参考資料

- 1 社会・環境を取り巻く情勢
- 2 これまでに発生した気候変動の影響
- 3 本県農林水産業における温室効果ガス排出量の詳細
- 4 2030年の温室効果ガス排出量削減目標(中期目標)および森林吸収量の算出基礎
- 5 SDGsのゴール、ターゲットと各取組との関係
- 6 用語解説

参考資料

1 社会・環境を取り巻く情勢

年	月		主な出来事
1992	6	国際	国連 気候変動枠組条約 採択 大気中の温室効果ガス濃度を安定させることを究極の目標とし、地球温暖化対策に 世界全体で取り組んでいくことに合意
1997	12	国際	京都議定書 採択 先進国の温室効果ガスの排出量について法的拘束力のある数値目標を各国ごとに 設定
2011	3	県	滋賀県農業・水産業温暖化対策総合戦略 策定 滋賀県の農業・水産業の特徴を反映した本県独自の温暖化対策を推進していく上で の県としての総合的な指針として策定
2016	11	国際	パリ協定 発効
2017	3	県	滋賀県農業・水産業温暖化対策行動計画 策定 滋賀県農業・水産業温暖化対策総合戦略を改定し、適応策を中心に取組を拡充
2020	1	県	しがCO ₂ ネットゼロムーブメント・キックオフ宣言
	10	国	政府 「カーボンニュートラル宣言」
2021	5	国	農林水産省 「みどりの食料システム戦略」 策定
	10	围	政府「地球温暖化対策計画」改定 「農林水産省地球温暖化対策計画」改定 「農林水産省気候変動適応計画」改定 2030年度の温室効果ガス排出量46%削減(2013年度比)、うち農林水産分野の対策によって3.5%削減の目標が設定されるとともに、気候変動の緩和策および適応策が定められた
	11	国際	COP26 世界全体の平均気温の上昇を工業化以前よりも1.5℃高い水準まで抑制を目指す ことに合意
2022	3	県	「滋賀県CO ₂ ネットゼロ社会づくりの推進に関する条例」制定 「滋賀県CO ₂ ネットゼロ社会づくり推進計画」策定 「CO ₂ ネットゼロ実現と気候変動への適応 〜みらいを創る しがの農林水産業気候変動対策実行計画〜」 策定

表1 近年の気候変動をめぐる国内外の主な出来事

(1) パリ協定の発効

2020年以降の京都議定書に代わる新たな国際枠組みとして、2015年12月にフランス・パリで開催されたCOP21(国連気候変動枠組条約第21回締約国会議)において、先進国・途上国を含む全ての条約締約国が参加する地球温暖化対策の新たな法的枠組みとなる「パリ協定」が採択され、2016年11月に発効しました。

パリ協定では、世界全体の平均気温の上昇を工業化以前よりも、2℃高い水準より十分に下回るものに抑制することならびに1.5℃高い水準までに制限するための努力をすること、今世紀後半に温室効果ガスの人為的な発生源による排出量と吸収源による除去量とを均衡させることなどが盛り込まれました。

さらに、2021年にイギリス・グラスゴーで開催されたCOP26においては、世界全体の平均気温の上昇を工業化以前よりも1.5℃高い水準に抑えることを目指すことが合意されました。

(2) 国におけるカーボンニュートラルを目指す動き

2020年10月の総理所信表明において、2050年までに温室効果ガスの排出を全体として実質ゼロにする「カーボンニュートラル」を宣言しました。また、2021年4月に開催された国際的な「気候サミット」において、2030年度において温室効果ガスを2013年度から46%削減を目指すことを宣言するとともに、50%削減に向け挑戦を続けることを表明しました。

○ みどりの食料システム戦略

2021 年5月に、食料・農林水産業の生産力向上と持続性の両立をイノベーションで実現させるための新たな政策方針として「みどりの食料システム戦略」が策定されました。

2050 年までに農林水産業の CO₂ ゼロエミッション化の実現等の意欲的な目標の実現に向けて、調達、生産、加工・流通、消費までの各段階での課題の解決に向けた行動変容を促すとともに、現場の優れた技術の横展開・持続的な改良、革新的な技術・生産体系の開発・社会実装を推進することとしています。

(3) 本県における CO2ネットゼロに向けた動き

本県では、2020年1月に、2050年までに温室効果ガスの排出量を実質ゼロにすることを目指し、 県民や事業者等多様な主体と連携して取り組む「しが CO₂ ネットゼロムーブメント」キックオフ宣言をしました。

また、「2050年 CO₂ ネットゼロ(二酸化炭素排出量の実質ゼロ)」の実現に向けた取組を通じて地域の持続的な発展をも実現する「CO₂ ネットゼロ社会」づくりを推進し、より豊かな滋賀を次の世代に引き継いでいくため、「滋賀県 CO₂ ネットゼロ社会づくりの推進に関する条例」を制定、「滋賀県 CO₂ ネットゼロ社会づくり推進計画」を策定しました。滋賀県 CO₂ ネットゼロ社会づくり推進計画では、2050年までに CO₂ ネットゼロの実現、2030年度に温室効果ガス排出量を 2013年度比で50%削減することを目標とし、産業、業務、家庭、運輸などの各部門における取組を推進することとしました。

