Japan's comments on the Report of the meeting of the OIE Aquatic Animal Health Standards Commission in September 2019

(Annex 3) BIOSECURITY FOR AQUACULTURE ESTABLISHMENTS

(Article 4.x.4.) General principles

6) A schedule for routine reviews and audits of the *biosecurity plan* should be described. Triggers for *ad hoc* review must be determined (e.g. changes to infrastructure, production techniques, *disease outbreaks*, or *risk* profiles). Third party audits may be required where recognition of the *biosecurity* measures is required by customers, or regulators, or for market access, as provided in Article 4.X.8.

Rationale:

Japan considers that those who can be the third party audit concretely should be described in Aquatic Code for appropriate operation.

(Annex 3) BIOSECURITY FOR AQUACULTURE ESTABLISHMENTS

(Article 4.x.6.) Transmission pathway and mitigation measures (3. Water)

c) Provide an appropriate level of filtration, disinfection or holding (in accordance with Chapter 4.3.) of effluent water from aquaculture establishments (or associated slaughterhouses, exprocessing facilities, or storage facilities or transport containers for live aquatic animals) where it may present a risk of pathogenic agent transmission to wild aquatic animals or other aquaculture establishments with susceptible species. The level of treatment required will depend on the identified risks.

Rationale:

Effluent water from storage facilities and transport containers for live aquatic animals may also present a risk of pathogenic agent transmission to wild aquatic animals or other aquaculture establishments with susceptible species.

(Annex 8) PATHWAYS FOR CLAIMING FREEDOM FROM DISEASE IN THE AQUATIC ANIMAL HEALTH CODE SEPTICAEMIA

(Footnote6)

veterinarians or aquatic animal health professionals <u>continuously</u> trained in recognising and reporting suspicions of disease occurrence;

Rationale:

Unlike targeted surveillance, passive surveillance seeks to find diseases in daily consultation. So it is difficult for veterinarians and aquatic animal health professionals who have just been educated once to seek to find diseases, and they need to be trained contentiously.

(Annex 12) INFECTION WITH INFECTIOUS HAEMATOPOIETIC NECROSIS VIRUS (Article 2.2.1.) Susceptible host species

Family	Scientific name	Common name
Esocidae	Esox lucius	Northern pike
Salmonidae	Salmo marmoratus	Marble trout
	Salmo salar	Atlantic salmon
	Salmo trutta	Brown trout
	Salvelinus alpinus	Arctic char
	Salvelinus fontinalis	Brook trout
	Salvelinus namaycush	Lake trout
	Oncorhynchus clarki	Cutthroat trout
	Oncorhynchus tshawytscha	Chinook salmon
	Oncorhynchus keta	Chum salmon
	Oncorhynchus kisutch	Coho salmon
	Oncorhynchus masou	Mas <mark>e</mark> u salmon
	Oncorhynchus mykiss	Rainbow trout
	Oncorhynchus nerka	Sockeye salmon

Rationale:

Japan considers that "masu salmon" is appropriate as the common name of Oncorhynchus masou as used in the Report of the ad hoc Group on Susceptibility of fish species to infection with OIE listed diseases.