平成 28 年度戦略的監視·診断体制整備推進事業 野生動物監視体制整備事業報告書

平成 29 年 3 月 16 日

(国)農業·食品産業技術総合研究機構動物衛生研究所

Ⅰ 事業の目的と内容

1. 目的

家畜における伝染性疾病の発生・まん延を防止するためには、家畜群への伝染性疾病の侵入を監視するとともに、家畜群に疾病が侵入した場合に早期に摘発できる検査体制を整備することが重要である。家畜群への疾病の侵入の監視においては、野生動物が家畜への疾病の侵入ルートの一つとして指摘されていること、わが国家畜群では清浄化を達成したと考えられる疾病でも、野生動物内で維持されている可能性が指摘される事例があること等から、野生動物における家畜の伝染性疾病の浸潤状況を知る必要がある。また、家畜群における伝染性疾病の清浄化を維持・推進するためには、野生動物における発生状況を継続的に監視・把握することも重要である。このため、本事業では、いくつかの野生動物種を対象に、重要と考えられる家畜伝染病の浸潤状況を調査した。

2. 内容

捕獲された野生動物等から検査材料を採取し、家畜の伝染性疾病の感染状況を検査するとともに、得られた結果から、野生動物での疾病の感染状況を評価する。本事業ではシカ、イノシシ及び野鳥(水きん類及びハト)を対象に下記の疾病を対象に調査を行った。

(1) シカ(血液及び糞便)

ア、結核病

イ、ヨーネ病

ウ、ブルセラ病

(2) イノシシ(血液)

ア、ブルセラ病

(3) 野鳥(水きん類及びハト)(糞便)

ア、ニューカッスル病 (ND)

Ⅱ シカの調査について

1. 方法

(1)検査材料の収集

2年間で沖縄県を除くすべての都道府県を調査できるように、本年度は 25 都道府県を選定した。 各県に 25 検体を上限とし収集を依頼した。ただし、北海道においては、シカの捕獲数(環境省データ)が多いこと、対象面積が広いことから、道内を振興局単位で分割し、シカの捕獲数が多く畜産業が盛んな振興局の管内からより多くの検体を集めることとした。昨年度と同様、大日本猟友会を通じて各県の猟友会に依頼し、8 月下旬以降に捕殺されたシカについて、検査材料(血液及び糞便)を採取し、冷蔵便にて収集した。検査材料の収集にあたっては、昨年度と同様の調査票を用いて、捕獲日時、場所、捕獲方法、シカの推定年齢及び推定体重等についての情報を収集した。

(2) 検査の実施

送付された材料のうち血液については、動物衛生研究部門(動衛研)で血清分離後、検査の実施まで-20℃で冷凍保存した。また、糞便については-80℃で保存した。その後、結核病及びヨーネ病の糞

便中抗原の検出並びにブルセラ病の血中抗体の検出を目的に、動衛研においてそれぞれ次の方法で検査を行った。

ア、結核病

結核病に対する抗原検査は、糞便を材料とした培養検査を行い、分離コロニーについて遺伝子検査により結核菌群の同定を行った。

イ、ヨーネ病

ョーネ病に対する抗原検査は、遺伝子検出検査及び培養検査により行った。遺伝子検出検査においては、牛ョーネ病の抗原検査法に準じて、シカ糞便から DNA 抽出キット「ヨーネ・ピュアスピン」を用いて DNA を抽出し、リアルタイム PCR により遺伝子の検出を行った(リアルタイム PCR 試薬は「GeneAce RL qPCR Mix」を使用。ターゲット遺伝子は IS 900)。培養検査は、遺伝子検出検査(スクリーニング)において陽性となった検体について行った。

ウ、ブルセラ病

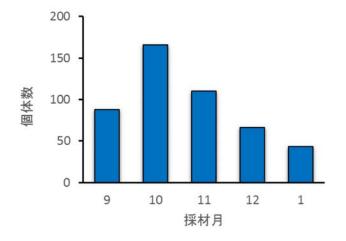
ブルセラ病に対する抗体検査は、牛ブルセラ病の抗体検査に準じて、急速凝集反応試験によりスクリーニングを行い、スクリーニング陽性検体については補体結合反応 (CF) 試験により確認を行った。なお、スクリーニングにおいては、抗原:血清=1:1で凝集が±判定以上を示した検体について、抗原:血清=2:1で再度試験を行い、凝集を示す検体をスクリーニング陽性とした。