2 これまでに発生した気候変動の影響

① 水稲

主に登熟期における高温の影響により、早生品種の「コシヒカリ」や「キヌヒカリ」において、白未熟粒や 胴割粒の発生による外観品質の低下(一等米比率の低下)や収量の低下が見られている。

また、夏場以降の高温・少雨の影響で、斑点米カメムシ類による被害の増加や、トビイロウンカの多発による坪枯れの発生による収量・品質の低下が見られている。

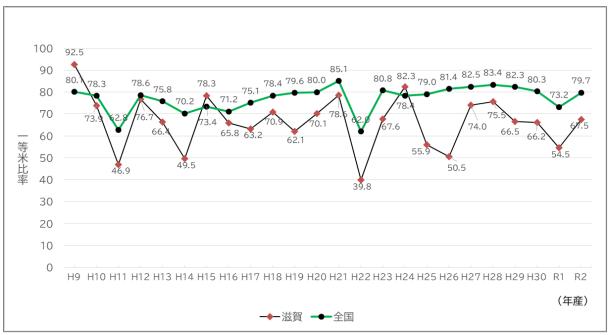


図1 一等米比率の推移

② 麦類·大豆

暖冬により麦の生育が早まる傾向や、凍霜害、黒節病の発生が助長されている。大豆については、播種後の集中豪雨による出芽不良や生育不良、開花期~成熟期(8月~9月)にかけての高温、水不足による登熟異常が発生している。

③ 野菜・果樹・花き

高温・干ばつにより、キャベツやイチゴ等で育苗中の苗の枯死、トマトで落花や裂果等の生育障害、ダイコンやニンジン等の夏から秋にかけて播種する品目での発芽不良が発生している。果樹では、果実等の日焼け、ブドウの着色不良やカキの着色遅延、日本ナシやモモの果肉障害が発生し、花きでは菊類で出蕾期後の高温による開花遅延や品質低下等が生じている。

また、気候変動幅が大きいため収穫時期の予測が困難となっており、加工・業務用キャベツなどの契約に基づく定時・定量供給に影響している他、ナシやブドウの収穫時期が前進化している。

さらに、コナジラミ類やオオタバコガなど病害虫の発生量が増加しており、園芸品目全般に収量・品質に影響を及ぼしている。

加えて、近年、台風の大型化や集中豪雨の増加等により田畑やビニールハウス等への直接的な農業 被害が発生している。

④ 茶

高温や長雨の影響により病害虫発生のリスクが高まるうえ、病害虫の発生時期が早まり、発生パターンが変化することで、防除適期を逸し、病害虫による被害が増加している。

また、一番茶の生育開始時期が早まっており、4月~5月に霜の被害を受ける危険度が高まっているうえ、高温により収穫適期が短くなり、刈り遅れによる品質低下や減収が生じている。さらに、夏季の高温・ 少雨の影響により二番茶以降の新芽の生育抑制も見られている。

⑤ 畜産

牛、豚、鶏の畜産業において、夏季の飼養環境の悪化に伴う生産性の低下が生じている。

⑥ 水産

産卵時期である8~9月の河川水温がアユの産卵適水温を超えることにより、産卵時期の遅れと集中を招き、その後の成長不良を介して、アユの不漁につながる事例が発生している。また、暖冬の影響により琵琶湖の全層循環の遅滞や不全が発生し、90m以深の湖底において貧酸素状態に陥ることにより、イサザやスジエビなどの死亡個体が確認されている。

⑦ 森林

近年、過去の観測記録を上回るような豪雨の発生により、全国各地で山地災害が発生しており、県内でも山腹崩壊などの山地災害や風倒木被害等が発生している。

図2 治山事業実績の推移

※ 近年の台風等による突発的な災害に伴い、H25 以降大幅に増加している

3 本県農林水産業における温室効果ガス排出量の詳細

温室効果ガス排出削減目標の基準年である 2013 年度および直近 3 か年における本県の温室効果ガス 排出量とその算定基礎となる項目の数値

※二酸化炭素換算時の排出係数はメタン25、一酸化二窒素 298 で算出

(総合エネルギー統計、日本国温室効果ガスインベントリ報告書、滋賀県統計書等を基に作成)

表2 滋賀県における農林水産業の温室効果ガス種類別排出量の推移 (千t-CO₂)

182	- 瓜貝木にのける成体小	性未 い/皿主が7	トノノヘ作業のリカ	一山里ツルドツ	(11 002)
温室	室効果ガスの種類	2013	2016	2017	2018
二酉	g化炭素(CO ₂)	80.2	74.0	80.0	74.0
	農林業	78.4	71.8	78.3	72.6
	水産業	1.9	2.2	1.7	1.5
メゔ	ァン(CH ₄)	182.8	174.8	175.1	183.8
	家畜消化管内発酵	38.7	38.9	40.3	41.0
	家畜排せつ物管理	5.4	4.7	4.5	4.4
	稲作	137.1	129.5	128.7	137.3
	農作物残渣の野焼き	1.5	1.8	1.6	1.2
—酉	俊化二窒素(N ₂ O)	28.3	28.2	28.1	28.0
	家畜排せつ物管理	9.1	8.8	8.7	8.9
	農用地の土壌	18.8	18.9	18.9	18.8
	農作物残渣の野焼き	0.5	0.5	0.5	0.4
排出	は量計	291	277	283	286

