

日本産米の食味

- 1. 日本産米(水稲品種)の食味
 - 2. 外国産米の食味評価
- 3. 外国産米と比較して
- 4. 日本産米の食味を決定する理化学的特性

米の食味 (Palatability)とは

米の食味とは炊いたご飯を人間が五感を駆使しな がら食べておいしさを判断することである。

視覚 白さ, 艶, 粒形

嗅覚 風味(新米)

聴覚 噛むとき無音

味覚 甘み、うま味 触覚 粘り, 硬さ

上位作付け銘柄品種の7割近くがコシヒカリの遺伝的背景と極めて近い品種(近縁係数0.5以上)で

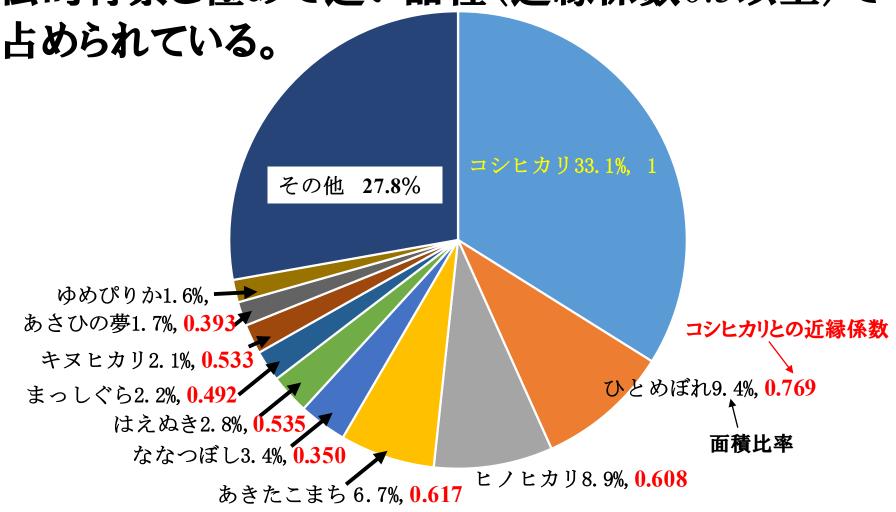
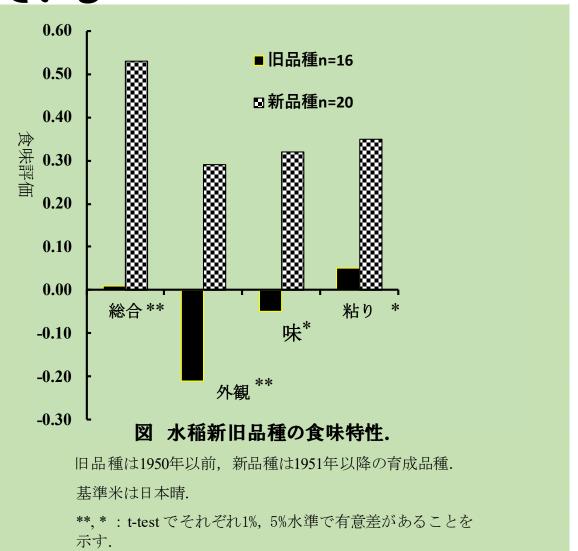


図 2019産上位作付け水稲品種の栽培面積比率と近縁係数

栽培面積比率は農水省農林水産統計より算出する.

日本でのおいしいお米とは?

