4 事業化プロジェクト

4.1 基本方針

本市のバイオマス賦存量及び利用状況を調査した結果、最も発生量の大きい家畜排せつ物に加え下水汚泥、し尿・浄化槽汚泥処理汚泥は堆肥化され耕種農業で利用されており、耕種農業から発生する稲わら、もみがら等の圃場残さもまた畜産、耕種農業へ循環利用されています。2番目に大きい製材廃材は燃料、敷料として、主に地域内で全量利用されています。

一方で、家庭・事業系生ごみや刈草・剪定枝は未だ多くが焼却処分されており、焼却量の削減とリサイクルへの転換が課題となっています。また、建設廃材は全量市外の木質バイオマス発電所にチップ燃料として販売されていますが、市内の需要を創出することが望まれます。さらに山置きされている間伐等残材も、資源としての活用が期待されます。

これらのバイオマスの地域内利用を進め、3 項で掲げた目指すべき将来像を実現するために、次表に示す3つの事業化プロジェクトを設定しました。

各プロジェクトの取組、期待される効果、課題等を次項以降に示します。

なお、個別の事業化プロジェクトについては、その内容に応じて、近隣市町村、福岡県、 民間事業者等と連携して実施していきます。

表9 朝倉市バイオマス産業都市構想における事業化プロジェクト

		食品廃棄物メタン化	木質バイオマス	草木類バイオマス		
	プロジェクト	発電プロジェクト	燃料利用プロジェクト	堆肥化プロジェクト		
	バイオマス	事業系生ごみ	建設廃材、果樹剪定枝、	刈草・剪定枝、		
	74742	争未ポエこの	間伐等残材	竹		
	発生	市内食品関係事業所	市内建設・家屋解体現	市内家庭、事業所		
		T T T T T T T T T T T T T T T T T T T	場、樹園地、森林	, , , , , , , , , , , , , , , , , , , ,		
	変換	メタンガス化	チップ化、薪燃料	チップ・パウダー化、堆肥化		
	利用	発電燃料(電気・熱)	固形燃料(熱・電気)	堆肥、土壌改良材等		
	地球温暖化防止	0	0	0		
	低炭素社会の構築	0	0	0		
	リサイクルシステムの確立	0	0	0		
	廃棄物の減量	0		0		
目	エネルギーの創出	0	0			
的	防災・減災の対策		0			
	森林の保全		0	0		
	里地里山の再生		0	0		
	雇用の創出	0	0	0		
	各主体の協働	0	0	0		

4 2 食品廃棄物メタン化発雷プロジェクト

本市は、家庭・事業系生ごみの大半を広域ごみ焼却場「サンポート」に搬入し焼却処分 しています。

しかし、ごみ焼却場の能力・耐用年数等から焼却場搬入ごみの削減が求められており、 エネルギー(メタンガス化)と液肥・堆肥等の多段階利用などの活用が望まれています。

一方で、市内では太陽光発電、食品工場残さのバイオガス発電等の再生可能エネルギー の導入が進められて来ています。中でも食品廃棄物を含むバイオマスは、自然気象の影響 を受けにくい安定したエネルギー源として、さらなる導入が望まれます。

そこで、焼却ごみ削減とバイオマスエネルギー創出を目的として、事業系生ごみを活用 した食品廃棄物メタン化発電プロジェクトを推進します。

また、福岡県内における食品リサイクルループの先進地として、福岡県全域の活性化、 発展に資するよう、プロジェクトの水平展開を視野に検討を進めます。

具体的には、短期計画として次の内容を推進します。

表 10 食品廃棄物バイオガス発電プロジェクトの概要 プロジェクト名 事業主体 バイオマス 送電端出力 利用量 食品廃棄物メタン化 事業系生ごみ 朝倉バイオガス 平均 2.5~4.9t/日 平均 27~55kW 発電プロジェクト 発電所 (仮称) イメージ図

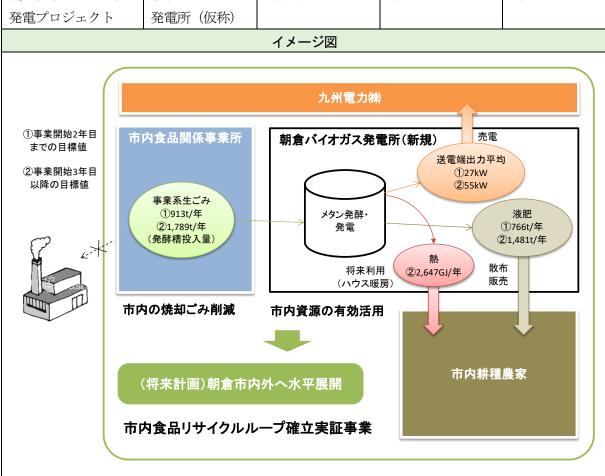


表 11-1 食品廃棄物メタン化発電プロジェクトの内容 (1/2)

	プロジェクト概要
事業概要	・県内のプラント建設事業者であるシンコー㈱が朝倉市内用地にバイオガスプラント1基を建設し、朝倉市内事業系生ごみを原料に(一般廃棄物処理)、メタン発酵・発電し、生産した電力の販売を行う。副産物の消化液、ガスエンジン排熱は、市内農業へ液肥およびハウス加温用温水として供給する。 ・プロジェクトの目的は、小型メタン発酵施設導入による一般廃棄物焼却量の削減及びメタン発酵副産物である消化液(液肥)を市内耕種農家が利用し農作物生産、さらに生産物を市内消費することによる食品リサイクルループの確立。
事業主体	・朝倉バイオガス発電所(仮称)設置、運営主体:シンコー株式会社 ・事業系生ごみ排出:市内食品関係事業所 ・事業系生ごみ収集運搬:市一般廃棄物収集運搬許可業者 ・液肥供給先:市内耕種農家 ・温水供給先:市内ハウス栽培農家
計画区域	福岡県朝倉市荷原(地域住民と協議中)※1
原料調達計画	 ・施設導入後 1~2 年目 朝倉市事業系生ごみ 2.6 トン/日(うち発酵不適合物を除いた発酵槽投入量 2.5 トン/日:朝倉市 2017 年焼却設備搬入可燃ごみ量 39.6 トン/日の 6.3%) **2 ・施設導入 3 年目以降 朝倉市事業系生ごみ 5.1 トン/日(うち発酵不適合物を除いた発酵槽投入量 4.9 トン/日:朝倉市 2017 年焼却設備搬入可燃ごみ量 39.6 トン/日の約 12.4%) **2
施設整備計画	・2020 年度 メタン発酵(4.9t/日)・発電(発電機出力 60kW)施設一式、液肥貯蔵施設一式
製品・エネルギー利用計画	 ・施設導入後 1~2 年目 メタンガスは発電後、九州電力㈱へ売電。 (売電量 238,000kWh/年) **3 液肥は市内耕種農家へ有償配布。 (液肥量 766t/年) **4 ・施設導入 3 年目以降 メタンガスは発電後、九州電力㈱へ売電(売電量 482,000kWh/年) **3 ガスエンジン排熱は温水として隣接農業用ハウスへ販売。 (2,647GJ/年) 液肥は朝倉市内耕種農家へ有償配布。 (液肥量 1,481t/年) **4
事業費	設備建設費合計:150,000 千円
年度別実施計画	2019 年度: 実施設計・FIT 認定 2020 年度上期: 施設建設・完成 2020 年度下期: 下期運転開始