[※]四捨五入の関係で小計が合わないところがある

表3 二酸化炭素排出量(燃料、電力消費):農林業

	(3) 一民間次の所由主(無所でものが)会に、						
年度	排出量 (千トン-CO ₂)	電力 (千 kWh)	灯油 (kL)	軽油 (kL)	A重油 (kL)	農業生産額 (億円)	
2013	78.4	34,164	4,003	5,126	13,466	618	
2016	71.8	15,598	4,192	5,153	14,480	636	
2017	78.3	13,234	4,979	5,542	16,554	647	
2018	72.6	13,433	4,227	5,252	15,815	641	

[※]農林業における全国のエネルギー消費量に、農業産出額の全国に占める滋賀県の割合を乗じて算出

表4 二酸化炭素排出量(燃料、電力消費):水産業

	Prior Charles Charles Complete							
年度	排出量 (千トン-CO ₂)	電力 (千 kWh)	灯油 (kL)	軽油 (kL)	A重油 (kL)	漁獲生産量 (千トン)		
2013	1.9	2,694	0.8	43	133	1,021		
2016	2.2	642	0.4	376	315	1,138		
2017	1.7	545	0.3	278	249	873		
2018	1.5	553	0.2	256	226	876		

[※]水産業における全国のエネルギー消費量に、漁獲生産量の全国に占める滋賀県の割合を乗じて算出

表5 メタン(家畜消化管内発酵)

年度	排出量	滋貧	買県内家畜飼育頭	類
十尺	(千トン-CO ₂)	乳用牛	肉用牛	豚
2013	38.7	3,536	17,710	8,213
2016	38.9	2,977	18,498	5,834
2017	40.3	2,813	19,677	3,829
2018	41.0	2,705	20,262	4,096

[※]家畜飼育頭数に、排出係数(CH4/頭):乳用牛0.11、肉用牛0.066、豚0.001 を乗じて算出

表6 メタン(家畜排せつ物管理)

年度	排出量	滋賀県内家畜飼育頭数						
十反	(千トン-CO ₂)	乳用牛	肉用牛	豚	採卵鶏(千羽)	ブロイラー(千羽)		
2013	5.4	3,536	17,710	8,213	418	76		
2016	4.7	2,977	18,498	5,834	384	94		
2017	4.5	2,813	19,677	3,829	364	88		
2018	4.4	2,705	20,262	4,096	366	80		

[※]糞尿の管理方法により排出係数が異なる

表7 メタン(稲作)

WI NOO (HAIF)						
年度	排出量 (千トン-CO ₂)	水稲作付面積 (ha)				
2013	137.1	33,400				
2016	129.5	31,900				
2017	128.7	31,700				
2018	137.3	31,700				

[※]県内水稲作付面積に全国一律の排出係数を乗じて算出

表8 メタン(農作物残渣の野焼き)

	TO TAKE INVALORABLE							
年度	排出量	生産量(t)						
+ 技	(千トン-CO ₂)	水稲	麦	豆類	とうもろこし	ばれいしょ		
2013	1.5	176,700	19,811	8,440	1,697	1,660		
2016	1.8	170,300	19,185	10,296	1,170	1,570		
2017	1.6	163,900	19,395	9,600	389	1,570		
2018	1.2	162,300	21,770	4,708	389	1,570		

[※]県内の生産量に全国一律の残渣の比率、野焼きの割合、排出係数を乗じて算出

表9 一酸化二窒素(家畜排せつ物管理)

年度	排出量	滋賀県内家畜飼育頭数						
	(千トン-CO ₂)	乳用牛	肉用牛	豚	採卵鶏(千羽)	ブ ロイラー(千羽)		
2013	9.1	3,536	17,710	8,213	418	76		
2016	8.8	2,977	18,498	5,834	384	94		
2017	8.7	2,813	19,677	3,829	364	88		
2018	8.9	2,705	20,262	4,096	366	80		

[※]糞尿の管理方法により排出係数が異なる

表10 一酸化二窒素(農用地の土壌)

年度	排出量	作付面積(ha)								
	(千トン-CO ₂)	水稲	麦	豆類	野菜	果樹	茶	飼料作物	その他	
2013	18.8	33,400	7,190	5,780	2,760	504	377	1,640	1,382	
2016	18.9	31,900	7,830	6,740	2,860	498	384	2,180	1,368	
2017	18.9	31,700	7,760	6,740	2,860	498	384	2,180	1,394	
2018	18.8	31,700	7,680	6,740	2,860	498	384	2,180	1,403	

[※]県内の作付面積に全国一律の施肥量、排出係数を乗じて算出

表11 一酸化二窒素(農作物残渣の野焼き)

