requirements of nursery and grower-finisher pigs expressed on an allometric basis. *Journal if Animal Science*. 84, 229-235.

Gonyou, H.W. 2001. The social behaviour of pigs. In Social behaviour of farm animals, Eds L.J. Keeling and H.W. Gonyou. CABI International, Oxon, UK, p. 147.

Hameister, T., Puppe, B., Tuchscherer, M., Kanitz, E., 2010. Effects of weaning age on behavioural and physiological responses of domestic piglets - a review. Berliner und Munchener Tierarztliche Wochenschrift 123, 11-19.

Hansson M, Lundeheim N, Nyman G and Johansson G. 2011. Effect of local anaesthesia and/or analgesia on pain responses induced by piglet castration. Acta Veterinaria Scandinavica 53:34.

Hedde, R.D., Lindsey, T.O., Parish, R.C., Daniels, H.D., Morgenthien, E.A., Lewis, H.B. Effect of diet particle size and feeding H2 receptors antagonists on gastric ulcers in swine. J Anim Sci. 1985;61(1):179-185.

Heitman, H. and Hughes, E.H. 1949. The effects of air temperature and relative humidity on the physiological well-being of swine. Journal of Animal Science, 8:171-181.

Hemsworth, P.H. and Coleman, G.J. (2011). Human-Livestock Interactions: the Stockperson and the Productivity and Welfare of Farmed Animals. 2nd Edition. CAB International, Oxon, United Kingdom.

Hemsworth, P.H. and Coleman, G.J. (1994). Improving the attitude and behaviour of stockpersons towards pigs and the consequences on the behaviour and reproductive performance of commercial pigs. Applied Animal Behaviour Science 39, 349-362.

Karlen, G.A.M., Hemsworth, P.H., Gonyou, H.W., Fabrega, E., Strom, A.D. and Smits, R.J. (2007). The welfare of gestating sows in conventional stalls and large groups on deep litter. Applied Animal Behaviour Science, 105, 87-101.

KilBride, A.L., Mendl, M., Statham, P., Held S., Harris, M., Cooper, S. and Green, L.E. (2012), 'A cohort study of preweaning piglet mortality and farrowing accommodation on 112 commercial pig farms in England'. Preventive Vet. Med., 104, 281–291.

Kilbride AL, Gillman CE, and Green LE. 2008. Prevalence of foot lesions, limb lesions and abnormal locomotion in pigs on commercial farms in Britain and risks associated with flooring. The Pig Journal 61:62-68.

<u>KilBride AL, Gillman CE, Green LE. 2009. A cross-sectional study of the prevalence of lameness in finishing pigs, gilts and pregnant sows and associations with limb lesions and floor types on commercial farms in England.</u> Animal Welfare 18:215-224.

Leeb B., Leeb Ch., Troxler J. & Schuh M. (2001) Skin lesions and callosities in group-housed pregnant sows: animal-related welfare indicators. Acta Agriculturae Scandinavica, Section A, Animal Science 51:82-87.

Mason, G.J. and N.R. Latham (2004). Can't stop, won't stop: is stereotypy a reliable animal welfare indicator? Anim. Welf. 13, S57-69.

Marchant-Forde, J. N. (editor) (2009a), The Welfare of Pigs. Ed. J.N. Marchant-Forde, Springer Science and Business Media, New York City, USA.

Marchant, J.N. and Broom, D.M. (1996) Effects of dry sow housing conditions on muscle weight and bone strength. Journal of Animal Science 63, 105–113.

Martelli, G., Scalabrin, M., Scipioni, R., and Sardi, L. (2005). The effects of the duration of teh artificial photoperiod on the growth parameters and behaviour of heavy pigs. Veterinary Research Communications 29: 367-369.

McGlone, J.J., von Borell, E.H., Deen, J., Johnson, K., Levis, D.G., Meunier-Salaun, M., Morrow, J., Reeves, D., Salak-Johnson, J.L. and Sundberg, P.L. (2004). Compilation of the scientific literature comparing housing systems for gestating sows and gilts using measures of physiology, behaviour, performance, and health. The Professional Scientist 20, 105–117

McLamb BL, Gibson AJ, Overman EL, Stahl C and Moeser AJ. 2013. Early weaning stress in pigs impairs innate mucosal immune responses to Enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS ONE 8(4): e59838.