表 11-2 食品廃棄物メタン化発電プロジェクトの内容(2/2)

・施設導入後1~2年目

収入(FIT 売電収入): 9,281 千円/年

(一般廃棄物処理費収入):9,490千円/年

(液肥販売収入):153 千円/年

· 施設導入3年目以降

事業収支計画(内 部収益率(IR R)を含む。) 収入 (FIT 売電収入) : 18,797 千円/年

(一般廃棄物処理費収入):18,615千円/年

(液肥販売収入):296 千円/年

支出(設備償却費・維持管理費・人件費ほか)

: 11,424 千円/年(20 年間平均)

内部収益率(IRR)

:建設費の25%を補助金取得予定とし、

11年目2.0%、20年目10.6%

2020 年度に具体化する取組

- ・バイオガスプラント1基の建設・稼働開始(4.9t/日・60kW)
- ・朝倉市事業系生ごみ 2.6t/日受入開始(事業系生ごみ 949 トン/年、うち発酵槽投入量 913t/年)
- ・FIT 売電開始(送電端出力 27kW)
- 液肥販売開始

5年以内に具体化する取組

- ・事業系生ごみ受入量を 5.1t/日に引き上げ (事業系生ごみ 1,862 トン/年、うち発酵槽投入量 1,789t/年)
- ・FIT 売電量引き上げ(送電端出力 55kW)
- ・ガスエンジン排熱温水を隣接農業用ハウスへ販売(2,647GJ/年)
- ・朝倉市周辺自治体へのバイオガスプラント導入、メタン発酵・発電事業の水平展開

効果と課題

- ・市の焼却ごみの削減(一般廃棄物可燃ごみ1,789トン/年)
- ・再生可能エネルギーの創出・化石燃料由来 CO2 排出量の削減 (事業導入 3 年目以降売電量 482,000kWh/年・排熱利用量 2,647GJ/年: CO2 排出削減量 456t-CO2/年)

効果

- ・発電事業収入の獲得(発電事業者 20 年目累計収支計 約 343,900 千円)
- ・事業収入による市内雇用創生(発電事業1人/年+パート作業員1人/年=2人/年)
- ・液肥供給による市内化学肥料使用量削減
- ・温水供給による市内ハウス加温用化石燃料購入費削減
- ・施設導入予定地の住民合意(H30年度から継続協議中)

課題

- ・プラント建設の資金調達
- ・事業系生ごみ収集運搬体制の確立
- ・液肥散布体制の確立

※1 プラント建設地確保の見通し

シンコー㈱が現在、朝倉市荷原の建設候補地2箇所について、住民との合意形成に取り組んでいます。この進捗状況は下記の通りです。

1. これまでの経緯

- ①シンコー㈱が、朝倉市荷原第1候補地(県道隣接農地)について、2018年10月25日に第1回住 民説明会を実施。
- ②住民は、第1候補地は県道に隣接しているので、自分達が推奨する候補地(農地)を代案として提案。2018年10月30日にシンコー㈱が第2候補地(農地)として現地視察。
- ③シンコー㈱が、第1および第2候補地の農地転用等について調査。第1候補地は可能性が有るが、 第2候補地は困難との農業委員会の判断を得た。
- ④シンコー㈱が、2018年11月22日に住民へ第2候補地の農地転用等についての調査結果を報告し、 協議。

2. 今後の予定

⑤シンコー㈱が住民と協議を継続し、合意形成を得た後、建設地を確保する予定。

※2 原料確保の見通し

- 1. 朝倉市の事業系生ごみ焼却量推計
- ・朝倉市 2017 年事業系可燃ごみ量: 5,300 トン/年
- ・環境省九州地方事務所 2010 年度九州・沖縄地区における地域循環圏形成推進調査報告より、「事業系ごみの中の生ごみの割合は30~40%」
- ・上記より、朝倉市 2017 年事業系可燃ごみの中の生ごみの割合を 35%としたとき、 事業系生ごみ焼却量推計:5,300 トン/年×35%=1,855 トン/年(5.1 トン/日)

2. 事業系生ごみ確保の見通し

- ・本プロジェクトは、公益財団法人 福岡県リサイクル総合研究事業化センター協同研究プロジェクト (朝倉市におけるメタン化食品リサイクルループプロジェクト) に 2018 年度、2019 年度採択され、実施中。
- ・研究プロジェクトのテーマの 1 つである朝倉市事業系生ごみ収集運搬実証(プロジェクトアドバイザーの市内収集運搬許可業者 2 社に委託)により、2018 年度末現在約 2.3 トン/日の収集可能量を確認。
- ・2019 年度の収集運搬実証(プロジェクトアドバイザーの市内収集運搬許可業者 2 社に加え、市内収集運搬許可業者 2 社の計 4 社に委託予定)により 2.6 トン/日を確証する予定。
- ・朝倉市は、事業化に伴い、本施設の一般廃棄物中間処理施設許可を検討している。

※3 FIT 売電の見通し

朝倉市荷原の第1候補地について、シンコー㈱が2018年度に九州電力㈱より送電電力最大60kWの系統連系事前相談において「接続可能」の回答を得ています。第2候補地も同地区内であることから接続可能の見通しです。

※4 液肥利用の見通し

- 1. 朝倉市の液肥需要について
- ・朝倉市水田推進協議会水田フル活用ビジョンより、 2017年度の市内作付面積は合計で4,731.4ha。
- ・朝倉市の家畜排せつ物賦存量 68,544 トン/年 (2.1 バイオマスの種類別賦存量と利用量より)から、 堆肥生産量は約 20,000 トン/年と推計される。
- ・田への堆肥施肥量を 2 トン/10a とすると、 市内家畜排せつ物堆肥の施肥面積は 1,000ha/年と 試算され、市内作付面積と比較すると堆肥需要の 方が大きく上回っていると推測される。
- ・以上より、市内農業における新規液肥需要は十分に有るものと推測される。