年度	排出量	生産量(t)						
	(千トン-CO ₂)	水稲	麦	豆類	とうもろこし	ばれいしょ		
2013	0.5	176,700	19,811	8,440	1,697	1,660		
2016	0.5	170,300	19,185	10,296	1,170	1,570		
2017	0.5	163,900	19,395	9,600	389	1,570		
2018	0.4	162,300	21,770	4,708	389	1,570		

[※]県内の生産量に全国一律の残渣の比率、野焼きの割合、排出係数を乗じて算出

4 2030年の温室効果ガス排出量削減目標(中期目標)および森林吸収量の算出基礎

温室効果ガス削減のため の取組	2030年の 削減・吸収量 (t-CO ₂)	算出基礎	該当ページ
地産地消の推進		フードマイレージ削減量 0.139t-CO ₂ ^{※1} × 県内産野菜の県内消費増加量 5,000t ^{※2} = 695t-CO ₂ ※1 【県外野菜フードマイレージ144.8kgCO2/t】 - 【県内産野菜フードマイレージ5.6kgCO ₂ /t】 ※2 県内において増加した野菜生産量(1万t)の50%が県内消費されると推定	11
土地改良施設等を活用し た再生可能エネルギーの 導入	1,228 【削減】	再生可能エネルギー発電量 2,398,502kwh ^{※1} × 電力の二酸化炭素排出係数 0.512kg-CO ₂ /kwh = 1,228t-CO ₂ ※1 実績値	11
農地整備	600 【削減】	各実施地区CO ₂ 削減量2,400 ^{※1※2} t-CO ₂ × 10 / 40年 = 600t-CO ₂ ※1 2030年までの事業実施地区における削減量想定値の累計 ※2 農業農村整備事業における温室効果ガス排出量算定プログラム(農林水産省H31.3)からの算定値	12
農業水利施設の整備	450 【削減】	各実施地区取水量 17,600万㎡ ^{※1} × 削減される電力使用量 0.005kwh/㎡ ^{※2} × 電力の二酸化炭素排出係数 0.512kg-CO ₂ /kwh/10 ³ = 450t-CO ₂ ※1 2030年度までの事業実施地区における取水量の累計 ※2 アセットマネジメント計画策定以降整備した県営クラスの揚水機場からの実績値	12
農業集落排水施設の普及・機能強化対策の取組		計画電気使用量 15,944KWh/年 ^{※1} × 電力の二酸化炭素排出係数 0.512kg-CO ₂ /kwh = 8t-CO ₂ /年 ※1 2030年度までの機能強化対策の実施地区による計画電気使用量の累計	12
農業用ため池の防災減災 対策の推進		農業用ため池の防災・減災対策により被害を免れた家屋(木造)戸数 ^{※1} × 家屋の再建設時に排出される二酸化炭素量 ^{※2} /ため池の耐用年数(80年) = 5.48t-CO ₂ ※1 現在実施中のため池改修事業が継続するとして想定 ※2 全壊:33.661t-CO ₂ /戸、半壊:16.831t-CO ₂ /戸、床上浸水:5.069t-CO ₂ /戸、床下浸水:1.377t-CO ₂ /戸	12
長期中干しの推進		長期中干しによる削減効果 2.19t-CO ₂ /ha/年 ^{※1} × 新規実施面積 11,262ha ^{※2} = 24,664t-CO ₂ /年 ※1 環境保全型農業直接支払交付金最終評価(2019年8月 農林水産省)に基づく数値 ※2 2013年度からの増加面積(2013年度 6,738ha ⇒ 2030年度 18,000ha)	13
秋耕の推進	13,700 【削減】	秋耕による削減効果 6.85t-CO ₂ /ha/年 ^{※1} × 新規実施面積 2,000ha ^{※2} = 13,700t-CO ₂ /年 ※1 環境保全型農業直接支払交付金最終評価(2019年8月 農林水産省)に基づく数値 ※2 2021年度からの増加面積、2020年以前の数値は未把握 (2021年度 18,100ha ⇒ 2030年度 20,100ha)	13
施設・農業機械の省エネ 化の推進	121 【削減】	農機1台あたりの燃油使用量 0.116kl/台 ^{※1} × 省エネ率 13.3% ^{※1} × 導入台数 3,000台 × 排出係数 2.62t-CO ₂ /kl ^{※2} = 12lt-CO ₂ ※1 政府「地球温暖化対策計画」に基づく数値。省エネ率は自動操舵装置の数値で算出。 ※2 エネルギー源別標準発熱量・炭素排出係数一覧表(資源エネルギー庁)に基づく数値	13
堆肥の施用の推進	24 , 860 【吸収】	堆肥施用による削減効果 2.26t-CO2/ha/年 ^{※1} × 2030年における堆肥施用面積 11,000ha = 24,860t-CO ₂ ※1 環境保全型農業直接支払交付金最終評価(2019年8月 農林水産省)に基づく数値	14
カバークロップの推進	1,770 【吸収】	= 1,770t-CO ₂ ※1 環境保全型農業直接支払交付金最終評価(2019年8月 農林水産省)に基づく数値	14
オーガニック農業の推進	930 【吸収】	オーガニック農業の実施による削減効果 0.93t-CO ₂ /ha/年 ^{※1} × 2030年におけるオーガニック農業取組面積 1,000ha = 930t-CO ₂ ※1 環境保全型農業直接支払交付金最終評価(2019年8月 農林水産省)に基づく数値	14
飼料自給率の向上 (県産稲わら自給率向上)		稲わらの輸送に伴う二酸化炭素排出量 0.0553t-CO ₂ /t ^{*1} × 県産稲わらへの転換量 1,355t ^{*2} = 75t-CO ₂ **1 主な輸入先である中国から滋賀県までの輸送に伴う排出量(県試算) **2 2013年度輸入量 1,355t ⇒ 2030年度輸入量 0t	17
和牛子牛の出生頭数の増	216 【削減】	和牛子牛の輸送に伴う二酸化炭素排出量 0.122t-CO ₂ /頭 ^{*1} × 県内出生増加頭数1,774頭 ^{*2} = 216t-CO ₂ ※1 主な購入先である宮崎県から滋賀県までの輸送に伴う排出量(県試算) ※2 2013年度からの増加頭数 (2013年度 926頭 ⇒ 2030年度 2,700頭)	17
温室効果ガス排出が少な い飼養管理技術の推進	1,563 【削減】	取組推進経営体における温室効果ガス排出量 0,7815t-CO ₂ /年 ^{※1} × 削減率 20% ^{※2} = 1,563t-CO ₂ ※1 取組推進経営体における飼育頭数等から算出 ※2 実用化されつつある飼養管理技術における削減率	17
飼料用米を最大限活用した「近江しゃも」の生産技術の確立	101	飼料用トウモロコシの海外からの輸入に伴う二酸化炭素排出量 0.26t-CO2/t ^{※1} × 輸入トウモロコシの県産飼料用米への転換量390t ^{※2} = 101t-CO2 ※1 主な輸入先である北米からの輸入に伴う排出量(県試算) ※2 2013年度からの新規転換量(輸入量 2013年度 390t ⇒ 2020年度 0t)	17
漁船の航行速度1割低減 による燃油消費量削減と CO ₂ 排出抑制		県内の漁船による軽油使用量(推定)1,122kl ^{※1} × 削減率 10% × 軽油のCO ₂ 排出係数 2.62t-CO ₂ /kl ^{※2} = 294t-CO ₂ ※1 県内漁協の実績値および実績値をもとにした推定値 ※2 エネルギー源別標準発熱量・炭素排出係数一覧表(資源エネルギー庁)に基づく数値	19
森林整備や木材資源の利 活用等による森林吸収源 対策		森林吸収量 25.3 万t- CO_2 ^{$\times 1$} + 素材生産量 3.1 万t- CO_2 ^{$\times 1$} = 28.4 万t- CO_2 $\times 1$ 地球温暖化対策計画の全国目標値を滋賀県の森林面積および素材生産量で按分	21

