
AI需要予測: 発注推奨モデル

需要予測では、①まず来店客数予測を行い、②来店客数予測を入力値としてカテゴリ予測・ 売上予測を行い、③2日以上の消費期限を持つ商品では在庫最適化モデルを実施する

AI需要予測: 来客者数モデル

来店客数予測では、AIとビッグデータ(気象・人流)を活用した汎用的予測モデルを開発

利用イメージ

特徴

<u>データ利用</u>

気象データを全国1kmメッシュ・人流統計データを 500mメッシュで整備 各店舗におけるデータを利用

高度な予測

競合店の開店などによる人の行動変容を評価 気象(雨など)による人の行動変化を評価 AIによって複雑な関係性を評価

プラットフォーム

汎用的なAIモデル 様々な企業に利用していただくことで継続的な精度 改善

開発

2022年にバローホールディングスを実証フィールドとしてPoC/PoBを実施、ソフトバンクと日本気象協会で技術を開発、事業化

AI需要予測: モデルの特徴

店舗での廃棄・欠品を減少させ、売上・利益を最大化させることを目的とした →廃棄・売上・利益の変化についてはA/Bテストで評価

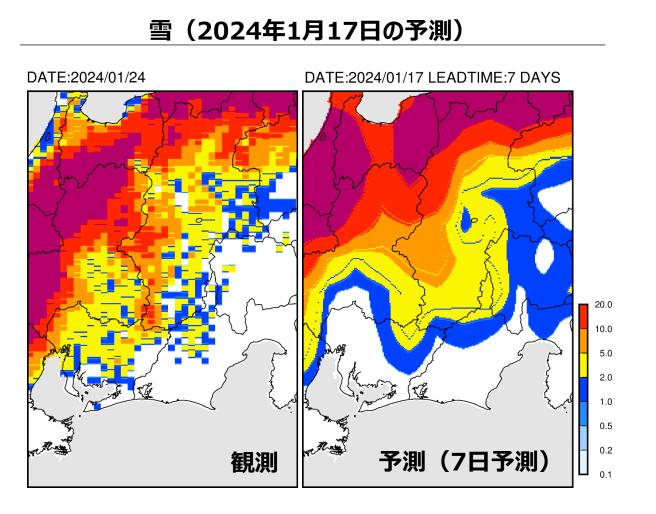
事業の特徴

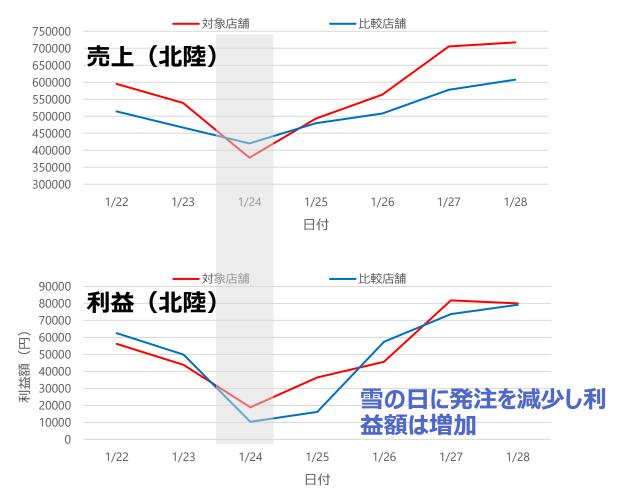
プログラムの特徴 (利益最大化)

	内容
商品	惣菜(賞味期限が短いため、日々、値下げをし て売り切りを目指すオペレーション)
評価	A/Bテスト(AIを利用する対象店舗・AIを利用 しない比較店舗を設定して評価)
店舗	複数エリア・規模別に店舗を設定
発注	廃棄や値引き量をコントロールして利益を最大化利益最大化した上で欠品を減らし、売上も最大化を目指す

利益最大化を実現するためには、過去の売上を学習して発注できるだけでなく、廃棄や欠品を学習し、これまでとは異なる発注を行い、廃棄を減少、売上・利益を最大化する必要がある。