2. 液肥利用の見通しについて

朝倉市 作付面積

+/1/C '1'	IFII 四 IR				
	作物	2017年度 作付面積 (ha)			
主食用	K	1,827.9			
飼料用>	K	6.5			
米粉用	K	15.5			
WCS用和	Ĩ	133.7			
麦		1,462.7			
大豆		513.0			
飼料作物	勿	145.0			
そば		5.8			
その他	野菜	427.3			
の地域	加工用にんじん	19.2			
振興作	果樹	156.2			
振 興 TF 物	秋王	7.0			
190	とよみつひめ	11.6			
	合計	4,731.4			

出典:朝倉市水田推進協議会水田フル活用ビジョン

朝倉市におけるメタン化食品リサイクルループプロジェクトにおいて、シンコー㈱がで市内で下記 液肥栽培試験を実施中であり、液肥利用の確保に取り組んでいます。

- ・2017 年度:メタン発酵試験機(5kg/日)で朝倉市生ごみのメタン発酵消化液を作製、特殊肥料「朝倉ループ1号」として肥料登録。
- ・2018 年度:生ごみメタン発酵消化液約 400L を作製し、1a のブロッコリー液肥栽培試験を実施(プロジェクトアドバイザーの市内大規模農事法人に委託)。
- ・2019 年度: 生ごみメタン発酵消化液約1,000Lを作製し、15aの水稲液肥栽培試験を実施予定(プロジェクトアドバイザーの市内大規模農事法人に委託予定)。

4.3 木質バイオマス燃料利用プロジェクト

市内では建設廃材が約4,000t/年発生しており、現在市内の産業廃棄物処理施設でチップ化され、すべて市外の木質バイオマス発電所にチップ燃料として販売されていますが、 地域内での需要の創出が望まれています。

また果樹剪定枝は約1,800t/年発生しており、従来の焼却灰肥料としての利用に加え、 近年市内家庭数軒への薪ストーブの導入により燃料としての需要が創生されています。

さらに年間約6,000t と推計される間伐等残材についても、林地の復旧・復興を進めつ つ、目標年度(2028年度)へ向けて新たな活用の仕組み(供給体制・燃料等加工設備・ボ イラ等利用設備)を構築していくことが望まれます。

そこで、市内にチップボイラ、木質バイオマス発電設備、薪ストーブ等を導入し、チップ、薪燃料を地産地消する木質バイオマス燃料利用プロジェクトを推進します。

具体的には、中・長期計画として次の内容を推進します。

表 12 木質バイオマス燃料利用プロジェクトの概要

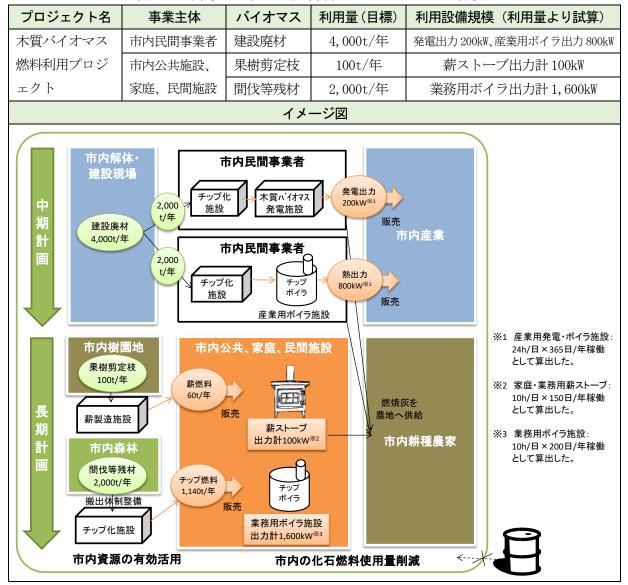


表 13-1 木質バイオマス燃料利用プロジェクトの内容 (1/2)

	プロジェクト概要
事業概要	1. 中期計画 市内民間事業者が発電施設、熱供給施設を導入し、建設廃材チップを燃料として 発電、蒸気等生産し、電力会社または市内電力需要施設、熱需要施設に販売供給 する。 2. 長期計画 市内の木質バイオマスである果樹剪定枝、間伐等残材を搬出し薪、チップに加工、 市内公共施設、家庭、民間施設へ薪ストーブ、チップボイラを導入し、ここへ燃 料として供給販売することを推進していく。 なお間伐等残材については、当面は災害を受けた林地の復旧・復興作業が急務で あることから、長期計画として取り組んでいくものとする。
事業主体	1. 中期計画 ・発電事業:市内民間事業者 ・熱供給事業:市内民間事業者 2. 長期計画 ・果樹剪定枝供給:農業者 ・間伐等残材供給:林業者 ・薪、チップ燃料製造:市内民間事業者等 ・薪、チップ燃料利用設備導入:市内公共、家庭、民間施設
計画区域	朝倉市内
原料調達計画	 中期計画 ・建設廃材 4,000t/年(発電事業、熱供給事業合計の現在目標値) 長期計画 ・果樹剪定枝 100t/年(現在目標値) ・間伐等残材 2,000t/年(現在目標値)
施設整備計画	1. 中期計画 ・発電設備(現在想定出力: 200kW) ・熱供給設備(現在想定出力: 800kW) 2. 長期計画 ・薪、チップ燃料製造設備 ・薪ストーブ(現在想定合計出力100kW。導入例:10kW×10台。) ・チップボイラ(現在想定合計出力1,600kW。導入例:200kW×8台。)
製品・エネルギー 利用計画	 中期計画 発電事業:売電 熱供給事業:売熱 長期計画 薪燃料:約60t/年(含水率30%として) チップ燃料:約1,140t/年(含水率30%として)
事業費	 1. 中期計画 ・発電事業: 2020 年度を目途に計画予定 ・熱供給事業: 2020 年度を目途に計画予定 2. 長期計画 ・薪、チップ燃料製造事業: 2024 年度を目途に計画予定 ・薪ストーブ、チップボイラ導入費: 2024 年度を目途に計画予定

表 13-2 木質バイオマス燃料利用プロジェクトの内容(2/2)