Mills, D.T. and Caplen, G. (2010). Abnormal/abnormality. In The Encyclopaedia of Applied Animal Behaviour and Welfare, 1st ed.; Mills, D.M., Marchant-Forde, J.N., Morton, D.B., Phillips, C.J.C., McGreevy, P.D., Nicol, C.J., Sandoe, P., Swaisgood, R.R., Eds.; CABI Publishing: Wallingford, UK, 2010; pp. 32.

Moore, A.S., Gonyou, H.W., Stookey, J.M., McLaren, D.G., 1994. Effect of group composition and pen size on behaviour, productivity and immune response of growing pigs. Appl. Anim. Behav. Sci. 40, 13–30.

Morrison R.S., Sawyer K.S.B., N.J. Kells, N.J., Johnson, C.B. and Hemsworth, P.H. (2013), 'Stress responses of two-day old piglets to tail docking'. In: Manipulating Pig Production XIV. Proc. 14th Biennial Conf. Aust. Pig Sci. Assoc., Eds. J.R. Pluske and J.M. Pluske, pp.128.

Munsterjelm, C, Valros, A, Heinonen, M, Halli, O, and Peltoniemi, 2006. Welfare index and reproductive performance in the sow. Reprod Dom Anim, 41:494-500.

NFACC (2014). Code of Practice for the Care and Handling of Pigs. http://www.nfacc.ca/pdfs/codes/pig_code_of_practice.pdf. Accessed December 15, 2016.

Newberry, R. C. 1995. Environmental enrichment: Increasing the biological relevance of captive environments. Appl. Anim. Behav. Sci. 44:229–243.

Newberry, R. and Wood-Gush, D. 1988. Development of some behaviour patterns in piglets under semi-natural conditions. Animal Science 46: 103-109.

Newton, G. L.; Booram, C. V.; Hale, O. M.; Mullinix, B. G. 1980. Effect of Four Types of Floor Slats on Certain Feet Characteristics and Performance of Swine4. Journal of Animal Science, 50: 7-20.

Ni, J.Q., Vinckier, C., Coenegrachts, J., Hendriks, J., 1999. Effect of manure on ammonia emission from a fattening pig house with partly slatted floor. Livestock Production Science, 59: 25-31.

Patience JF. Water in swine nutrition. In: Chiba LI, editor. Sustainable swine nutrition. Oxford: Blackwell Publishing Ltd; 2013. p. 3–22.

Petherick, J.C. and Blackshaw, J.K. (1987). A review of the factors affecting aggressive and agonistic behaviour of the domestic pig. Australian Journal of Experimental Agriculture, 27, 605-611.

Quiniou, N. and Noblet. 1999. J. Influence of high temperature of multiparous lactating sows. Journal of Animal Science 77: 2124-2134.

Robert, S., Rushen, J. and Farmer, C. (1997), 'Both energy content and bulk of feed affect stereotypic behaviour, heart rate and feeding motivation of female pigs'. Appl. Anim. Behav. Sci., 54, 161–171.

Rizvi S., Nicol C.J. & Green L.E. (1998) Risk factors for vulva biking in breeding sows in southwest England. Veterinary Record 143:654-658.

Schroder-Petersen, D.L. and Simonsen, H.B. (2001), 'Tail biting in pigs'. Vet. J., 162, 196-210.

Smith F, Clark JE, Overman BL, et al. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. American Journal of Physiology: Gastrointestinal Liver Physiology 298(3):G352-363.

Stereotypic Animal Behaviour. Fundamentals and Applications to Welfare. Eds. G. Mason and J, Rushen, 2nd Edition, CABI, Wallingford, Oxfordshire, UK.

Stolba, A., Wood-Gush, D.G.M., 1989. The behaviour of pigs in a seni-natural environment. Animal Science 48, 419-425.

Sybesma, W. (editor). (1981). Welfare of pigs. Current topics in Veterinary Medical Animal Science 11. Martinus Nijhoff, The Hague, Netherlands.