(3) データの解析

調査票に基づくシカの推定体重等の情報について、適切な統計手法を用いて解析した。捕獲地点の位置データは、調査票に緯度・経度が小数点以下3桁以上まで記載されているものについては記載値をそのまま、ハンターマップのメッシュ番号が記載された検体については番号に該当するメッシュの重心座標の緯度・経度に変換した。位置情報が住所としてのみに記載されている検体については、ジオコーディングソフトを用いて緯度・経度情報に変換した。この際、「・・・山中」等記述があいまいであったために市町村レベルまでしか特定できなかった検体については、当該市町村の重心座標の緯度・経度をあてはめた。統計解析にはR、採材地点に関する地理情報解析にはQGISを用いた。

2. 結果

(1) 検査されたシカの概要

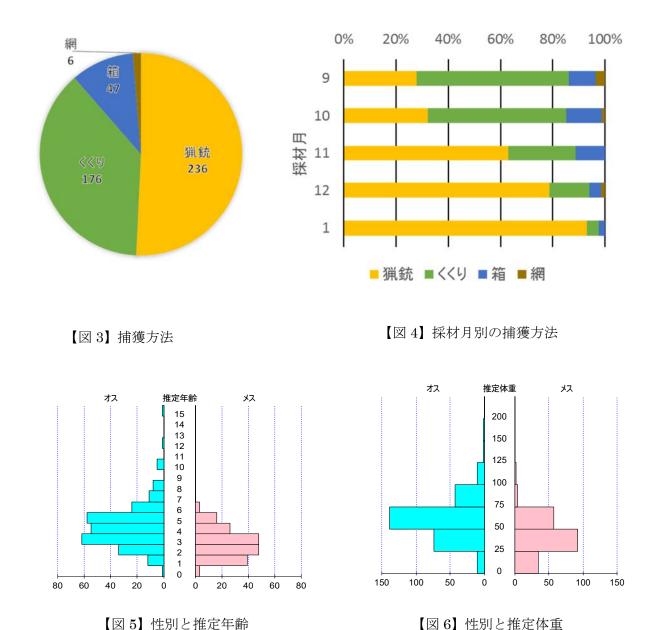

473 頭のシカから採材を行い、そのうち、糞便又は血液検体の得られなかったものを除くと、結核病及びヨーネ病の検査に用いた検査材料(糞便)は 469 検体、ブルセラ病の検査に用いた検査材料(血液)は、468 検体であった。県別の採材頭数及び検体数の内訳を表1に示した。

検査材料が採材された月ごとに採材頭数を算出したところ、検査の依頼が毎年度後半であることと、シカの狩猟期間が 10月又は 11月以降(地域によって異なる)であることから、約4割が10月に採材されていた【図2】。9月に採取された検体は、有害駆除など狩猟以外の名目で捕獲された個体もと考えられた。捕獲から検体の採取までの日数については、検体のうちほぼ全て(471 検体)が、1日以内であった。 採材されたシカの性別は、278頭(58.8%)がオス、190頭(40.2%)がメス、5頭は不明であった。捕獲方法の内訳は、猟銃が約

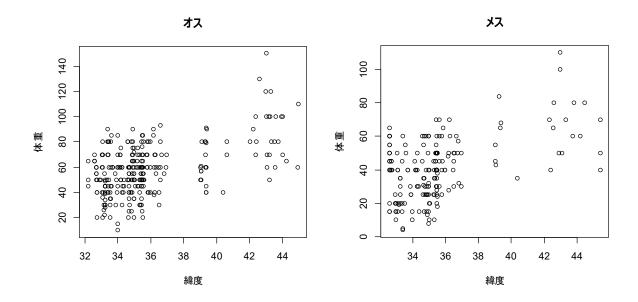
5割、くくりわなが約4割、箱わなが約1割であっ

た【図 3】。捕獲方法は、猟期との関係から捕獲された月によって異なり、9月と10月には罠による捕獲が多く、11月以降は猟銃による捕獲が増加した【図 4】。採材された月や捕獲方法について、シカの性別による違いは認められなかった。

捕獲されたシカの推定年齢を雌雄で比較したところ、オスの平均が 4.20 歳、メスの平均が 2.65 歳とメスで有意に低かった(Wilcox test による P 値: <0.001)【図 5】。推定体重については、オスの平均が 58.1 kg、メスの平均が 40.4 kgとメスで有意に低かった(Wilcox test による P 値: <0.001)【図 5、図 6】。ただし、捕獲されたシカ