		T3-2 木質ハイオマス燃料利用フロシェクトの内容(2/2)							
	実施計画 :目標)	1. 中期計画(発電事業、熱供給事業) 2019 年度:調査 2020 年度:事業計画・実施設計 2021 年度:設備建設 2022 年度:運転開始 2. 長期計画(果樹剪定枝・間伐等残材の供給、燃料製造、燃料利用) 2023 年度:調査 2024 年度:事業計画・実施設計 2025 年度:設備建設(薪、チップ燃料製造設備) 2026 年度:操業開始(薪、チップ燃料製造事業) 2025~2028 年度:薪ストーブ、チップボイラ導入							
部収益	z支計画(内 弦率 (IR :含む。)	1. 中期計画 ・発電事業: 2020 年度を目途に計画予定 ・熱供給事業: 2020 年度を目途に計画予定 2. 長期計画							
		・薪、チップ燃料製造事業:2024年度を目途に計画予定 5年以内に具体化する取組							
・発電 ・熱供 2. 長	期計画	運転開始 人、運転開始							
効果	効果と課題 1. 中期計画 下記を 2020 年度を目途に算出予定 ・再生可能エネルギーの創出・化石燃料由来 CO2 排出量の削減 ・発電事業による市内雇用創出 ・熱供給事業による市内雇用創出								
課題	1. 41. 47.	実材の供給、燃料製造体制の整備 の木質燃料活用設備(薪ストーブ、チップボイラ等)導入施策							

・木質燃焼灰の活用 (肥料利用等)

参考:市内木質バイオマスのエネルギー試算表

〇建設廃材2,000t/年→産業用発電利用

建設	廃材	チップ燃料換算				発電出力換算 ^{※1}				CO2排出削減量換算			
t/年	含水率	t/年	含水率	Mcal/年	MJ/年	A重油換算kL/年	燃料使用量kg/h	木質ボイラ効率	発電機効率※2	発電出力換算kW	A重油代替kL/年	kg-CO2/A重油L	削減t-CO2/年
2,000	15.0%	2,000	15.0%	7,660,000	32,070,888	733	228	80.0%	25.0%	203	733	2.71	1,986
							※1 産業用と	して24時間×3	65日/年使用を	·想定			

※2 バイナリー発電機として想定 参考:木質チップkgあたり A重油換算 含水率^{*} kcal/kg^{*} 木質ボイラ効率 A重油kJ/L 作石燃料ポイラ効率 A重油換算kL/kg
 3,830
 16,035
 80.0%
 38,900
 90.0%

 ※一般社団法人有機資源協会編著「バイオマス活用ハンドブック」より
 0.366

〇建設廃材2,000t/年→産業用ボイラ利用

建設	·												
建設	発 例	チップ燃料換算					ボイラ出力換算※				CO2排出削減量換算		
t/年	含水率	t/年	含水率	Mcal/年	MJ/年	A重油換算kL/年	燃料使用量kg/h	木質ボイラ効率	ポイラ出力換算Moal	ボイラ出力換算kW	A重油代替kL/年	kg-CO2/A重油L	削減t-CO2/年
2,000	15.0%	2,000	15.0%	7,660,000	32,070,888	733	228	80.0%	700	814	733	2.71	1,986
				1			※産業用とし	て24時間×365	日/年使用をた	想定→400kW×	2台が可能		

				_				
参考:木質チップkgあたり								
	少与∶ 不貝⁻	ナツノKgas/こり	,	A重油換算				
kg	含水率**	kcal/kg [*]	kJ/kg	木質ボイラ効率	A重油kJ/L	化石燃料ポイラ効率	A重油換算kL/kg	
1.0	15.0%	3,830	16,035	80.0%	38,900	90.0%	0.366	

※一般社団法人有機資源協会編著「バイオマス活用ハンドブック」より

○果樹剪定枝100t/年→家庭・業務用薪ストーブ利用

١	HI +++ ÷	# 												
	果樹剪	沙正仅	薪燃料換算					薪ストーブ出カ換算※				CO2排出削減量換算		
	t/年	含水率	t/年	含水率	Mcal/年	MJ/年	A重油換算kL/年	燃料使用量kg/h	薪ストーブ効率	ストープ出力換算Mca	ストープ出力換算kW	A重油代替kL/年	kg-CO2/A重油L	削減t-CO2/年
	100	60.0%	57	30.0%	174,286	729,699	13	38	70.0%	81	95	13	2.71	36
								※家庭·店舗(の暖房用として	10時間×150日	日/年使用を想	定→10kW×10	D台が可能	

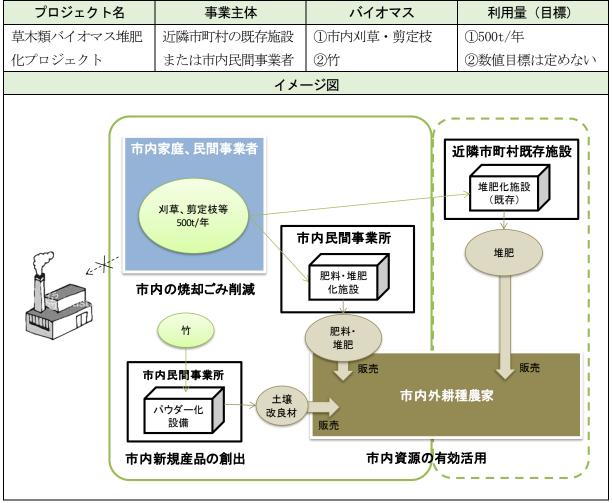
※一般社団法人有機資源協会編著「バイオマス活用ハンドブック」より

○間伐等残材2,000t/年→業務用ボイラ利用

88 小 名	± τ± ++												
間伐等	宁 /发例	チップ燃料換算					ボイラ出力換算※				CO2排出削減量換算		
t/年	含水率	t/年	含水率	Mcal/年	MJ/年	A重油換算kL/年	燃料使用量kg/h	木質ボイラ効率	ポイラ出力換算Moal	ボイラ出力換算kW	A重油代替kL/年	kg-CO2/A重油L	削減t-CO2/年
2,000	60.0%	1,143	30.0%	3,485,714	14,593,989	333	571	80.0%	1,394	1622	333	2.71	904
						1	※業務用として	て10時間×200	日/年使用を想	想定→200kW×	8台が可能		

		_	_				
	 	チップkgあたり	1				
	参与∶ 不貝∃	アツノKg <i>d</i> カバこと	,		A重油	換算	
kg	含水率**	kcal/kg [*]	kJ/kg	木質ボイラ効率	A重油kJ/L	化石燃料ポイラ効率	A重油換算kL/kg
1.0	30.0%	3,050	12,770	80.0%	38,900	90.0%	0.292