外観:白く,艶(光沢)がある。


味:噛むと、ほんのり甘く、うま味がある。

粘り:ある程度の粘りがある。

硬さ:やわらかさがある。

香り:新米の香りがある。

水稲新品種は外観(白さが優れ光沢がある),味が優れており,粘りも強いことから総合評価は明らかに優れている

わが国の銘柄品種の食味は,極めて優れている。

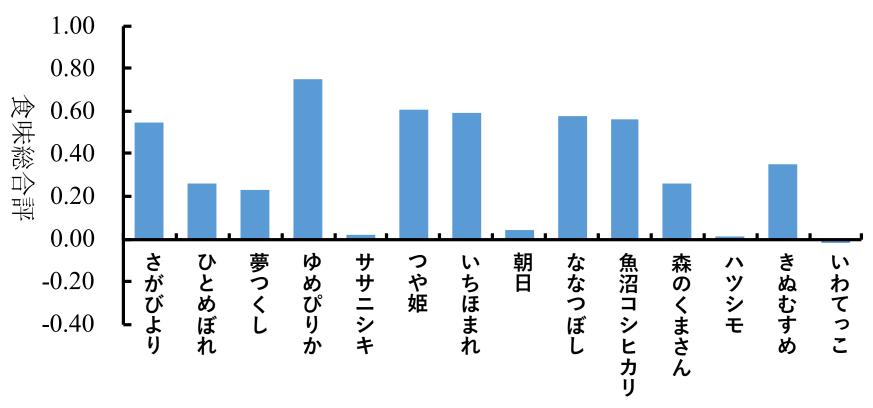
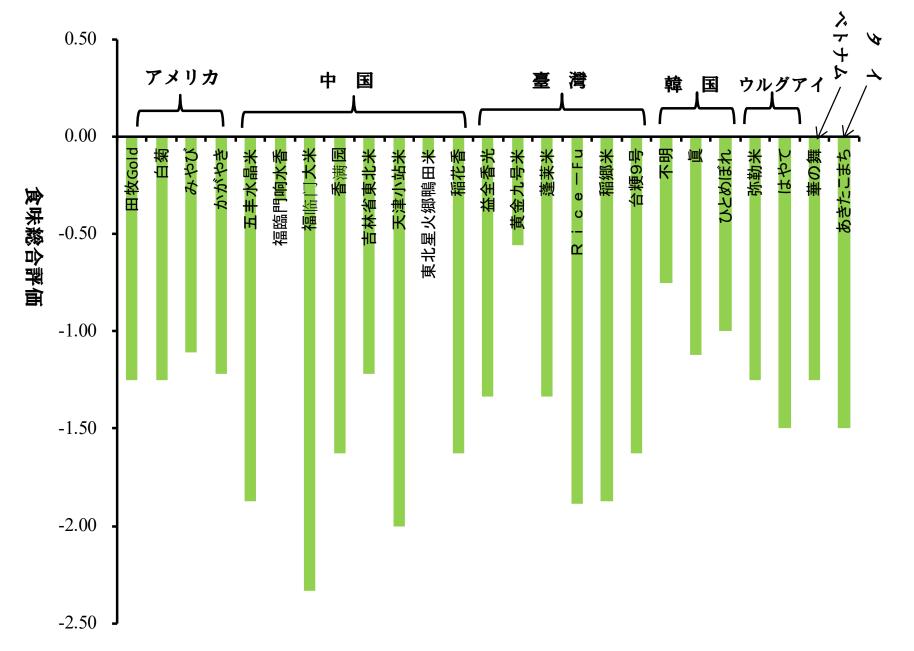



図 銘柄品種の食味評価(2019年産)

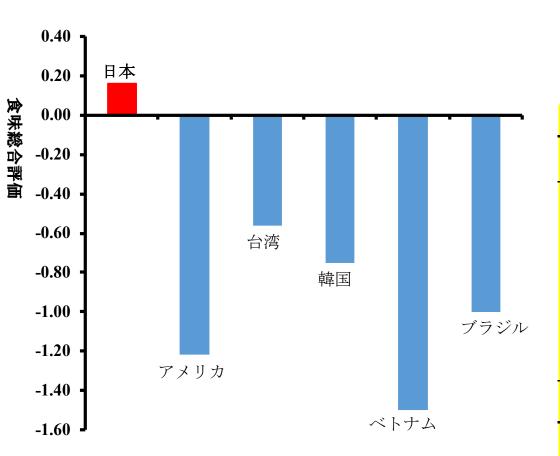
基準米:秋田県産あきたこまち

図 世界におけるジャポニカ米品種の食味評価.

基準米:秋田農試産あきたこまち

外観の光沢不良や粘りが弱く、最大の要因は日本人には好まれない香り(新米の香りとは異なる)を有する。

表 食味総合評価に対する各食味評価項目の標準偏回帰係数.


