Grapevine red globe virus に関する 病害虫リスクアナリシス報告書

令和6年12月25日 農林水産省横浜植物防疫所 主な改訂履歴及び内容 令和 6 (2024) 年 12 月 25 日 作成

目次

はじめに	1
I リスクアナリシス対象の病害虫の生物学的情報(有害植物)	1
1. 学名及び分類	1
2. 地理的分布	2
3.感染記録のある植物及び日本国内での分布	2
4. 感染部位及びその症状	2
5. 移動分散方法	2
6.生態	3
7. 媒介性又は被媒介性	3
8. 被害の程度	3
9. 防除	3
1 0.診断、検出及び同定	4
1 1. 日本における輸入検疫措置	4
1 2.諸外国における輸入検疫措置等	4
Ⅱ 病害虫リスクアナリシスの結果	5
第1 開始(ステージ1)	5
1.開始	5
2. 対象となる有害動植物	5
3. 対象となる経路	5
4. 対象となる地域	5
5.開始の結論	5
第2 病害虫リスク評価(ステージ2)	6
1. 有害動植物の類別	6
2.Grapevine red globe virus の病害虫リスク評価の結論	6
別紙1 Grapevine red globe virus の発生記録のある国等の情報	7
別紙 2 Grapevine red globe virus の感染記録のある植物の情報	8
引用文献	q

はじめに

Grapevine red globe virus (GRGV) は、2000 年、イタリア南部においてヨーロッパブドウ(品種:レッドグローブ) から初めて報告された球形ウイルスである (Beuve et al., 2015; Martelli et al., 2002; Sabanadzovic et al., 2000)。その後、ギリシャ、フランス及びアメリカ合衆国等においても報告されているが、GRGV による特異的な症状は確認されていない (Beuve et al., 2015; Martelli et al., 2015; Pantaleo et al., 2010)。

日本においては、現在 GRGV は、「まん延した場合に有用な植物に損害を与えるおそれがないことが確認されていない有害植物」であり、輸入検査で発見された場合、廃棄又は返送となる(農林省,1950a,b;農林水産省,2011)。また、GRGV の感染記録のある植物として知られているブドウ属の苗木及び穂木については、国が定める隔離施設で1年間の隔離検疫を行う必要がある(農林省,1950a,1968)。

他方、GRGV は日本国内において検出報告があることから、GRGV に対するリスク評価を実施し、植物検疫上の位置づけを明らかにするとともに、適切なリスク管理措置を検討するため、病害虫リスクアナリシスを実施した。

I リスクアナリシス対象の病害虫の生物学的情報(有害植物)

- 1. 学名及び分類
- (1) 学名(EPPO, 2023; ICTV, 2023) grapevine red globe virus(GRGV)
- (2) 英名、和名等(ICTV, 2023、日本植物病理学会, 2024)

英名: grapevine red globe virus

和名:ブドウレッドグローブウイルス

(3) 分類 (ICTV,2023)

種類:ウイルス

科: Tymoviridae

属: Maculavirus (国際ウイルス分類委員会 (ICTV) においては、本属に属する可能性があるが、種として承認されていないその他の関連ウイルスとされている。)

- ※ GRGV は Maculavirus vitis(grapevine fleck virus(GFkV))と近縁で、 *Marafivirus asteroides*(grapevine asteroid mosaic associated virus
 (GAMaV))、grapevine rupestris vein feathering virus(GRVFV)及び *Marafivirus syrahense*(grapevine Syrah virus 1(GSyV-1))と形態的、物理化
 学的及び分子生物学的特性が類似し、進化的に関連があるウイルスとされている
 (Sabanadzovic et al., 2017)。
- (4)シノニム 情報なし。
- (5) 系統等 情報なし。

2. 地理的分布

(1)発生記録のある国又は地域(詳細は別紙1を参照)

アジア:中華人民共和国、日本(※)

中東:イラン

欧州:アルバニア、イタリア、英国、ギリシャ、クロアチア、スイス、スペイン、ス

ロベニア、ドイツ、ハンガリー、フランス、ポルトガル、ロシア

北米:アメリカ合衆国

中南米:ブラジル

大洋州:オーストラリア

※ 日本国内で流通しているブドウ苗木(ヤマ・ソービニオン品種)から検出されたウイルス株について、全ゲノム配列が決定され、既報の GRGV 分離株との間において外皮たんぱく質のアミノ酸配列同一性が Maculavirus 属における種の分類基準を満たさないものがあったものの、ゲノム配列の同一性は供試した分離株の全てにおいて当該基準を満たすことから、GRGV であることが強く示された(Yamamoto et al., 2022; 山本ら, 2023)。

(2) 生物地理区

GRGV は旧北区、新北区、新熱帯区及びオーストラリア区の4区に分布する。

3. 感染記録のある植物及び国内分布

(1) 感染記録のある植物(詳細は別紙2を参照)ブドウ科:ブドウ属(Vitis spp.)