4.4 草木類バイオマス堆肥化プロジェクト


市内で発生する刈草・剪定枝等の草木類バイオマスは、公共・民間事業発生分は堆肥化、 チップ化(堆肥、マルチ)、燃料化利用されていますが、家庭からの発生分など約1,300t/ 年は一般廃棄物として広域ごみ焼却場「サンポート」に搬入され焼却処分されています。

今後、近隣市町村の既存の堆肥化施設または市内に堆肥化設備を導入し、地域内で資源として活用することで焼却ごみを削減していく草木類バイオマス堆肥化プロジェクトを推進します。

また、草本類と比較的近い性質を持つ竹についても、パウダー化し土壌改良剤として利用することを検討していきます。

具体的には、中期計画として次の内容を推進します。

表 14 草木類バイオマス堆肥化プロジェクトの概要

表 15 草木類バイオマス堆肥化プロジェクトの内容

	表 15 早不類ハイオマス堆肥化フロンェクトの内容
	プロジェクト概要
事業概要	現在一般廃棄物として焼却処理されている家庭、事業所等からの刈草・剪定枝を、近隣市町村に立地する既存の堆肥化施設へ搬入するよう仕向け、焼却ごみ削減を図る。 将来的には市内の受け入れ先(堆肥化事業参入者)を確保し、排出者の堆肥化施設までの運搬コスト負担を下げることを検討していく。 合わせて、草本類と比較的近い性質を持つ竹についても、パウダー化し土壌改良剤として利用することを検討していく。
事業主体	・刈草・剪定枝供給:市内家庭、民間事業者等 ・堆肥化事業:市内民間事業者(近隣市町村に立地する既存の堆肥化施設、または市内肥料・堆肥化施設) ・リサイクル啓発・指導:朝倉市 ・竹供給、パウダー化事業:民間事業者等(今後検討)
計画区域	朝倉市内
原料調達計画	・刈草・剪定枝 500t/年(現在目標) ・竹(数値目標は定めない)
施設整備計画	・刈草・剪定枝 (近隣市町村に立地する既存の堆肥化施設) または 市内へ堆肥化施設整備 ・竹 市内へ竹パウダー化設備導入
製品・エネルギー 利用計画	堆肥、土壌改良材等として地域内へ販売
年度別実施計画(現在目標)	 ・刈草・剪定枝 2020 年度:調査 2021 年度:事業計画・実施設計 2022 年度:焼却されている市内刈草・剪定枝の堆肥化施設への搬入開始 ・竹 2020~2021 年度:調査・実証試験 2022 年度:事業計画・実施設計 2023 年度:パウダー化設備導入 2024 年度:竹パウダーの土壌改良材利用開始
	5年以内に具体化する取組
	いる市内刈草・剪定枝 500t/年のリサイクル(堆肥化)への転換 すのパウダー化、土壌改良材利用
	効果と課題
効果・堆肥化	却ごみの削減(一般廃棄物可燃ごみ 500t/年) 施設の処理収入の確保 用した新規産品の創出
参入者 課題 ・竹につ	の堆肥化施設までの運搬コスト負担を下げるため、市内の受け入れ先(堆肥化事業)を検討する。 いては、試験的取組として、パウダー化、土壌改良材利用実証試験、および事業化調査を行う。

4.5 その他のバイオマス活用プロジェクト (既存事業の推進)

以上の事業化プロジェクトのほか、本市では、資源循環型社会の構築を目指して既に下 記のバイオマス活用が取り組まれています。これらの取組については、継続して推進する とともに、市による支援を積極的に行うなど、地域内循環の形成について検討を進めます。

- ◆ 家畜排せつ物の堆肥化
- ◆ 家庭・事業系廃食用油のBDF化
- ◆ 食品工場残さの飼料化、堆肥化、メタンガス化(発電)
- ◆ 製材廃材のチップ化 (燃料)、敷料化
- ◆ 下水汚泥、し尿・浄化槽汚泥処理汚泥の肥料化
- ◆ 圃場残さ(稲わら、もみがら、麦わら、野菜残さ)の農業資材利用(敷料、堆肥副資材、マルチング材、土壌改良材等)
- ◆ 果樹剪定枝の灰肥料化

また現在利用されていない竹についても、下記の活用等を検討していきます。

- ◆ 竹チップの段階的利用(燃料、酵素風呂、肥料化)
- ◆ 竹の炭化(竹炭、竹酢液)

〈県内の活用事例〉

八女市・JAふくおか八女・八女森林組合が共同で立花バンブー株式会社を設立し、年間に竹炭400トン、竹酢液20kLを製造、販売しています。

立花バンブー(株)HPより 竹炭、竹酢液製品

4.6 バイオマス以外の再生可能エネルギー

再生可能エネルギーの必要性の高まりにより、これまで取り組んできたバイオマス発電、 太陽光発電、風力発電等の再生可能エネルギーの導入について、地域の気象条件や自然環 境等を活かし、公共施設や民間事業者による導入に向けた取組を支援します。

また、市民や事業者に向けて新エネルギー導入の効果等について情報発信等を積極的に行うなどして、再生可能エネルギーの導入促進に努めます。

	我 10	サエッルニョッと(L IV	
項目	バイオマス発電	風力発電	太陽光発電	小水力発電
項目	(kW)	(kW)	(kW)	(kW)
2019年3月現在	2, 112	0	5, 481	0
2028 年度目標値	2, 372 *1	0	10, 000 **2	0

表 16 再生可能エネルギー目標

^{※1} 本構想事業化プロジェクトの導入合計値。

^{※2} 現在の約2倍とした。

5 地域波及効果

本市においてバイオマス産業都市構想を推進することにより、計画期間内 (2028 年度までの 10 年間) に、次のような市内外への波及効果が期待できます。

5.1 経済波及効果

本構想における短期計画の食品廃棄物メタン化発電プロジェクトを実施した場合に想定される事業費がすべて地域内で需要されると仮定して、福岡県経済波及効果分析ツールを用いて試算した結果、計画期間内(2028年度までの10年間)に以下の経済波及効果が期待できます。

表 17 福岡県経済波及効果分析ツールによる経済波及効果(単位:億円)

福岡県内最終需要増加額			
項目	生産誘発額	粗付加価値誘発額	雇用者所得誘発額
直接効果 [※]	0. 38	0. 17	0.11
1次間接波及効果*	0. 12	0.06	0. 03
2次間接波及効果*	0. 07	0. 04	0. 01
総合効果*	0. 57	0. 27	0. 15