	外観	香り	味	粘り	硬さ
R=0.785***	0 11008	0.466	0 1 = = NS	0.00718	0 1 41 08
df31, n=32	0.119 ^{ns}	-0.400	0.155 ^{ns}	0.085	-0.141

***, †: それぞれ0.1%, 10%水準で有意性があることを示す.

食味:海外産コシヒカリは外観の光沢および香りが不良で、粘りが弱いため、総合評価はいずれも劣る。

精米の理化学的特性:アミロース含有率は低いものの,タンパク質含有率が高い傾向にあり、水分含有率が低い。

表海外產	をコシヒカ	リ精米の理化は	学的特性
生産国	水分 (%)	タンパク質 含有率(%)	アミロース 含有率(%)
アメリカ	13.5	6.4	17.8
臺灣	13.8	7.9	14.1
韓国	14.6	6.6	15.8
ベトナム	13.5	8.4	13.8
ブラジル	13.4	7.2	17.8
日本	15.2	6.5	19.1
食味との 相関係数	0.850*	-0.434	0.469

*:5%水準で有意.

図 生産国別コシヒカリの食味評価 (2013年)

基準米: 秋田農試産あきたこまち

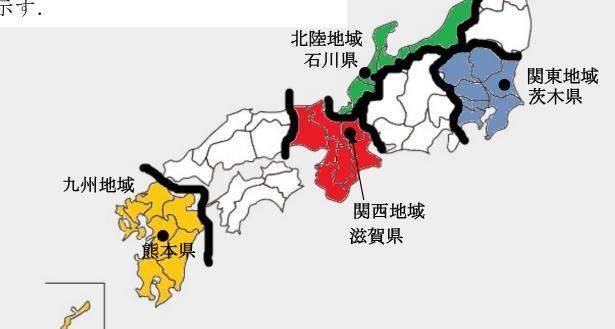
Table 2. Average agronomic performance of M-211 in all locations of the UCCE Statewide Test in 2020

Location/ County	Seedling Vigor (1-5)	Days to Heading	Lodging (%)	Plant Height (cm)	Moisture Content at Harvest	Grain Yield (lb/acre)	%Y Advanta 211	ge of M-
	(1-5)			(CIII)	(%)	(10/acre)	M-209	M-206
Butte	4.8	93	1	106	23	10,570	2%	10%
Yolo	4.8	96	3	107	20	10,110	1%	6%
South Butte	4.8	95	33	103	22	9,910	3%	4%
Biggs	4.9	84	0	102	16	9,980	5%	14%
Sutter	4.8	88	0	90	18	9,430	5%	1%
Colusa	4.8	93	94	99	16	8,760	-3%	-1%
Glenn	4.8	96	45	96	17	8,660	-9%	-9%
Yuba	4.8	100	76	104	18	8,580	12%	8%
Average	4.8	93	31	101	19	9,500	2%	4%

Rice Experiment Station, 2020 Rice Breeding Progress Report.

産米の食味の良否に対しては、玄米水分とテク

スチャー特性が大きく関与する。


表 食味総合評価に対する玄米水分,タンパク質含有率,アミロース含有率,H/-H比の標準偏回帰係数.

玄米水分	タンパク質 含 有 率	アミロース 含 有 率	H/-H比
0.596**	-0.045 ^{ns}	-0.010 ^{ns}	-0.356*

n=33.. 2014年産コシヒカリ.

**, *:1%, 5%水準で有意差があることを示す.

ns:有意性がないことを示す.

玄米水分と食味との間には、玄米水分14.7%付近を頂点 とした2次曲線の関係が認められ、玄米水分が13.5%以下に なると食味は劣る。

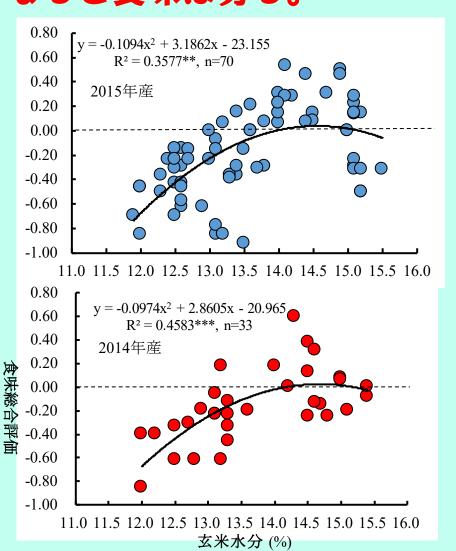


図 玄米水分と食味総合評価との関係(コシヒカリ) 基準米:福岡県産ヒノヒカリ.