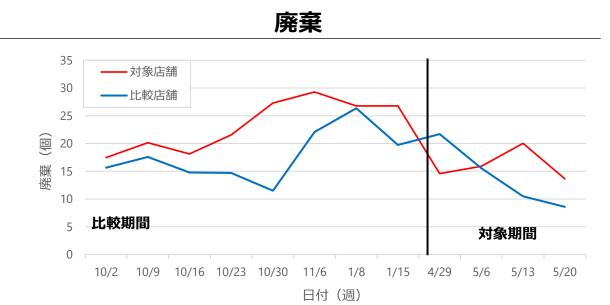
グ売り切れ時間の学習


売り切れが発生している商品については、売り切れ時間に応じて発注量を増加させる。


▲ 各商品の利益率の学習

廃棄や値引き率が増加している商品については、利益率を 考慮して妥当な発注量に変更。

AI需要予測: 結果 特定事例


実証実験中に発生した大雪の事例では、7日前から大雪を予測することができていた。大雪が降った日はAI需要予測により発注を減らすことが、現行よりも利益を高める結果になった。

AI需要予測: 結果 廃棄·欠品の動き

AIで最適化を考慮することで、廃棄・欠品ともに減少

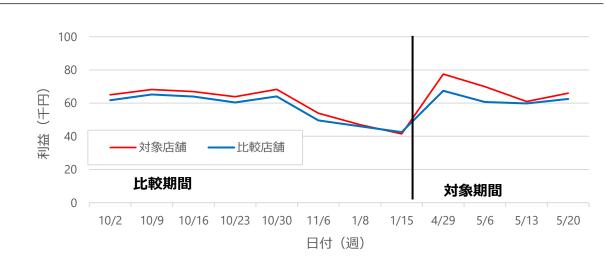
	比較店舗	対象店舗	比率	効果比率	効果金額 (年)
比較期間	71.2	93.7	31.7%	_	_
対象期間	56.3	64.2	14.0%	-17.7%	5,040

	比較店舗	対象店舗	比率	効果比率	効果金額 (年)
比較期間	123	130	5.7%	_	_
対象期間	121	105	-13.2%	-19.0%	_

※ 単位:千円、効果金額は全店展開時想定

※ 単位:回、

AI需要予測: 結果 売上・利益の動き


AIで利益最大化を考慮することで、売上・利益ともに増加

店舗売上

	比較店舗	対象店舗	比率	効果比率	効果金額 (年)
比較期間	2,494	2,642	5.9%	_	_
対象期間	2,568	2,780	8.2%	2.3%	31,000

店舗利益

	比較店舗	対象店舗	比率	効果比率	効果金額 (年)
比較期間	226	237	4.9%	_	_
対象期間	250	274	9.7%	4.9%	40,200

単位は千円、効果金額は全店展開時想定

※ 単位は千円、効果金額は全店展開時想定

AI需要予測: 結果 KPI

PoBにより、店舗・工場のKPIとも、大きく改善が見込まれる結果を得ることができた

KPI		結果		
	利益	4.9%増加	利益最大化プログラムを実施することで利益率向上	
	売上	2.3%増加	売り切れ時間の早い商品の発注を増加させ売上増加	実施
店舗	作業時間	26.8%減少	発注を自動化することで作業時間軽減(作業時間はアンケートから算出)	実施店舗合計
	欠品	19.0%減少	売り切れ時間の早い商品の発注を増加(欠品は17時前に売切と定義)	合計
	廃棄	17.7%減少	利益率の低い商品の発注を削減することで廃棄減少	
	利益	2.3%増加	店舗売上が増加することで利益率向上	全
_I	作業時間	19.3%減少	生産計画を事前に立てることで作業時間減少	店 拡-
上 場	廃棄	仕掛品廃棄ゼロ	見込み生産を受注生産に変更することでゼロ化	
	緊急生産・配送	2.5回/月減少	工場の生産計画にリードタイムを得ることで減少	計

AI需要予測: PoB後の実展開

結果を受け、順次対象店舗を拡大。24年11月より全店舗に展開

→展開時は店舗現場からの意見収集を週次で実施し、さらなる問題点改善を推進

- ※意見収集では、感覚的な意見も多いが、ロジックとして修正必要な事項の発見も多く、真の問題把握と改善へつながった。
- ※意見を上げてもらい対応をFBすること、現場の参画意識・当事者 意識を上げる効果もあった。

廃棄量削減率 昨対▲20.0% (全店展開~25/2/16累計)

第5回官民合同タスクフォース デジタル勉強会 事例発表資料

ご清聴ありがとうございました