出典: 平成23年福岡県経済波及効果分析ツールを用いて算出

(入力条件:平成29年平均、電力・ガス・熱供給部門、廃棄物処理部門、農業部門の事業収入)

- ※ 直接効果:需要の増加によって新たな生産活動が発生し、このうち都道府県内の生産活動に影響を及ぼす額(=都道府県内最終需要増加額)
- ※ 第1次間接波及効果 (1次効果): 直接効果が波及することにより、生産活動に必要な財・サービス が各産業から調達され、これらの財・サービスの生産に必要とな

る原材料等の生産が次々に誘発されることによる生産誘発額

※ 第2次間接波及効果 (2次効果): 生産活動 (直接効果及び1次間接波及効果) によって雇用者所得 が誘発されることにより、さらにその一部が消費に回ることによ

って生産が誘発されることによる生産誘発額

※ 総合効果 : 直接効果、1次間接波及効果及び2次間接波及効果の合計

5.2 新規雇用創出効果

本構想における短期計画の事業化プロジェクト(食品廃棄物メタン化発電プロジェクト)の実施により、以下の新規雇用者数の増加が期待できます。

表 18 新規雇用者数

事業化プロジェクト	新規雇用者数		
食品廃棄物メタン化発電プロジェクト	2 (パート作業員を含む)		
木質バイオマス燃料利用プロジェクト	(2020年度以降、順次計画予定)		
合 計	2 (現在見込み数)		

5.3 その他の波及効果

バイオマス産業都市構想を推進することにより、経済波及効果や新規雇用創出効果の他、 以下の様々な地域波及効果が期待できます。

食品廃棄物メタン化発電プロジェクト、木質バイオマス燃料利用プロジェクトの実現による温室効果ガス排出量削減量は 4, 126 トン-C02/年と試算され、これは朝倉市環境基本計画による朝倉市全体の温室効果ガス排出量推計 456, 594 トン-C02/年(2018 年度)の 0.9% にあたります。

表 19 期待される地域波及効果 (定量的効果)

				効果内訳				
期待される 効果			食品廃棄物メ タン化発電プ ロジェクト	木質バイオマ ス燃料利用プ ロジェクト	草木類バイオ マス堆肥化プ ロジェクト	備考		
	・バイオマスのエネ ルギー利用による化 石燃料代替量	電気: 1,9	907	MWh/年	482	1,425	-	計画および目標売電 量を計上
		熱: 40,4	490	GJ/年	2,647	37,843	-	A重油1,157kL/年
地球温暖化防止・低炭素社会の構築	・バイオマスのエネ ルギー利用による化 石燃料代替費(電力 及びA重油換算)	1	.19	億円/年	0.15	1.04	-	A重油70円/L、電力20 円/kWhとした
	・温室効果ガス (CO ₂) 排出削減量	4,	126	t-CO2/年	456	3,670	-	A重油2.71kg-CO2/L 電力0.52kg-CO2/kWh (参考値)
廃棄物の減量	・廃棄物処理量の削 減量	2,2	289	t/年	1,789	-	500	計画および目標量を計上
	・廃棄物処理コスト削減量	0).34	億円/年	0.27	-	0.08	1.5万円/t(サンポート 処理費単価)として算 出
防災・減災の 対策	・災害時の燃料供給 可能量	チップ 生産量:	143	t/年	-	1,143	-	間伐等残材チップの み計上(含水率30%と して算出)

また、下記に示すような定量指標例によっても、様々な地域波及効果を発揮することが期待できます。

表 20 期待される地域波及効果 (定量指標)

期待される効果	定量指標
森林の保全	・森林整備率
里地里山の再生	=間伐材利用等により保全された森林面積/保全対象となる森林面積
流入人口増加による	・バイオマス活用施設への市外からの視察・観光者数、消費額
経済効果の創出	
	・環境活動等の普及啓発
	=バイオマス活用推進に関する広報、アンケート、イベント(セミナー、
	シンポジウム等)の実施回数、参画人数
	・市民の環境意識向上
各主体の協働	=バイオマス活用推進に関するアンケート、イベント(セミナー、シン
	ポジウム等)への参画人数
	• 環境教育
	=バイオマス活用施設の視察・見学、環境教育関連イベント等の開催回
	数、参加人数

6 実施体制

6.1 構想の推進体制

本構想を具体的かつ効率的に推進するためには、市民や事業者等との協働・連携が不可欠です。また各プロジェクトを実現し継続していくためには大学や研究機関等との連携、国や福岡県による財政を含む支援も必要となってきます。

そのため本構想では、本市が事務局となって、市民、各産業者、専門家、県等で構成される「朝倉市バイオマス活用推進協議会」を設置し、本構想の全体進捗を管理、各種調整、推進をしていくとともに、広報やホームページ等を通じた情報発信等を行います。

各プロジェクト実施の検討や進捗管理は、事業化プロジェクト実施主体が中心となって行い、検討状況、進捗状況等について「朝倉市バイオマス活用推進協議会」に報告を行い、情報の共有、連携の強化を図ります。

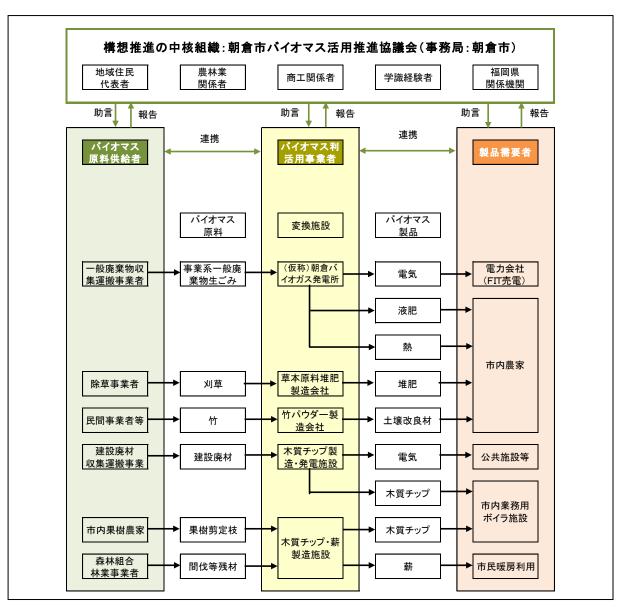


図 24 構想の推進体制

6.2 検討状況

本市では、「朝倉市環境審議会」の議事として、バイオマス産業都市構想策定に向けた検討を行いました。

これまでの検討状況を以下に示します。

表 21 バイオマス産業都市構想策定に向けた検討状況

年	月日	プロセス	内 容	
2018	11月7日	第1回朝倉市環境審議会	・バイオマス産業都市構想について ・朝倉市バイオマス産業都市構想策定の経緯に ついて	
2019	2月8日	第3回朝倉市環境審議会	朝倉市バイオマス産業都市構想(素案)について 協議	
	3月26日	第4回朝倉市環境審議会	朝倉市バイオマス産業都市構想(案)について 協議	
	6月5日~ 6月25日	パブリックコメント	朝倉市バイオマス産業都市構想(案)を公表し 市民へ意見公募	
	〇月〇日	00	朝倉市バイオマス産業都市構想策定	