(2) 感染記録のある植物の日本国内における分布及び栽培状況 GRGV の感染記録があるブドウは 47 都道府県で栽培されている。

4. 感染部位及びその症状

欧州及びアメリカ系統のブドウ属は GRGV に感染しても、症状を示さないことが知られている(Martelli et al., 2002; Sabanadzovic et al., 2017)。中華人民共和国において台木として利用されている Beta 品種に退緑小斑点を生じていたサンプルから GRGV が検出されているが grapevine Pino gris virus も同時に検出されており、GRGV 単独の感染による影響は確認されていない(Fan et al., 2016)。また、ドイツにおいてピノ・グリ品種の葉に斑紋及び小斑点を生じたサンプルから GRGV が検出されたが2種ウイルス(arabis mosaic virus 及び grapevine rupestris stem pitting-associated virus)及び2種ウイロイド(grapevine yellow speckle viroid-1 及び hop stunt viroid)も同時に検出されており、GRGV 単独感染による症状は報告されていない(Ruiz-Garcia et al., 2018)。

5. 移動分散方法

(1) 自然分散

GRGV のベクターによる伝搬は知られておらず(Beuve et al., 2015)、GRGV の自然分散のメカニズムは不明とされている(Sabanadzovic et al., 2017)。

(2) 人為分散

GRGV は、苗の増殖や接ぎ木により伝搬する。また、汁液及び種子による伝搬は確認されていない (Martelli et al., 2002; Beuve et al., 2015)。

6. 生態

- (1)中間宿主及びその必要性情報なし。
- (2) 伝染環 情報なし。
- (3)植物残渣での生存 情報なし。
- (4) 耐久生存態 情報なし。

7. 媒介性又は被媒介性

ベクターによる伝搬は知られていない。

8. 被害の程度

ほとんどの栽培用ブドウ品種に対して特異的な症状を示さず、ブドウの生産への影響はないことが報告されており、GRGV 単独の感染による明確な被害は確認されていない(Beuve et al., 2015; Cretazzo and Velasco, 2017; Fan et al., 2016; Martelli et al., 2002; Ruiz-Garcia et al., 2018; Sabanadzovic et al., 2017)。GRGV は、他のウイルスと複合感染する植物から検出されている(Beuve et al., 2015; Fan et al., 2016; Ruiz-Garcia et al., 2018)。

9. 防除

Grapevine fleck complex (※) の病原ウイルスの一種である GFkV は、熱処理+茎頂培養法により無毒化できるとされ(Martelli et al., 2015)、熱処理は、昼間 40° C・夜間 35° C(各 12 時間)の条件で 4 週間以上処理することで無毒化可能である(田中, 1998)。そのため、熱処理+茎頂培養法が Grapevine fleck complex に関与する他のウイルスについても有効である可能性がある(Martelli, 2014)。GRGV は fleck complex の症状は引き起こさないものの、便宜的に Grapevine fleck complex に関与するウイルスの中に含まれているが、これらに対して実施していることと同様に PCR 法により検定し、ウイルスフリーのものを増殖に使用すべきであるとされている(Martelli et al., 2015)。

※ Grapevine fleck complex は grapevine fleck 病、grapevine asteroid mosaic 病、grapevine rupestris necrosis 病、grapevine rupestris vein feathering 病及び grapevine red globe virus に感染した病害の総称である。

10. 診断、検出及び同定

GRGV は、特徴的な症状を現さないため、指標植物への接種による検出はできない (Martelli et al., 2002; Martelli, 2014; Sabanadzovic et al., 2017) が、GRGV に特異的な プライマーを用いた RT-PCR 法による検出 (Martelli et al., 2015; Ruiz-Garcia et al., 2018; Sabanadzovic et al., 2000) 及び塩基配列解析による検出 (Dixon, 2020; Ruiz-Garcia et al., 2018) が可能である。

11. 日本における輸入検疫措置

GRGV は、「まん延した場合に有用な植物に損害を与えるおそれがないことが確認されていない有害植物」であり、輸入検疫で発見された場合、廃棄又は返送となる(農林省, 1950a, b; 農林水産省, 2011)。