表 玄米水分2水準の農業法人3社における食味に関する分散分析

生産年	要因	自由度	平均平方	F値
	全体	27		
	農業生産法人(L)	2	0.343	7.98**
2014	玄米水分 (G)	1	0.511	11.90**
	$L \times G$	2	0.096	2.24 ^{ns}
	誤差変動	22	0.042	
	全 体	28		
	農業生産法人(L)	2	0.126	2.16 ^{ns}
2015	玄米水分 (G)	1	0.608	10.46**
	$L \times G$	2	0.204	3.50*
	誤差変動	23	0.058	

**, *: それぞれ1%, 5%水準で有意差あり.

ns:有意差なし. 品種:コシヒカリ.

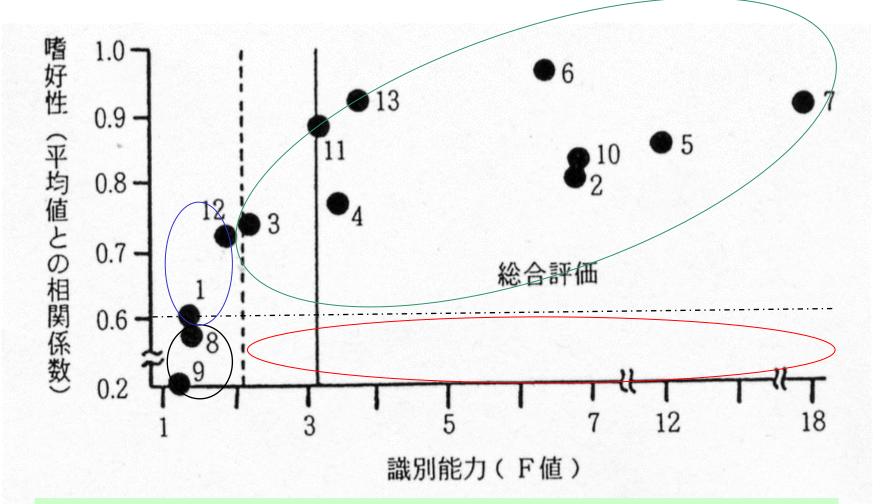
食味に及ぼす影響は産地 の違いよりも玄米水分の違 いによる方が大きい!!

ま と め 日本産米の食味

外国産米に比べて

わが国の銘柄品種の食味は、優れている。

食味官能:外観の光沢,味および香りが良好で,粘りが強い。


理化学的特性: タンパク 質含有率が低く, 水分含有 率が高く, テクスチャー特性 (H/-H)が優れる。

最大の優位性!!

- 1. 日本人パネルの官能評価能力
- 2. 中国人およびアメリカ人パネルと比較して

識別能力はあるが、嗜好性が違うパネリストがいない!

パネリストの識別能力と嗜好性との関係

縦線の点線は5%危険率のF値,横の点線は有意水準5%の相関係数.

日本人の食味評価の嗜好に対しては, 味と粘りが強く関与している!

表 品種の食味レベルが異なる場合の食味総合評価に対する外 観,味,粘り,硬さの標準偏回帰係数.

品 種	外観	味	粘り	硬さ
良食味品種群 n=9	0.189	0.436	0.390	0.005
食味混在品種群 n=7	0.145	0.549	0.386	0.042

良食味品種群:コシヒカリと同程度の食味レベルを有する品種群.