5 SDGsのゴール、ターゲットと各取組との関係

	栄養状態の改善を達成するとともに、持 続可能な農業を推進する SDGsゴール		7 すべての人々に手ごろで信頼でき、持続可能かつ近代的なエネ ルギーへのアクセスを確保する			11 都市と人間の居住地を 包摂的、安全、強靭かつ 持続可能にする	
		2 100		I 2			
	SDGsターゲット	2.1 全ての人々が、一年中 食料を十分得られる ようにする	2.4 持続可能な食料生産 システムを確保し、強 靭な農業を実践する	7.2 世界のエネルギーミッ クスにおける再生可 能エネルギーの割合 を拡大させる	7.3 世界全体のエネル ギー効率の改善率を 倍増させる	7.a 再生可能エネルギー などのクリーンエネル ギー技術を促進する。	11.b 気候変動の緩和と適応、 災害に対する強靭さ等を 目指す総合的政策及び計 画を導入・実施する
	総合的な対策						
1	地産地消の推進	•					
2	土地改良施設等を活用した再生可 能エネルギーの導入	•		•	•	•	
3	農地整備による機械作業の効率化	•			•		
4	農業水利施設の整備	•			•		
5	農業集落排水施設の普及・機能強化対策の取組み	•			•		
6	農業用ため池の防災・減災対策の推進	•					•
	農業分野の対策						
1	水稲栽培を通して排出されるメタン ガスの削減	•	•				
2	施設・農業機械の省エネ化の推進	•	•		•		
3	エネルギー作物の推進	•	•	•			
	施肥量の低減	•	•				
5	農地土壌への有機物施用による炭 素貯留の推進	•	•				
6	農業用廃プラスチックのリサイクル 等の推進	•	•				
7	水田からのメタン発生量を削減する 技術の開発	•	•				
8	農地土壌への炭素貯留量の増加に 向けた技術開発および検証	•	•				
9	気候変動の影響やリスクを最小限に する栽培の実践	•	•				•
10	地球温暖化に対応した品種育成な らびに栽培技術の開発	•	•				
11	気候変動に伴う難防除病害虫の診 断・防除技術の開発	•	•				
	畜産分野の対策						
1	飼料の県内自給率の向上	•	•		•		
2	県内和牛子牛の生産拡大	•	•		•		
3	温室効果ガスの排出が少ない飼養 管理技術の推進	•	•				
4	飼料用米を最大限活用した「近江 しゃも」の生産技術の確立	•	•				
	水産分野の対策						
1	漁船航行速度1割低減による燃油 消費量削減と二酸化炭素排出抑制	•			•		
2	資源管理型漁業の推進	•			•		
3	漁業の効率化・高度化や漁場の保全 技術の研究	•			•		
4	漁場環境、資源量等モニタリング	•					
	林業分野の対策						
1	活力ある森林活動の推進						
2	県産材をはじめとする森林資源の 循環利用の推進			•			
3	カーボン・オフセットによる森林づく りの推進						
4	災害に強い森林づくりの推進						•