ブドウ属の苗木及び穂木については、国が定める隔離施設で1年間栽培して症状の観察や検定を行う隔離検疫を行う必要がある(農林省,1950a,1968)。なお、GRGVについては、立毛期間中に単独での症状は現れないため、RT-PCR 法による検定を行っている。

12. 諸外国における輸入検疫措置等

GRGV を対象に輸入禁止等の措置を要求している国の情報は確認できなかった。なお、ヨルダンでは、GRGV を検疫対象ウイルスに指定している(IPPC, 2013)。

Ⅱ 病害虫リスクアナリシスの結果

第1 開始(ステージ1)

1. 開始

Grapevine red globe virus(GRGV)に対するリスク評価を行い、植物検疫上の位置付けを明らかにするとともに、適切なリスク管理措置を検討するため、病害虫リスクアナリシスを実施する。

2. 対象となる有害動植物

Grapevine red globe virus (GRGV) を対象とする。

3. 対象となる経路

リスクアナリシス対象の病害虫の生物学的情報の「2.地理的分布」に示す「国又は地域」からの「3.感染記録のある植物及び日本国内での分布」に示す「感染記録のある植物」であって、「4.感染部位及びその症状」に示す「感染部位」を含む植物を対象とする。

4. 対象となる地域

日本全域を対象とする。

5. 開始の結論

GRGV を開始点とし、その発生記録のある地域から輸入される植物を経路とした日本全域を対象とする病害虫リスクアナリシスを開始する。

第2 病害虫リスク評価(ステージ2)

1. 有害動植物の類別

ステージ1で特定された有害動植物について、国内における発生及び公的防除の有無、定着及びまん延の潜在性並びに経済的影響を及ぼす潜在性について調査し、植物検疫措置に関する国際基準 No.11「検疫有害動植物に関する病害虫リスクアナリシス」(FAO, 2017)に記載する検疫有害動植物の判断基準を満たしているかどうかを検討する。なお、以下の(1)から(3)の評価項目において、検疫有害動植物の判断基準を満たしていないことが判明した時点で評価を中止できるものとする。

(1) 有害動植物の国内での発生の有無

国内で流通しているブドウ苗木から GRGV が検出されたとの報告がある (Yamamoto et al., 2022; 山本ら, 2023) が、国内で発生しているとの情報はない。

(2) 定着及びまん延の潜在性

GRGV の感染記録があるブドウ属は 47 都道府県で栽培されていることから、GRGV が国内にまん延する潜在性があると判断する。

(3) 経済的影響を及ぼす潜在性

GRGV は、他のウイルスと複合感染している植物から検出された事例が多いが、ほとんどのブドウ品種に対して感染しても症状を示さないことが知られている。発生国において、単独・複合感染のいずれの場合も樹勢の低下、収量への影響等の明確な被害に GRGV が関与したとの報告はない。

よって、我が国においても経済的影響は無視できると判断する。

(4) 評価にあたっての不確実性 特にない。

(5) 有害動植物の類別の結論

GRGV は、国内流通するブドウ苗木での検出報告があるが、国内に発生しているとする情報はない。しかし、発生国において、GRGV は樹勢の低下、収量の低下等の被害の報告がないことから、我が国においても GRGV が及ぼす経済的影響は無視できると考えられる。

したがって、GRGV に対するリスクアナリシスを中止する。

2. Grapevine red globe virus の病害虫リスク評価の結論

GRGV は、経済的影響を無視できることから検疫有害動植物に該当しないと結論づけた。

よって、GRGV に対する輸入植物検疫措置も必要としないと判断した。

Grapevine red globe virus の発生記録のある国等の情報

国又は地域	ステータス	根拠文献	備考
アジア			
中華人民共和国	発生	Fan et al., 2016	
日本	_	Yamamoto et al.,2022; 山本ら, 2023	国内で流通す るブドウ苗木 からの検出記 録のみ
中東			
イラン	発生	EPPO, 2023; Zarghani et al., 2021	
欧州			
アルバニア	発生	Sabanadzovic et al., 2017	
イタリア	発生	Martelli et al., 2015; Sabanadzovic et al., 2000	
英国	発生	Dixon et al., 2022; EPPO, 2023	
ギリシャ	発生	Pantaleo et al., 2010; Sabanadzovic et al., 2017	
クロアチア	発生	Vončina et al., 2017	
スイス	発生	Reynard, 2015	
スペイン	発生	Cretazzo et al., 2016	
スロベニア	発生	EPPO, 2023; Miljanić et al.,2022	
ドイツ	発生	Ruiz-Garcia et al.,2018	
ハンガリー	発生	Czotter et al., 2018; EPPO, 2023	
フランス	発生	Beuve et al., 2015	
ポルトガル	発生	Candresse et al., 2022; EPPO, 2023	
ロシア	発生	EPPO, 2023; Shvets et al., 2022	
北米			
アメリカ合衆国	発生	Martelli et al., 2015	
中南米			
ブラジル	発生	Basso et al., 2017	
大洋州			
オーストラリア	発生	EPPO, 2023; Wu et al., 2023	

