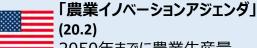
3. みどりの食料システム戦略

ゼロエミッション

どりの食料システム戦略(概要)


〜食料・農林水産業の生産力向上と持続性の両立をイノベーションで実現〜 Measures for achievement of Decarbonization and Resilience with Innovation (MeaDRI)

現状と今後の課題

- ○生産者の減少・高齢化、 地域コミュニティの衰退
- ○温暖化、大規模自然災害
- ○コロナを契機としたサプライ チェーン混乱、内食拡大
- ○SDGsや環境への対応強化
- ○国際ルールメーキングへの参画

「Farm to Fork戦略」(20.5) 2030年までに化学農薬の使 用及びリスクを50%減、有機 農業を25%に拡大

2050年までに農業生産量 40%増加と環境フットプリント 半減

農林水産業や地域の将来も 見据えた持続可能な 食料システムの構築が急務

持続可能な食料システムの構築に向け、「みどりの食料システム戦略」を策定し、 中長期的な観点から、調達、生産、加工・流通、消費の各段階の取組と カーボンニュートラル等の環境負荷軽減のイノベーションを推進

目指す姿と取組方向

2050年までに目指す姿

- > 農林水産業のCO2ゼロエミッション化の実現
- 低リスク農薬への転換、総合的な病害虫管理体系の確立・普及に加え、ネオニコチノイド系を含む従来の殺虫剤に代わる新規農薬等の開発により化学農薬の使用量(リスク換算)を50%低減
- ▶ 輸入原料や化石燃料を原料とした化学肥料の使用量を30%低減 _{革新的技術} ▶ 耕地面積に占める**有機農業の取組面積の割合を25%(100万ha)に拡大** を順次開発
- > 初地間領に口める**有機農業の状態間視の割合を23%(1007)** > 2030年までに**食品製造業の労働生産性を最低3割向上**
- 2030年までに食品企業における持続可能性に配慮した

輸入原材料調達の実現を目指す

- エリートツリー等を林業用苗木の9割以上に拡大
- ► ニホンウナギ、クロマグロ等の養殖において人工種苗比率100%を実現

戦略的な取組方向

2040年までに革新的な技術・生産体系を順次開発(技術開発目標)

2050年までに革新的な技術・生産体系の開発を踏まえ、

今後、「政策手法のグリーン化」を推進し、その社会実装を実現(社会実装目標)

※政策手法のグリーン化:2030年までに施策の支援対象を持続可能な食料・農林水産業を行う者に集中。

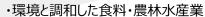
2040年までに技術開発の状況を踏まえつつ、補助事業についてカーボンニュートラルに対応することを目指す。 補助金拡充、環境負荷軽減メニューの充実とセットでクロスコンプライアンス要件を充実。

※ 革新的技術・生産体系の社会実装や、持続可能な取組を後押しする観点から、その時点において必要な規制を見直し。 地産地消型エネルギーシステムの構築に向けて必要な規制を見直し。

期待される効果

経済持続的な産業基盤の構築

- ・輸入から国内生産への転換(肥料・飼料・原料調達)
- ・国産品の評価向上による輸出拡大
- ・新技術を活かした多様な働き方、生産者のすそ野の拡大


社会 国民の豊かな食生活 地域の雇用・所得増大

- ・地域資源を活かした地域経済循環
- ・多様な人々が共生する地域社会

環境 将来にわたり安心して 暮らせる地球環境の継承

- ・化石燃料からの切替によるカーボンニュートラルへの貢献
- ・化学農薬・化学肥料の抑制によるコスト低減

2020年 2030年 2040年 2050年

みどりの食料システム戦略(具体的な取組)

~食料・農林水産業の生産力向上と持続性の両立をイノベーションで実現~

調達

1.資材・エネルギー調達における脱輸入・ 脱炭素化・環境負荷軽減の推進

- (1)持続可能な資材やエネルギーの調達
- (2)地域・未利用資源の一層の活用に向けた取組
- (3) 資源のリユース・リサイクルに向けた体制構築・技術開発
- ~期待される取組・技術~
- |▶ 地産地消型エネルギーシステムの構築
- |▶ 改質リグニン等を活用した高機能材料の開発
- |▶ 食品残渣・汚泥等からの肥料成分の回収・活用
- ▶ 新たなタンパク資源(昆虫等)の利活用拡大

- ・持続可能な農山漁村の創造
- ・サプライチェーン全体を貫く基盤技術の 確立と連携(人材育成、未来技術投資)
- ・森林・木材のフル活用によるCO2吸収と 固定の最大化
 - 雇用の増大

等

- 地域所得の向上
- 豊かな食生活の実現

2.イノベーション等による持続的生産体制の構築

- (1)高い生産性と両立する持続的生産体系への転換
- (2)機械の電化・水素化等、資材のグリーン化
- (3)地球にやさしいスーパー品種等の開発・普及
- 農地・森林・海洋への炭素の長期・大量貯蔵
- (5) 労働安全性・労働生産性の向上と生産者のすそ野の拡大
- (6)水産資源の適切な管理
 - ∼期待される取組・技術~
 - スマート技術によるピンポイント農薬散布、次世代総合 的病害虫管理、土壌・生育データに基づく施肥管理
 - ▶ 農林業機械・漁船の電化等、脱プラ生産資材の開発
 - ▶ バイオ炭の農地投入技術
 - ➤ エリートツリー等の開発・普及、人工林資源の循環利用の確立
 - ▶ 海藻類によるCO2固定化(ブルーカーボン)の推進

3.ムリ・ムダのない持続可能な 加丁・流涌システムの確立

生産

4.環境にやさしい持続可能な 消費 消費の拡大や食育の推進

(1)食品ロスの削減など持続可能な消費の拡大

(2)消費者と生産者の交流を通じた相互理解の促進

- (3) 栄養バランスに優れた日本型食生活の総合的推進
- (4)建築の木造化、暮らしの木質化の推進
- (5)持続可能な水産物の消費拡大
- ~期待される取組・技術~
- ▶ 外見重視の見直し等、持続性を重視した消費の拡大
- ▶ 国産品に対する評価向上を通じた輸出拡大
- 、▶ 健康寿命の延伸に向けた食品開発・食生活の推進

(1) 持続可能な輸入食料・輸入原材料への切替えや 環境活動の促進

(2)データ·AIの活用等による加工·流通の合理化·適正化

- (3)長期保存、長期輸送に対応した包装資材の開発
- (4) 脱炭素化、健康・環境に配慮した食品産業の競争力強化
- ~期待される取組・技術~
- ▼ 電子タグ(RFID)等の技術を活用した商品・物流情報のデータ連携
- ▶ 需給予測システム、マッチングによる食品ロス削減
- 、▶ 非接触で人手不足にも対応した自動配送陳列