12 持続可能な消費と生産のパターンを確保する 13 気候変動とその影響に立ち向かうため、緊急対策を取るする 12 つらを利用 13 XARRE ARRER ARRES ARRER ARR		15 陸上生態系の保護、回復および持続可能な利用の推進、森林の持続可能な管理、砂漠化への対処、土地劣化の阻止および逆転、ならびに生物多様性損失の阻止を図る			17 持続可能な開発に向けて実施手段を強化し、グローバル・パートナーシップを活性化する	関連する 成果指標 の番号	
12.2 天然資源の持続可能な 管理及び効率的な利用 を達成する		13.3 気候変動の緩和、適 応、影響軽減等に関す る教育、啓発等をを改 善する	15.1 陸域生態系と内陸淡 水生態系及びそれら のサービスの保全、回 復及び持続可能な利 用を確保する	15.2 森林の持続可能な経 営の実施を促進し、新 規植林及び再植林を 増加させる	15.8 外来種の侵入を防止 し、さらに優占種の駆 除または根絶を行う	17.17 効果的な公的、官民、市民 社会のパートナーシップを 奨励・推進する	T T
		•				•	
						•	
						•	1
						•	2
						•	3
	•					•	4
		•				•	5,6
						•	
		•				•	
		•				•	
		•				•	7,8,9
		•				•	
						•	10
						•	10
	•	•				•	11
	•					•	11、12,13
	•				•	•	13
						•	14
						•	15
						•	16
						•	17
		•				•	18
		•	•			•	19
			•			•	20
•			•			•	
			•	•		•	21,22
•		•				•	
		•				•	23,24 25,26
	•					•	27

6 用語解説

ア行	
ICT	Information and Communication Technologyの略。日本語では一般に"情報通信技術"と訳される。電気、電子、磁気などの物理現象や法則を応用した機械や器具を用いて情報を保存、加工、伝送する技術のこと。農業分野では、ICTを活用して、省力化や精密化などを進めた農業を「スマート農業」と称している。
アセットマネジメント	農業水利施設を資産としてとらえ、この資産のより効率的・経済的な、また環境に配慮した保全更新 手法の総称。
イサザ	ハゼ科の琵琶湖固有種。日中は主に水深20mより深い湖底に生息し、一部は水深90mの最深部にも分布するが、夜間には表層近くまで浮上する日周運動をする。冬季には沖曳き網(ちゅうびきあみ)と呼ばれる底引き網で、水深60m付近で多く漁獲され、佃煮や、じゅんじゅんと呼ばれるすき焼き風の鍋料理などに利用される。
一番茶	1年で最初に収穫して作られた茶のこと。番茶の中では最も品質が良いとされる。 一番茶以降に収穫される茶を、順に二番茶、三番茶という。
一酸化二窒素	温室効果ガスの一つ。温室効果への影響は二酸化炭素の298倍とされている。農林水産業においては、主に施肥直後の畑地からや、家畜排せつ物畜舎内での管理時に発生する。
稻WCS	稲Whole Crop Silage(稲発酵粗飼料)の略。水稲の子実と茎葉を同時に収穫し、発酵させて飼料とするもの。
A重油	JIS規格による重油の分類で、重油の中でも軽油に近い組成をしているもの。農業では主に施設園芸の加温機に使用される。
エリートツリー	スギ、ヒノキ等の樹木について、成長や材質等の形質が良い個体として選抜された樹木(精英樹)同士で人工交配等を行い、これにより得られた個体の中からさらに選抜されるスギやヒノキ等のこと。初期成長の早さや材質・通直性に優れる、花粉の量が少ないなどの特徴をもつ。
園芸作物	野菜、花き、果樹を含む作物の総称。
オオタバコガ	トマト、ナス、キャベツ、キクなど広範囲の作物を加害するチョウ目害虫。幼虫は体長4cm程度まで成長し、葉や新芽の食害する他、果実、茎、結球部などの内部へ侵入するため、生育抑制や品質低下などにより減収につながる。
カ行	
カーボン・オフセット	日常生活や企業等の活動で発生するCO ₂ (カーボン)を、森林による吸収や省エネ設備への更新により創出された他の場所での削減分で埋め合わせ(オフセット)する取組。国が温室効果ガスの排出削減量や吸収量をクレジットとして認証する制度として、「J - クレジット制度」がある。
カーボンニュートラル	温室効果ガスの排出を全体としてゼロにすること。二酸化炭素をはじめとする温室効果ガスの排出量から、森林などによる吸収量を差し引いてゼロとする。CO2ネットゼロやCO2ゼロエミッションと同義。
果肉障害	モモや日本なしなどの果実に発生する生理障害のこと。夏季の異常高温や大雨などによって果肉の 水浸化や変色など、果実内部に異常が生じ、品質が低下すること。
カバークロップ	主作物生産の前後いずれかに、地力向上や土壌表面保護などを目的として作付けされる作物のこと。本計画においては、環境保全型農業直接支払交付金の対象となる緑肥作物を指す。
緩効性肥料	通常の速やかに効果が出る肥料に比べ、効果が緩やかになるよう調節された肥料。作物の生育に合わせて、肥料の効果が徐々に出てくる利点をもち、省力化や環境保全につながる。被覆肥料は緩効性肥料の一種。
含鉄資材	褐鉄鉱、鉱さい(スラグ)、鉄粉および岩石の風化物で鉄分を10%以上含有するもの。鉄の製造過程で生産される副産物が主。鉄分の乏しい老朽化水田や畑の土壌改良を目的として利用される。
吸収源対策	森林や農地など二酸化炭素の吸収源となる対象の吸収・炭素固定機能を維持または向上するための対策のこと。
黒節病	麦類の病害の一つ。葉や茎に黒いすじが発生し、稈の生長が抑制され、穂の出すくみや葉焼け症状を 生じるバクテリア(細菌)による病害。秋冬期が温暖で生育が旺盛な年に、幼穂形成期頃に氷点下の 低温に遭遇すると発病が多くなる。
計画取水量	河川法において許可を得ている河川や琵琶湖から年間を通して水を取り入れられる量