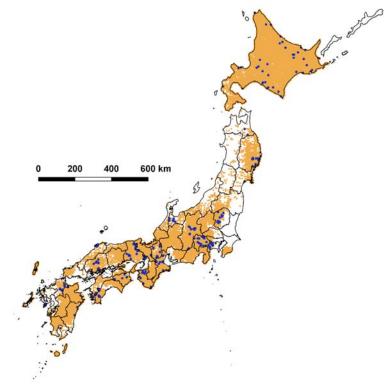


【図2】検体の採材月

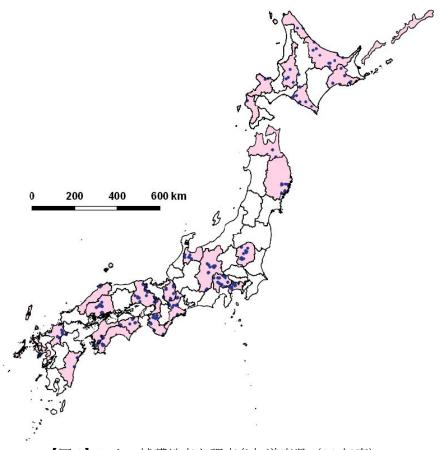

【表 1】採材頭数及び検体数の概要

[五1] 旅行契数人 0 次件数 0 例文							
県名	採材頭数	糞便検体数	血液検体数				
北海道	43	43	42				
青森県	4	4	4				
岩手県	25	25	25				
栃木県	17	13	17				
神奈川県	24	24	24				
富山県	6	6	6				
山梨県	25	25	25				
長野県	25	25	24				
三重県	25	25	25				
滋賀県	20	20	20				
大阪府	25	25	25				
兵庫県	25	25	25				
和歌山県	23	23	23				
島根県	25	25	25				
広島県	25	25	25				
徳島県	16	16	15				
愛媛県	25	25	25				
高知県	25	25	23				
福岡県	20	20	20				
長崎県	25	25	25				
宮崎県	25	25	25				
合計	473	469	468				

の年齢及び体重は、多くの場合捕獲者の目測による推定値であるため必ずしも正確な値とは言えないことに注意が必要である。



恒温動物は寒冷地域に生息する個体ほど体重が大きくなると考えられている(ベルクマンの法則) ことから、シカが捕獲された地点の緯度と推定体重の関係を検討した。推定体重を従属変数、捕獲地 点の緯度、性別、捕獲方法、捕獲月を説明変数とする多変量モデルで検討したところ、緯度と性別が 有意であることが示され、捕獲されたシカの体重は緯度の高い場所で捕獲された個体ほど増大する と考えられた【図7】。



【図7】雌雄別の捕獲地点緯度と推定体重

調査票から得られたシカの捕獲地点をプロットした地図を図8及び図9に示した。図8では、環境省のデータに基づく、シカの国内生息地域と捕獲地との関係を示しており、全国のシカの生息地から幅広く採材されていることが分かる。図9では、今年度の調査対象地域と捕獲地点の関係を示している。今回、調査対象とした25都道府県のうち、山形県、福島県、東京都及び佐賀県の4都県では検体が収集されなかったため、実際に調査を行ったのは21道府県となっている。

【図8】シカの捕獲地点とシカの生息地域(26年度版) 5

【図9】シカの捕獲地点と調査参加道府県(28年度) *北海道は振興局別

(2) 結核病の検査結果

結核病については、培養検査中である。今後、分離できたコロニーについて遺伝子検査により結核 菌群の同定を行う。

(3) ヨーネ病の検査結果

ョーネ病については、遺伝子検査(スクリーニング)により、6 検体が陽性となった。今後、これらの検体について培養検査を行う。

(4) ブルセラ病の検査結果

ブルセラ病については、すべての検体について急速凝集反応陰性であった。

3. 考察

ブルセラ病の急速凝集反応ではすべての検体が陰性であった。よって、今回の結果からは、ブルセラ病が日本のシカに浸潤していると考えられる結果は得られなかった。

結核病及びヨーネ病については、引き続き検査を行っている。いずれの疾病についても、来年度に 引き続き残りの地域について調査を実施することとしている。

Ⅲ イノシシの調査について

1. 方法

(1) 検査材料の収集

平成 26 年度及び平成 27 年度に収集したイノシシ 1,016 頭の血清を検査材料とした。検査材料 (血液) は、大日本猟友会を通じて各県の猟友会に依頼し、捕殺されたイノシシから採取されたもので、冷蔵便にて動衛研に送付された材料について血清分離後、検査の実施まで-20℃で冷凍保存していたものである。

