Japan's comments on the Report of the meeting of the OIE Aquatic Animal Health Standards Commission in February 2019

Japan would like to express its appreciation to the Aquatic Animal Standards Commission and *ad hoc* Groups for all the works they have done. Japan also appreciates the Commission for providing us with the opportunity to comment on the proposed revisions to the OIE Aquatic Animal Health Code (hereinafter referred to as the Aquatic Code) and the OIE Manual of Diagnostic Tests for Aquatic Animals (hereinafter referred to as the Aquatic Manual) as well as the Discussion paper on Approaches for determining periods required to demonstrate disease freedom. Japan herein would like to submit the following comments for consideration by the Commission.

OIE Aquatic Animal Health Code

Annex 17 to of the report

New draft chapter on Biosecurity for aquaculture establishments (Chapter 4.X.)

Japan shares our recognition that it is important to establish a new chapter on biosecurity for aquaculture establishments in "Section 4 Disease prevention and control". It is because that the chapter will make biosecurity at the level of compartment more effective.

With regard to the proposed "Article 4.X.7 Risk analysis", however, we would suggest that the risk analysis in new chapter should be basically consistent with "Import risk analysis" in Section

2. For example, we consider that the risk assessment proposed in new chapter, which is based on matrix of the likelihood estimate and consequence rating, should be available for the import risk analysis.

Article 4.X.5. Categories of aquaculture production systems

Semi-open

In a semi-open aquaculture production system, it is not possible to have control of water entering or exiting the system, or the environmental conditions. Some aquatic animals and vectors may also enter and exit the system. Examples of semi-open aquaculture production systems are net pens and mollusc aquaculture in natural water bodies and mollusc aquaculture, either suspended in the water column or <u>seeded</u> on the ocean floor.

It should be described here to facilitate the understanding of this sentence.

OIE Aquatic Manual

Annex 21A to of the report:

Infection with spring viraemia of carp virus (Chapter 2.3.9.)

2.2.2. Species with incomplete evidence for susceptibility

Species for which there is incomplete evidence for susceptibility according to Chapter 1.5. of the Aquatic Code are: Crucian carp (Carassius carassius), pike (Esox lucius), firebelly newt (Cynops orientalis), silver carp (Hypophthalmichthys molitrix), Yellow perch (Perca flavescens), and zebrafish (Danio rerio). Evidence is lacking for these species to either confirm that the identity of the pathogenic agent is SCVCSVCV, transmission mimics natural pathways of infection, or presence of the pathogenic agent constitutes an infection.

Correct a typo

2.3.1. Mortality, morbidity and prevalence Transmission mechanisms

<u>During an outbreak of infection with SVCV there will be a noticeable increase in mortality in the population.</u> <u>Co-infections with koi herpesvirus or carp oedema virus can increase levels of mortality</u> (delete or insert references.).

This description should be deleted in case that there is no scientific reference indicating the coinfections between SVC and KHV/CEV.

3.1. Selection of populations and individual specimens

For disease investigations, moribund fish or fish exhibiting clinical signs of the disease infection with SVCV should be collected fish should be alive when collected. Ideally fish should be alive when collected, however recently dead fish can be collected for diagnostic purposes. It should be noted however, that there will be a significant risk of contamination with environmental bacteria if the animals have been dead for some time. However, There may be no pathognomonic gross lesions and no clinical signs in cases of sudden mortality (see Section 4.1.1.).

Correct a typo.

4.4.2. Conventional PCR (PCR)

The following controls should be run with each assay: negative extraction control; positive control; no template control; internal PCR control.

The following controls should be run with each assay: negative extraction control; positive control; no template control; internal PCR control.

Delete duplicates.

6.1.2. Definition of confirmed case in apparently healthy animals

The presence of infection shall be confirmed if positive results has been obtained on at least one animal from two test used in the following combination:

i) Pathogen isolation AND Conventional PCR test followed by the and amplicon sequencing

6.2.2. Definition of confirmed case in clinically affected animals

The presence of infection shall be confirmed if positive results has been obtained on at least one animal from two test used in the following combination:

i) Pathogen isolation AND Conventional PCR test followed by the and amplicon sequencing

Correct a typo.

Annex 24 to of the report:

Work plan of the OIE Aquatic Animal Health Standards Commission

Ongoing AD HOC GROUPS		
Topic	Last report	Next meeting
Ad hoc Group on	November 2018	2020
Susceptibility of fish		
species to infection		
with OIE listed		
diseases (to complete		
the assessment of		
infection with spring		
viraemia of carp		
virus (VHSV <u>SVCV</u>)		
or viral haemorrhagic		
septicaemia virus		
(VHSV), infection		
with red sea bream		
iridovirus (RSIV)		
and infection with		
kidney necrosis virus		
(ISKNV)		
Electronic ad hoc	February 2019	Work electronically and report to the
Group on Tilapia		AAHSC September 2019 meeting
lake virus		
Ad hoc Group on the		Continuous process to commence work on
new Aquatic Manual		applying the new chapter template to disease-
template		specific chapters

Japan considers that infection with "spring viraemia of carp virus (SVCV)" or "viral haemorrhagic septicaemia virus (VHSV) is correct.