食味混在品種群:食味レベルが高い品種から中庸な品種、劣る品種までが 混在した品種群

コシヒカリと血縁関係が弱い品種の場合には,世代および地域間で嗜好性に違いが認められる

世代間

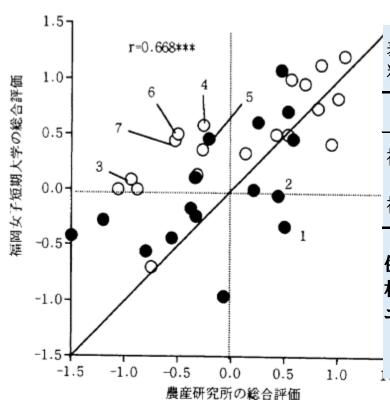
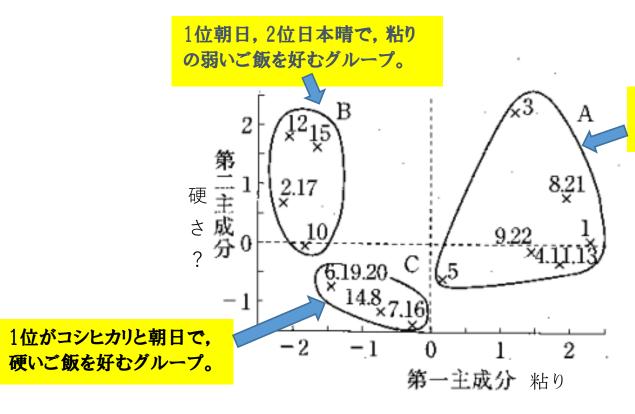


表 パネルが異なる場合の食味総合評価に対する外観,味, 粘りの標準偏回帰係数

パネル	外観	味	粘り
福岡県農業総合試験場	0.15 ^{ns}	0.44*	0.48*
福岡女子短期大学	-0.40 ^{ns}	1.34*	-0.01 ^{ns}

n=7.

供試品種(コシヒカリとの近縁係数): 亀の尾(0.125), 雄町(0.000), 農林22号(0.531), アキヒカリ(0.179), 日本晴(0.246), ホウヨク(0.000), ニシホマレ(0.124).


*:5%水準で有意差あり、ns:有意性がないことを示す.

第3図 総合評価における農産研究所パネルと福岡女子短期大 学パネルとの関係 (1996年).

記号は第1図に同じ.

1: 亀の尾, 2: 雄町, 3: アキヒカリ, 4: 日本晴, 5: 農林22号, 6: ホウヨク, 7: ニシホマレ

地域間

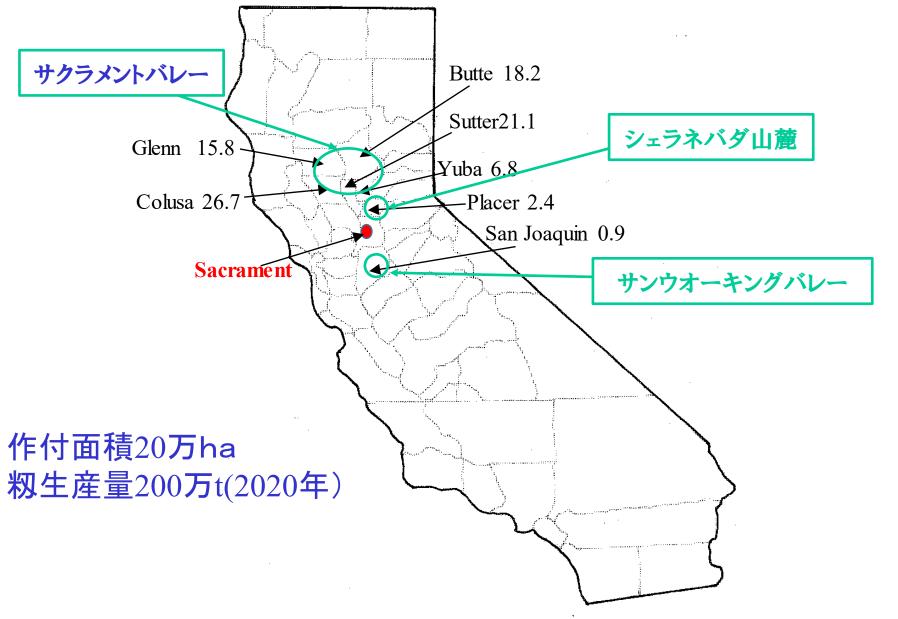

食味評価順位は1位コシヒカリで, 粘りの強いご飯を好むグループ。

図 パネリストの米飯の嗜好順位による主成分分析 (高野, 1994)

作図は原図から著者が行う.