原木	伐採された木材で、製材される前の丸太のこと。				
航空レーザ測量	航空機に搭載したレーザ測距装置を使用して、地表を水平方向の座標、高さの三次元で計測する方法。森林・林業分野では、森林資源や地形、境界情報などをデジタル化し整備、管理することに用いられる。				
耕畜連携	畜産農家から耕種農家(水稲、野菜等を栽培する農家)に家畜ふん堆肥を供給したり、耕種農家から 畜産農家に飼料を供給する等、相互に連携を図ること。				
高齢級化	齢級とは、森林の年齢の数え方のこと。苗木を植栽した年を1年生とし、5か年をひとくくりにして数える。高齢級化とは、主伐期(一般的に40~50年程度)を超え、森林の齢級が高くなっている状態のこと。				
コナジラミ類	ナス科、ウリ科、アブラナ科などを吸汁加害する微小な害虫。加害により生育抑制、品質低下を生じほか、排泄物によるすす病の発生やウィルス病を媒介する場合がある。体長約1mm。				
コントラクター	 畜産農家や耕種農家(水稲、野菜等を栽培する農家)から飼料の収穫・調製作業等を請け負う組織。				
サ行					
再造林	人工林を伐採した跡地に再び人工造林を行うこと。				
サブスクリプション制度	サブスクリプション(Subscription)は定期購読、継続購入のことであり、短期から長期契約で商品やサービスが定額で利用できる仕組みのことを指す。				
CO ₂ ゼロエミッション	温室効果ガスの排出を全体としてゼロにすること。二酸化炭素をはじめとする温室効果ガスの排出量から、森林などによる吸収量を差し引いてゼロとする。カーボンニュートラルやCO2ネットゼロと同義。				
CO₂ネットゼロ	温室効果ガスの排出を全体としてゼロにすること。二酸化炭素をはじめとする温室効果ガスの排出量から、森林などによる吸収量を差し引いてゼロとする。カーボンニュートラルやCO2ゼロエミッションと同義。 「ネットゼロ」は排出量と除去量を差し引いて「実質ゼロ」ということ。				
CO ₂ ネットゼロヴィレッジ構想	農村地域に存在する再生可能エネルギーを地産地消し、その取組を拡大していく構想。農村地域の抱える課題を資源にかえるモデル的なもので、例えば、管理に労力がかかる水路や長大法面に、太陽光パネルを設置することにより、エネルギー利用に加えて維持管理の省力化も図るなど、生活に溶け込んだCO2排出量削減の面的な広がりを推進するもの。				
J-クレジット	温室効果ガスの排出削減量や吸収量をクレジットとして国が認証する制度。農林水産省、経済産業省および環境省が平成25年から運営している。クレジットを購入する者は、入手したクレジットを地球温暖化対策の推進に関する法律(平成10年法律第117号)に基づく報告や、カーボン・オフセット等に利用することができる。				
資源管理型漁業	漁業者が話し合い、漁獲サイズや時期を制限するなどして、限りある水産資源を有効に利用し、漁業 経営の持続的安定化を目指す漁業。				
秋耕	秋の水稲収穫後に稲わらや刈株などの作物残渣を土中に鋤き込むこと。秋に鋤き込むことで、土壌中での腐熟を促進し、翌年に発生するメタンガスを削減できる他、ウイルスを保毒した害虫の越冬場所を減らすこと等の効果がある。				
重要魚介類	水産業に利用されている魚介類(水産資源)のうち特に重要なもの。琵琶湖ではアユやニゴロブナ、ホンモロコ、ビワマス、セタシジミ、スジエビなど種々の魚介類が重要魚介類として利用されている。				
主伐	収穫を目的とし、更新(伐採跡地が再度立木地となること)を伴う伐採のこと。伐採区域の立木をすべて伐採する皆伐と一部を伐採する択伐がある。				
主伐期	育成した林木を伐採して収穫する時期のこと。木材としての利用価値を考慮し、40~50年程度とするのが一般的である。				
硝化	細菌の働きよって、アンモニアイオン (NH_4^+) が亜硝酸イオン (NO_2^-) を経由して硝酸イオン (NO_3^-) に酸化される反応のこと。				
醸成	じっくりと時間をかけて築き上げていくこと。				
除間伐	除伐と間伐を合わせた言葉。除伐とは、育成の対象となる樹木の生育を妨げる他の樹木を切り払う作業。間伐とは、成長して込み合った立木の一部を抜き伐りすることで、立木の利用価値の向上と森林の有する諸機能の維持増進を図るための伐採。間伐した材を間伐材という。				
白未熟粒	玄米の登熟が不完全なものは未熟粒に分類され、その中でも乳白粒や背白粒など、粒全体または一部が白くなったものの総称。一般的に、水稲の登熟期が高温傾向に推移すると白未熟粒などが発生しやすく、検査等級格下げの主な要因となっている。				