Grapevine red globe virus の感染記録のある植物の情報

科名 学名	兴 夕	シノニム	和名		± Д	+B+hn → ±+	備考
	子右 		属名	種名	英名	根拠文献	1佣 右
ブドウ科	Vitis spp.		ブドウ属			Martelli et al., 2002,	
(Vitaceae)						2014	
ブドウ科	Vitis flexuosa		ブドウ属	サンカクヅル		EPPO, 2023	
(Vitaceae)							
ブドウ科	Vitis vinifera		ブドウ属	ヨーロッパブ	grape	EPPO, 2023	
(Vitaceae)				ドウ			

引用文献

- Basso, M. F., T. V. M. Fajardo, and P. Saldarelli (2017) Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management. Revista Brasileira de Fruticultura 39: 1-22.
- Beuve, M., T. Candresse, M. Tannieres, and O. Lemaire (2015) First report of Grapevine redglobe virus (GRGV) in grapevine in France. Plant Disease 99:422.
- Candresse T., C. Faure, and A. Marais (2023) First Report of Grapevine Red Globe Virus (GRGV) and Grapevine Rupestris Vein Feathering Virus (GRVFV) Infecting Grapevine (Vitis vinifera) in Portugal. Plant Disease 107: 974. (online), available from https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-06-22-1326-PDN, (accessed 2023-12-26).
- Cretazzo, E., C. V. Padilla, and L. Velasco (2016) First report of Grapevine Red Globe Virus in grapevine in Spain. Plant Disease 101:264-265.
- Cretazzo, E., and L. Velasco (2017) High-throughput sequencing allowed the copmpletion of the genome of grapevine Red Globe virus and revealed recurring co-infection with other tymoviruses in grapevine. Plant Pathology 66: 1202-1213.
- Czotter N., J. Molnar, E. Szabó, E. Demian, L. Kontra, I. Baksa, G. Szittya, L. Kocsis, T. Deak, G. Bisztray, G. E. Tusnady, J. Burgyan and E. Varallyay (2018) NGS of Virus-Derived Small RNAs as a Diagnostic Method Used to Determine Viromes of Hungarian Vineyards. Frontiers in Microbiology 9: 122 (online), available from < https://www.frontiersin.org/articles/10.3389/fmicb.2018.00122/full>, (accessed 2023-12-26).
- Dixon, M., A. Fowkes, C. Hogan, I. Adams, S. McGreig, H. Pufal, R. ward, V. Harju, A. Skelton and A. Fox (2022) First report of *Grapevine red globe virus* in grapevine in the United Kingdom. New Disease Reports 46. (online), available fromfromhttps://doi.org/10.1002/ndr2.12118>, (accessed 2024-1-31).
- EPPO (2023) Grapevine red globe virus. EPPO Global Database. (online), available from https://gd.eppo.int/taxon/GRGV00, (accessed 2023-10-04)
- Fan, X. D., Y. F. Dong, Z. P. Zhang, F. Ren, G. J. Hu, Z. N. Li, and J Zhou (2016) First report of Grapevine red globe virus (GRGV) in Grapevine in China. Plant Disease 100:2340.
- FAO (2017) International Standard for Phytosanitary Measures 11 (ISPM 11), Pest risk analysis for quarantine pests, International Plant Protection Convention (IPPC), Food and Agriculture Organization of the United Nations (FAO).
- ICTV (2011) ICTV 9th Report Tymoviridae. (online), available from https://ictv.global/report_9th/RNApos/Tymoviridae, (accessed 2023-10-04).
- IPPC (2013) Lists of quarantine organisms 2013 (online), available from https://www.ippc.int/en/countries/jordan/reportingobligation/2013/07/lists-of-quarantine-organisms-2013-/, (accessed 2024-01-30).
- Martelli, G. P., S. Sabanadzovic, N. Abou Ghanem-Sabanadzovic, and P. Saldarelli (2002) *Maculavirus*, a new genus of plant viruses. Archives of Virology 147: 1847-1853.
- Martelli, G. P. (2014) Fleck Complex. In: Directory of Virus and Virus-like Diseases of The Grapevine and Their Agents. Journal of Plant Pathology 96 (1S): 97-102.
- Martelli, G. P., A. Rowhani, and S. Sabanadzovic (2015) The Fleck Complex. In: Compendium of Grape Diseases, Disorders, and Pests, second ed. Wilcox, W. F., W. D. Gubler, and J. K. Uyemoto (eds). APS Press, Minnesota, U. S. A. pp.115-116.
- Miljanić V., J. Jakše, U. Kunej, D. Rusjan, A. Škvarč, and N. Štajner (2022) First Report of Grapevine Red Globe Virus, Grapevine Rupestris Vein Feathering Virus, and Grapevine Syrah Virus-1 Infecting Grapevine in Slovenia. Plant disease 106: 2538 (online), available from https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-05-21-1069-PDN, (accessed 2023-12-26).

