

課 題

- ① さらなる香味の向上を求めて ⇒熱による香味の変質対策の強化が 必要
- ②8,000万C/Sを超える出荷量

 ⇒社会的影響の大きさ

 ⇒環境配慮型商品への変身

 (ホットパックではボトル軽量化に限界

従来技術の技術的特長

工程	ホットパック充填システム	<参考> アセプティック充填システム
ボトル成型	外部で成型し、製造ライン のある工場へ搬入	外部或いは、内部で成型し、 製造ラインのある工場へ搬入
ボトル内部の洗浄	ボトルリンサー	ボトルリンサー
ボトル内部の殺菌	内容液の加熱装置	ボトル殺菌機
(殺菌方法)	高温の内容液で殺菌	薬剤使用による殺菌
充填	フィラ―(85°C)	フィラー(35°C)
キャップ巻締	キャッパー	キャッパー
(殺菌方法)	キャップUV殺菌	キャップ薬剤殺菌
充填後の	転倒殺菌装置	_
殺菌工程	パストライザー	_

新充填システムの技術的特長

工程	ホットパック充填システム	NSシステム	<参考> アセプティック充填システム
ボトル成型	外部で成型し、製造ライン のある工場へ搬入	ボトル原料を同一工場内の 飲料製造工程の中で、 空気圧により膨張させて成型	外部或いは、内部で成型し、 製造ラインのある工場へ搬入
ボトル内部の洗浄	ボトルリンサー	ボトルリンサー	ボトルリンサー
ボトル内部の殺菌	内容液の加熱装置	ボトル殺菌機	ボトル殺菌機
(殺菌方法)	高温の内容液で殺菌	高温水による短時間殺菌	薬剤使用による殺菌
充填	フィラー(85°C)	フィラー(35℃)	フィラー(35°C)
キャップ巻締	キャッパー	キャッパー	キャッパー
(殺菌方法)	キャップUV殺菌	キャップ高温水殺菌	キャップ薬剤殺菌
充填後の 殺菌工程	転倒殺菌装置	_	_
	パストライザー	_	_

課題を解決する新充填システム

無菌環境下での高温水によるボトル内殺菌

- ⇒内容液を高温にする必要がない
- ⇒無菌充填のため、後殺菌工程が不要
- ⇒ボトル内殺菌剤も不要
- ①耐熱性をそれほど必要としないため軽量化が
- ②内容液が高温となる時間が短いため、香味が向上
- ③ボトル内の殺菌剤を洗い流す洗浄水も不要

環境優位性 Environmental Protection ・容器軽量化による、資源の削減 ・容器のオンサイト供給による、トラック輸送CO2の削減 ・薬剤レス化の実現による環境対応(排水処理負担軽減)

容器軽量化による、資源の削減

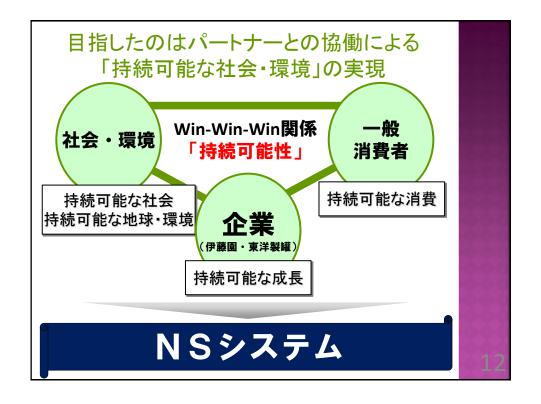
容器のオンサイト供給による、トラック輸送CO2の 削減

薬剤レス化の実現による環境対応(排水処理負担軽減

温水循環使用による、熱資源&水資源の削減

廃棄物量・副産物量に与える効果

副産物(二酸化炭素)


発生抑制実施前	発生抑制実施後	差異
11, 122t- CO ₂	9, 849t- CO ₂	-1, 273t-CO ₂

※2013(平成25)年度実績をもとに算出

廃棄物(PETボトル・キャップ

発生抑制実施前	発生抑制実施後	差異
5, 328 t	3, 983 t	-1, 345 t

※2013(平成25)年度実績をもとに算出