(2) 検査の実施

ア、ブルセラ病

ブルセラ病に対する抗体検査は、牛ブルセラ病の抗体検査に準じ、 急速凝集反応によりスクリーニングを行い、スクリーニング陽性検 体については補体結合反応 (CF) 試験により確認を行うこととした。 なお、スクリーニングにおいては、抗原:血清=1:1で凝集が±以 上を示した検体について、抗原:血清=2:1で再度試験を行い、凝 集を示す検体をスクリーニング陽性とすることとした。

2. 結果

ブルセラ病については、すべての検体について急速凝集反応陰性で あった【表 2】。

3. 考察

ブルセラ病の急速凝集反応ではすべての検体が陰性であった。よって、今回の結果からは、ブルセラ病が日本のイノシシに浸潤していると考えられる結果は得られなかった。

【表 2】ブルセラ病検査結果(イノシシ)

X 41 7	/ L / 7/19	11 本中人
県名	検体数	陽性数
栃木県	3	0
群馬県	45	0
新潟県	25	0
富山県	17	0
福井県	6	0
山梨県	24	0
長野県	16	0
岐阜県	38	0
静岡県	65	0
愛知県	24	0
三重県	76	0
滋賀県	20	0
京都府	16	0
兵庫県	20	0
奈良県	28	0
和歌山県	17	0
鳥取県	25	0
島根県	65	0
岡山県	69	0
広島県	33	0
山口県	25	0
徳島県	61	0
香川県	35	0
愛媛県	15	0
高知県	22	0
福岡県	19	0
佐賀県	23	0
長崎県	75	0
大分県	16	0
宮崎県	29	0
鹿児島県	36	0
沖縄県	28	0
合計	1,016	0

Ⅳ 野鳥(水きん類及びハト)の調査について

1. 計画

(1) 野鳥におけるニューカッスル病ウイルス (トリパラミクソウイルス1型) 保有状況の調査

ア、野鳥糞便からのニューカッスル病ウイルス分離

各都道府県家畜保健衛生所が中心となり、ニューカッスル病ウイルスの検査を目的とした採材を実施する。採材した糞便は動衛研に送付し、発育鶏卵を用いてニューカッスル病ウイルスを対象とした分離検査を実施する。5羽分の糞便を1本の試験管に採材し1検体とする。ハト糞便については原則的に年2回採材する(場所によっては採取状況や天候によって必ずしも採材できない場合もありうる)。水禽糞便については渡り鳥が飛来する10月以降2月まで2ないし3回実施する(別紙表1、2)。水禽糞便においても採取状況や天候によって必ずしも採材できない場合もありうる。

イ、分離ウイルスの同定および培養

発育鶏卵で分離されたウイルスを、標準診断法である抗ニューカッスル病ウイルス免疫血清を用いた鶏赤血球凝集抑制試験(HI)にてニューカッスル病ウイルスと同定する。ニューカッスル病ウイルスと同定された検体は、以下の性状解析に用いるため発育鶏卵を用いて継代培養を実施する。

(2) 分離されたニューカッスル病ウイルスの性状解析

ア、野鳥糞便からのニューカッスル病ウイルス分離

(1)で分離されたニューカッスル病ウイルスについて、本ウイルスの病原性に深く関与している とされる F 蛋白開裂部位の遺伝子解析を実施する。この遺伝子解析結果を既知のニューカッスル病 ウイルスやワクチン株と比較し、野鳥が保有するウイルスの遺伝学的特徴を明らかにする。

イ、分離ニューカッスル病ウイルスの病原性検定

(1)で分離されたニューカッスル病ウイルスについて、国際獣疫事務局(OIE)が定める病原性ニューカッスル病ウイルスに該当するか検証するため、国際基準に基づく病原性試験である1日齢ヒナ脳内接種試験(Intra Cerebral Pathogenicity Index:ICPI)を実施する。この病原性試験結果および上述の遺伝子解析結果から野鳥が保有するウイルスの疫学的特徴を明らかにする。