供試品種(コシヒカリとの近縁係数):コシヒカリ(1.000), 朝日(0.125), 日本晴(0.246), ササニシキ(0.375).

図 カリフォルニア州の稲作地帯

資料: USDA, National Agricultural Statistics Serviceより著者が作図する. 数字は収穫面積比率(2019年).

アメリカ人は味が優れ,粘りが弱い米を,日本人は粘りが強い米を好む。

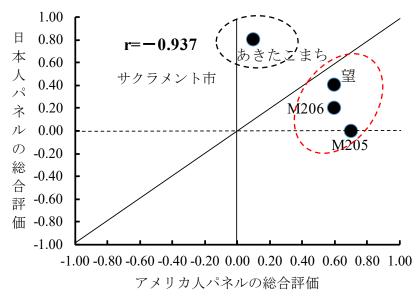


図 日米パネル間における食味総合評価の関係 基準米:牡丹.

表	食味総合評価に対する外観,	味,	粘り,	硬さの
	標準偏回帰係数.			

パネル	外観	味	粘り	硬さ
日本人	0.059	0.144	0.925	0.087
アメリカ人	0.249	1.224	-0.649	-0.011

n=8.

作付面積 3,000万ha(2020年) 籾生産量 2億1,200万t(2019年) ジャポニカ米 インディカ米 黑竜江 ジャポニカ米と インディカ米が混在 新疆ウイグル自治区 。李夏回族自治区 香海 チベット自治区 29]1 米作付け面積ベスト3 1位 黒竜江省 2位 湖南省 3位 江西省 マカオ

図 中国におけるジャポニカ米とインディカ米の分布図.

出典:原図 (旅行のとも, Zen Tech) に著者が作図.

中国人は外観が優れ、粘りが強く、硬い米を、日本人は外観が優れ、粘りが強い米を好む。

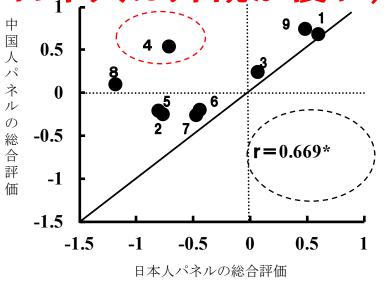


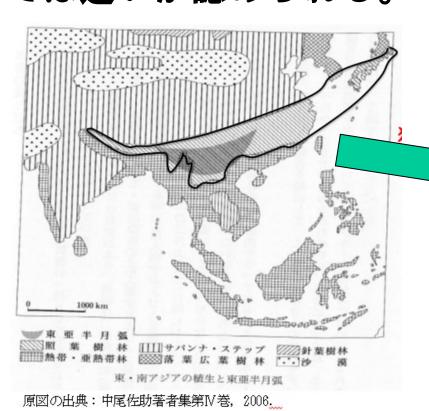
図 日中パネル間における食味総合評価の関係 (崔ら 20011)

1:津川1号, 2:No.47, 3:DB16, 4:DB14, 5:津原47号, 6:bA/dr06, 7:bA/dr17, 8:津原D1, 9:E28. 基進米:津原45号.

*:5%水準で有意差あり.

表 食味総合評価に対する外観,味,粘り,硬さの 標準偏回帰係数

パネル	外観	味	粘り	硬さ
日本人	0.345	0.116	0.567	-0.040
中国人	0.323	0.151	0.528	0.623
n=9.			 (崔ら	, 2011)


まとめ

日本人の米の食味嗜好性

味と粘りが強く 関与している。

世代および地域間による嗜好性の違いは、コシヒカリ系の品種では認められないが、コシヒカリ系でない品種では違いが認められる。

100年先も粘りがあるご飯をおいしいと評価する日本人の 嗜好は変化しない。

照葉樹林文化

独特な味覚の食体系

粘りの強いデンプン食を 好むという嗜好性