Tarou, L.R. and Bashaw, M.J. (2007). Maximizing the effectiveness of environmental enrichment: Suggestions from the experimental analysis of behaviour. Applied Animal Behaviour Science 102, 189–204.

Taylor, N.R., Main, D.C.J., Mendl, M. and Edwards, S.A. (2010), 'Tail-biting: a new perspective'. Vet. J., 186, 137-147.

Taylor, N., Prescott, N., Perry, G., Potter, M., Le Suer, C., and Wathes, C. (2006). Preference of growing pigs for illuminance. Applied Animal Behaviour Science 92:19-31.

<u>Telkänranta, H., Marchant-Forde, J.N. and Valros, A. (2016) 'Tear staining in pigs: a potential tool for welfare assessment on commercial farms', *animal*, 10(2), pp. 318–325. doi: 10.1017/S175173111500172X.</u>

Temple, D., Courboulay, V., Manteca, X., Velarde, A., Dalmau, A. 2012. The welfare of growing pigs in five different production systems: assessment of feeding and housing. Animal, 6,4: 656-667

<u>Trickett, S.L., Guy, G.H. and Edwards, S.A. (2009). The role of novelty in environmental enrichment for the weaned pig. Applied Animal Behaviour Science 116, 45–51.</u>

Turner, S.P., Ewan, M., Rooke, J.A. and Edwards, S.A. (2000) The effect of space allowance on performance, aggression and immune competence of growing pigs housed on straw deep-litter at different group sizes. *Livestock Production Science*. 66 (1), 47-55.

Turner, S.P., White, I. M. S., Brotherstone, S., Farnworth, M. J., Knap, P. W., Penny, P., Mendl, M. and Lawrence, A. B.. 2006. Heritability of post-mixing aggressiveness in grower-stage pigs and its relationship with production traits. Journal of Animal Science, 82: 615-620.

<u>Tuyttens, F. (2007). Stereotypies. In: Velarde, A. and R. Geers (editors), On farm monitoring of pig welfare.</u> Wageningen Academic Publishers, Wageningen, Netherlands. p.41-42.

<u>Van de Weerd, H.A., Docking, C.M., Day, J.E.L., Breuer, K. and Edwards, S.A. .2006. Effects of species-relevant environmental enrichment on the behaviour and productivity of finishing pigs. Applied Animal Behaviour Science. 99, 230-247.</u>

Verdon, M., Hansen, C.F., Rault, J-L., Jongman, E., Hansen, L.U., Plush, K. and Hemsworth, P.H. (2015), 'Effects of group-housing on sow welfare: A review'. J. Anim. Sci., 93, 1999–2017.

Walker, P.K. and Bilkei, G. (2005), 'Tail-biting in outdoor pig production'. Vet. J., 171, 367–369.

Weber, R., Keil, N.M., Fehr, M. and Horat, R. (2007). Piglet mortality on farms using farrowing systems with or without crates. Animal Welfare 16, 277-279.

Werremann, R.P., and Bazer, F.W. (1985).Influence of environmental temeprature on prolificacy of pigs. Journal of Reproduction and Fertility, 33:199-208.

Wittaker. X., Edwards, S.A. Spoolder, H.A.M., Lawrence, A.B., and Corning, S. (1999). Effects of straw bedding and high fibre diets on the behaviour of floor fed group-housed sows. Applied Animal Behaviour Science. 63, 25-39.

Wood-Gush, D.G.M., Vestergaard, K., 1989. Exploratory behavior and the welfare of intensively kept animals. Journal of Agricultural Ethics 2, 161–169.

Worobec, E. K, Duncan, I.J.H., Widowski, T.M. The Effects of weaning at 7, 14 and 28 days on piglet behaviour. Appl Anim Behav Sci.1999;62:173–182.

Yun, J., Swan, K-M., Farmer, C., Oliviero, C., Peltoniemi, O., Valros, A. (2014). Prepartum nest-building has an impact on postpartum nursing performance and maternal behaviour in early lactating sows. Applied Animal Behaviour Science 160:31-37.