表 22 朝倉市環境審議会 委員名簿

氏名	所属団体等	朝倉市環境条例第3条第2項関係	正副会長
飯田 大和	朝倉生物研究会	学識経験を有する者	会長
竹井 勝美	福岡県地球温暖化防止活動推進員	学識経験を有する者	
原田惠子	あさくら美化美化バンク	市民代表	
和佐野 弘幸	福田花いっぱい運動	市民代表	
古賀 ふさ子	護美の会	市民代表	
高倉泉	白木湧水の会	市民代表	
宮之脇 健二	福岡県北筑後保健福祉環境事務所環境長	関係行政機関の職員	
坂本 信康	朝倉市区会長理事会	市長が必要と認める者	副会長
武田 雄一	朝倉市コミュニティ協議会会長会	市長が必要と認める者	
羽野 勉	朝倉市コミュニティ事務局長会	市長が必要と認める者	
福元 雄平	朝倉市衛生連合会(会長)	市長が必要と認める者	
那須 徹	朝倉市衛生連合会(副会長)	市長が必要と認める者	
伊藤 武明	朝倉市衛生連合会(副会長)	市長が必要と認める者	
窪山 龍輔	朝倉商工会議所	市長が必要と認める者	
中島・恵美	筑前あさくら農業協同組合	市長が必要と認める者	

表 23 朝倉市環境審議会委員を除くオブザーバー等名簿

区分	団体名	役職	氏名
オブザーバー	朝倉市農林課	課長	森山 浩二
オブザーバー	朝倉市農業振興課	課長	半田 卓男
オブザーバー	朝倉市ふるさと課	課長	森田 和枝
オブザーバー	朝倉市下水道課	課長	井上 政司
事務局	朝倉市市民環境部	部長	岩下 英俊
事務局	朝倉市環境課	課長	松田 勝久
事務局	朝倉市環境課リサイクル推進係	係長	上村 一成
事務局	朝倉市環境課環境係	係長	古川善二
事務局	朝倉市環境課環境係	主任主査	美山恭士

7 フォローアップの方法

7.1 取組工程

本構想における事業化プロジェクトの取組工程を下図に示します。

本工程は、社会情勢等も考慮しながら、進捗状況や取組による効果等を確認・把握し、 必要に応じて変更や修正等、最適化を図ります。

原則として、5年後の2023年度を目途に中間評価を行い、構想の見直しを行います。

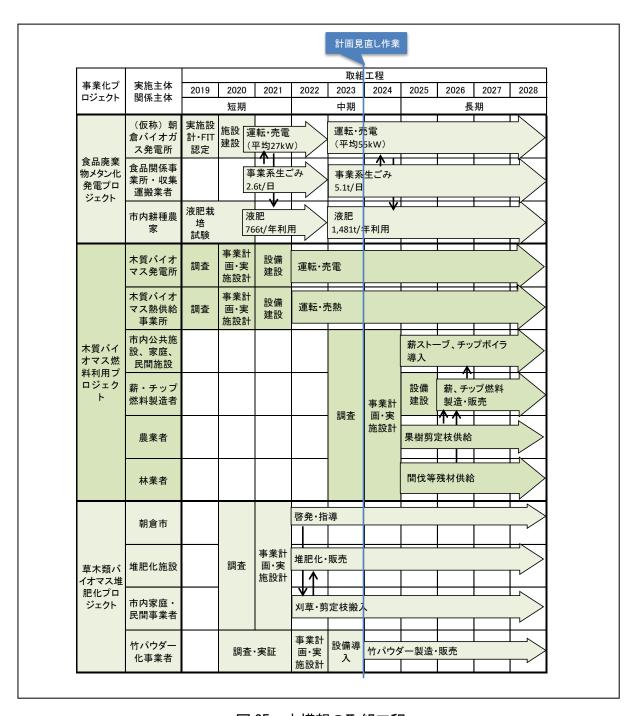


図 25 本構想の取組工程

7.2 進捗管理の指標例

本構想の進捗状況の管理指標例を、プロジェクトごとに次表に示します。

表 24 進捗管理の指標例

施策・進捗管理の指標					
//E //					
		<バイオマスの利用状況>			
		・各バイオマスの利用量及び利用率と目標達成率			
		・エネルギー(電気・熱)生産量、地域内利用量(地産地消率)			
		・目標達成率が低い場合はその原因			
	全 体	・バイオマス活用施設におけるトラブルの発生状況			
		・これらの改善策、等			
		<バイオマス活用施設整備状況>			
		・計画、設計、地元説明、工事等の工程通りに進んでいるか			
		・遅れている場合はその原因や対策、等			
		<バイオマスの利用状況>			
		・事業系生ごみの利用量及び利用率と目標達成率			
		・エネルギー(電気)生産量、地域内利用量(地産地消率)			
1	食品廃棄物メタン化発	・バイオマス活用施設におけるトラブルの発生状況、改善策等			
	電プロジェクト	<バイオマス活用施設整備状況>			
		・計画、設計、地元説明、工事等の工程通りに進んでいるか			
		・遅れている場合はその原因や対策、等			
		<バイオマスの利用状況>			
		・木質バイオマスの利用量及び利用率と目標達成率			
		・エネルギー(燃料)生産量、地域内利用量(地産地消率)			
	木質バイオマス燃料利				
2	用プロジェクト	・バイオマス活用施設におけるトラブルの発生状況、改善策等			
		<バイオマス活用施設整備状況>			
		・計画、設計、地元説明、工事等の工程通りに進んでいるか			
		・遅れている場合はその原因や対策、等			
		<バイオマスの利用状況>			
3	草木類バイオマス堆肥	・刈草・剪定枝の利用量及び利用率と目標達成率			
	化プロジェクト	・マテリアル(土壌改良材等)生産量、地域内利用量(地産地消率)			
		、 / / / / / / / / / / / / / / / / / / /			