- 日本植物病理学会 (2024) 日本植物病名目録(2024年8月版). (online), available fromfrom<a href="
- 農林省 (1950a) 植物防疫法 (昭和 25 年法律第 151 号).
- 農林省 (1950b) 植物防疫法施行規則 (昭和 25 年農林省令第 73 号).
- 農林省 (1968) 隔離栽培運用基準 (昭和 43 年 5 月 20 日付け 43 農政 B 第 916 号農政局長 通達).
- 農林水産省 (2011) 植物防疫法施行規則別表一の第一の二の項の農林水産大臣が指定する 有害動物及び同表の第二の二の項の農林水産大臣が指定する有害植物 (平成 23 年農 林水産省告示第 542 号).
- Pantaleo, V., P. Saldarelli, L. Miozzi, A. Giampetruzzi, A. Gisel, S. Moxon, T. Dalmay, G. Bisztray, and J. Burgyan (2010) Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology 408: 49-56.
- Raynard, J. S. (2015) Survey of emerging viruses in Switzerland. Proceedings of the 18th Congress of ICVG. pp.223-224.
- Ruiz-Garcia, A. B., S. Nourinejhad Zarghani, A. Okic, A. Olmos, and T. Wetzel (2018) First report of Grapevine Red Globe Virus in grapevine in Germany. Plant Disease 102: 1675.
- Sabanadzovic, S., N. Abou-Ghanem, M. A. Castellano, M. Digiaro, and G. P. Martelli (2000) Grapevine fleck virus-like viruses in *Vitis*. Archives of Virology 145: 553-565.
- Sabanadzovic, S., N. Abou-Ghanem-Sabanadzovic, and G. P. Martelli (2017) Grapevine fleck and similar viruses. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. Meng, B., G. P. Martelli, D. A. Golino, and M. Fuchs (eds). Springer International Publishing pp. 331-349.
- Shvets, D., E. Porotikova, K. Sandomirsky and S. Vinogradova (2022) Virome of Grapevine Germplasm from the Anapa Ampelographic Collection (Russia). Viruses 14: 1314 (online), available from https://www.mdpi.com/1999-4915/14/6/1314, (accessed 2023-12-26).
- 田中寛康 (1998) ブドウウイルス病. 日本植物病害大事典(岸國平 編). 全国農村教育協会 東京 日本: 842-843.
- Vončina, D., M. Al Rwahnih, A. Rowhani, M. Gouran, and R. P. P. Almeida (2017) Viral Diversity in Autochthonous Croatian Grapevine Cultivars. Plant Disease 101: 1230-1235.
- Wu, Q., N. Habili, S. D. Tyerman, A. Rinaldo, A. Little and F. E. Constable (2023) First detection of five previously unreported grapevine viruses in Australia. Australasian Plant Disease Note 18: 27 (online), available from https://doi.org/10.1007/s13314-023-00511-4, (accessed 2023-12-26).
- Yamamoto, T., H. Sato, T. Suzuki, A. Miyazaki, Y. Kitazawa, K. Maejima, S. Namba and Y. Yamaji (2022) Complete Genome Sequences of Grapevine Red Globe Virus in Japan. Microbiology Resource Announcements 11: mra.00434-22 (online), available from https://journals.asm.org/doi/full/10.1128/mra.00434-22, (accessed 2024-01-22).
- 山本桐也・佐藤遼・鈴木拓海・宮﨑彰雄・北沢優悟・前島健作・難波成任・山次康幸 (2023) 国内のブドウ苗木から検出された grapevine red globe virus の全ゲノム解析. 日本植物病理学会報 89: 169.
- Zarghani, S. N, M. Khalili, A. Dizadji and T. Wetzel (2021) First report of grapevine red globe virus in grapevine in Iran. Journal of Plant Pathology 103:66.