2. 成果

(1) 成果の内容

ア、ハト糞便からの分離状況

2016 年 7 月から 2017 年 3 月までの期間中、全国 16 県から 96 検体が送付された【表 3 】。これらの検体からウイルスは分離されなかった。

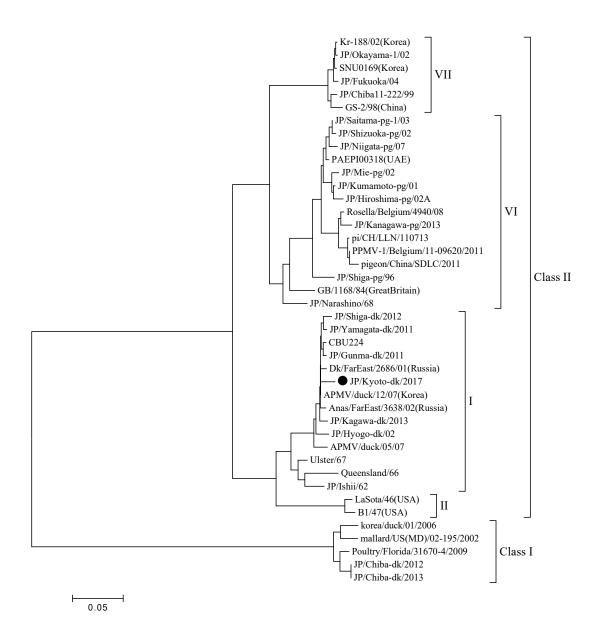
イ、水禽糞便からの分離状況

2016 年 10 月から 2017 年 3 月までの期間中、全国 18 県から 139 検体が送付された【表 4 】。これらのうち、2016 年 12 月 15 日に京都府で採材されたカモ類由来糞便から 1 株の血球凝集性ウイルスが分離され、NDV 抗原検出簡易キットで陽性であった。この検体は HI 試験により NDV と同定された。

この分離されたウイルスについて、NDV病原性検定の国際標準法である1日齢ヒナ脳内接種試験 (ICPI)を行った結果、その ICPI 指数は0.05であり、非病原性株(弱毒型)と判定された。また、F 蛋白開裂部位のアミノ酸配列(113番目から117番目)は KQGR-L で非病原性株(弱毒型)の配列であった。以上の遺伝学的性状と病原性検定の結果から、この株は非病原性株と判定された。

また F遺伝子を用いた分子系統解析の結果、 $Class\ II\ Genotype\ I$ の系統に属していた【図 10】。

(2) 成果の活用


今年度収集したサンプルから病原性 NDV は分離されなかった。しかし、海外では ND の発生が散発していることから、ウイルス侵入の可能性は否定できない。今後も継続的なサーベイランス及びワクチンを中心とした防疫対策が必要であることを示唆する。

【表3】野鳥におけるニューカッスル病ウイルス保有状況調査(ハト)

				採材時期					
都道府県名	2016.7	2016.9	2016.10	2016.11	2016.12	2017.1	2017.2	2017.3	計
茨城			3		3				6
栃木		3				3			6
群馬		3					3		6
埼玉			3			3			6
石川	3		3						6
福井		3				3			6
新潟		3					3		6
山梨					3			3	6
岐阜			3					3	6
静岡			3		3				6
大阪					3	3			6
和歌山				3			3		6
岡山			3				3		6
香川							3	3	6
福岡			3					3	6
佐賀					3		3		6
計	3	12	21	3	15	12	18	12	96

【表 4】野鳥におけるニューカッスル病ウイルス保有状況調査(水禽)

			採材時期				
都道府県名	2016.10	2016.11	2016.12	2017.1	2017.2	2017.3	計
岩手		3		3	3		9
山形	1	3					4
福島	3						3
茨城	3		3		3		9
栃木	3		3		3		9
千葉	6	4		2			12
福井	3	3		3			9
山梨		3					3
静岡		3	3	3			9
京都			3		3		6
大阪			3	3	3		9
奈良	3			3			6
和歌山			3		3		6
島根	3		3	3			9
山口			3	3		3	9
香川	3	3		3			9
福岡	3		3		3		9
宮﨑		3		3	3		9
計	31	25	27	29	24	3	139

【図 10】F 遺伝子を用いた分子系統樹

*今回分離された株は●で示した。わが国の最近の家禽から分離された病原性ウイルス株の多くは Class II Genotype VII、ハトから分離された病原性ウイルス株の多くは Class II Genotype VI に属する。主要なワクチン株(B1)は Class II Genotype II に属する。