7.3 効果の検証

7.3.1 取組効果の客観的検証

本構想を実現するために実施する各事業化プロジェクトの進捗管理および取組効果の 検証は、各プロジェクトの実行計画に基づき事業者および「朝倉市バイオマス活用推進協 議会」が主体となって5年ごとに実施します。

具体的には、構想の策定から5年間が経過した時点で、バイオマスの利用量・利用率及び具体的な取組内容の経年的な動向や進捗状況を把握し、必要に応じて目標や取組内容を 見直す「中間評価」を行います。

また、計画期間の最終年度においては、バイオマスの利用量・利用率及び具体的な取組 内容の進捗状況、本構想の取組効果の指標について把握し、事後評価時点の構想の進捗状 況や取組の効果を評価します。

本構想の実効性は、PDCA サイクルに基づく環境マネジメントシステムの手法を用いて継続して実施することにより、効果の検証と課題への対策を行い、実効性を高めていきます。 また効果の検証結果を踏まえ、必要に応じて構想の見直しを行います。

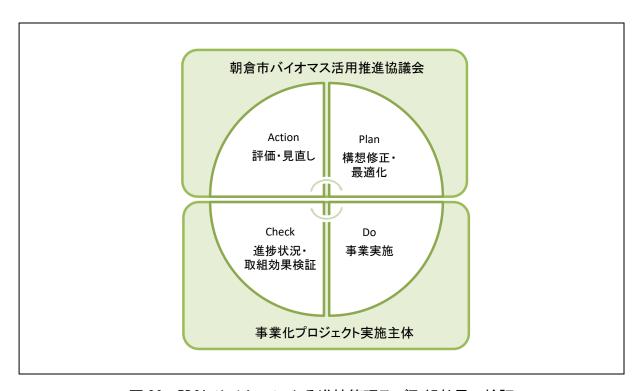


図 26 PDCA サイクルによる進捗管理及び取組効果の検証

7.3.2 中間評価と事後評価

(1)中間評価

計画期間の中間年となる2023年度末に実施します。

1) バイオマスの種類別利用状況

2.1項の表で整理したバイオマスの種類ごとに、5年経過時点での賦存量、利用量、利用率を整理します。

これらの数値は、バイオマス活用施設における利用状況、事業者への聞取り調査、各種統計資料等を利用して算定します。

2) 取組の進捗状況

7.1 項の取組工程に基づいて、3 つの事業化プロジェクトごとに取組の進捗状況を確認します。

利用量が少ない、進捗が遅れている等の場合は、原因や課題を整理します。

3) 構想見直しの必要性

進捗状況の確認で抽出された原因や課題に基づいて、必要に応じて目標や取組内容を見直します。

①課題への対応

各取組における課題への対応方針を整理します。

②構想見直しの必要性

①の結果を基に、朝倉市バイオマス産業都市構想や各プロジェクトの実行計画の見 直しの必要性について検討します。

4) 構想の実行

目標や構想を見直した場合を含めて、その達成に向けた取組を実施します。

(2) 事後評価

計画期間が終了する 2028 年度末を目途に、計画期間終了時点における(1)と同じ「バイオマスの種類別利用状況」「取組の進捗状況」に加えて、以下の項目等について実施します。

1) 指標の設定

バイオマスの利用量・利用率以外に、本市の取組の効果を評価・検証する指標により効果を測定します。

評価指標は5.3項の例を参考にして設定します。

2) 改善措置等の必要性

進捗状況の確認や評価指標による効果測定等により抽出された各取組の原因や課題 について、改善措置等の必要性を検討・整理します。

3)総合評価

計画期間全体の達成状況について総合評価を行います。

前項で検討・整理した改善措置等の必要性や社会情勢の変化等を踏まえ、計画期間 終了後の目標達成の見通しについて検討・整理します。

朝倉市バイオマス活用推進協議会に上記内容を報告し、次期構想策定に向けた課題整理や今後有効な取組について助言を得て検討を行います。

8 他の地域計画との有機的連携

本構想は、市の計画において「人、自然、歴史が織りなす 水ひかる 朝倉」の実現を目指す「第2次朝倉市総合計画」を最上位計画とし、朝倉市環境基本計画の施策の一部として、ほか個別の計画や福岡県における種々の計画等との連携・整合を図りながら、バイオマス産業都市の実現を目指します。

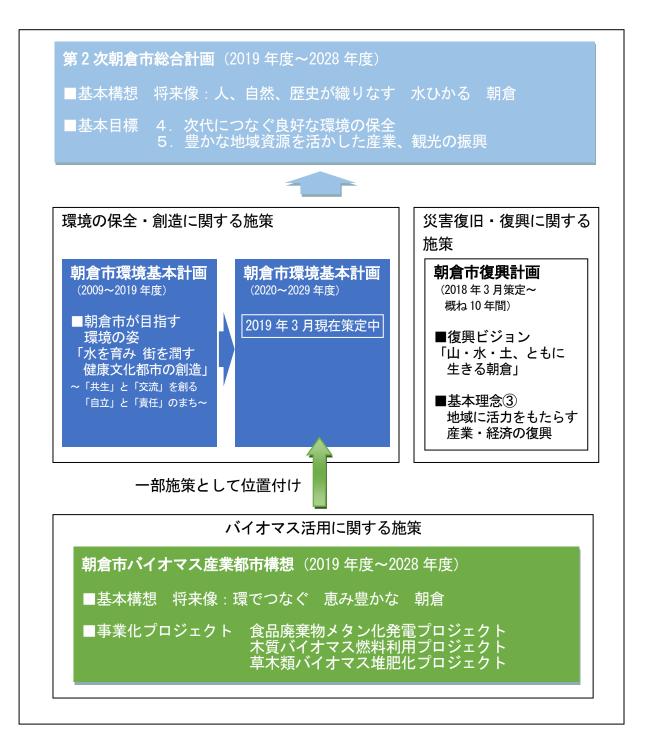


図 27 朝倉市バイオマス産業都市構想の位置付け

国 特別天然記念物 昭和27年3月29日指定 古処山ツゲ原始林

この構想に関するお問い合わせ 朝倉市市民環境部環境課 〒838-0062 福岡県朝倉市堤4番地6 TEL0946-22-1111 (代表) FAX 0946-24-3615 e-mail: kankyo@city.asakura.lg.jp