水稲紋枯病	水稲の病害の一つ。最初、葉鞘の部分に褐色の楕円状の斑紋が現れ、場合によっては葉身にまで進展する。発病した葉鞘および葉身は枯れあがり、植物体の上位方向へ進展すると収量減を引き起こす 要因になる。
鋤き込み	肥料、堆肥、稲わらなどを加えながら耕すこと。
スジエビ	全長5~6cm程度の小型のエビで、日本全国の河川や湖沼に生息する。琵琶湖では冬季に深場に集まることから、沖曳き網(ちゅうびきあみ)と呼ばれる底引き網で比較的多量に漁獲される。主に佃煮に利用されるが、釣り餌として生きたままで出荷されることも多い。
スマート林業	地理空間情報やICT(情報通信技術)等の先端技術を活用し、林業の生産性や安全性の飛躍的な向上、需要に応じた高度な木材生産などを行う取組のこと。
精緻	きわめて詳しく細かいこと。
生分解性マルチフィルム	微生物によって分解される生分解性プラスチックを用いた農業用マルチフィルムのこと。通常のマルチと同様に使用できるうえ、栽培終了後に土中に鋤き込むことができるため、回収・廃棄の省力化や廃プラスチックの削減につながる。
セルロース	植物の細胞壁の主要構成成分。
造成ヨシ帯	琵琶湖や内湖などの岸辺に生育する根元が水に浸かっているヨシ(水ヨシ)群落は、ニゴロブナなどのコイ科魚類の重要な産卵場や仔稚魚の生育場所であるが、湖岸の開発等で減少したために湖岸に沿って人工的に帯状に造成した水ヨシ群落のこと。
夕行	
多収性	農作物の単位面積あたりの収穫量が多い性質のこと。
脱窒 土壌中の細菌が有機物を分解する過程で、硝酸イオン(NO3 ⁻)が還元され、窒素ガス 壌中から放出されること。	
湛水	水田に水を張った状態のこと。逆に水を抜き乾かした状態を乾田という。
治山事業	荒廃山地などの復旧や森林の維持・造成を通して水源の涵養(かんよう)と土砂流出の防止を進め、 国土の保全及び水資源の確保を図るための事業のこと。
長大法面	山間部に多く見られる草刈等の維持管理に労力を要する長い法面のこと。
地力	農作物を生産させる土壌の能力。一般的に地力が高いほど生産力が高い。地力の主な指標として、 土壌中に含まれ、農作物が吸収できる窒素(地力窒素)がある。
坪枯れ	水稲がトビイロウンカの被害の被害に遭い、水田の中に穴が空いたように突然枯れ込む現象。吸汁被害を受け、枯れた水稲がほ場内で同心円状に広がることで生じる。
DX	Digital Transformation(デジタルトランスフォーメーション)の略。ビジネスや生活において、電子データやデジタル技術を浸透させることで生活やサービス、ビジネスモデルなどを変革すること。
田畑輪換栽培	同一ほ場で、水稲と畑作物(麦類、大豆、野菜など)を輪作(順番に栽培)する栽培体系のこと。
登熟	穀物の種子が発育・肥大すること。 開花・受粉することで、種子の中にある胚乳へでんぷんが貯蔵されることで肥大する。
胴割粒	米粒に亀裂が入ること。出穂後の高温や収穫前の早期落水、刈り遅れ、過乾燥等によって発生する。 胴割粒は品質、食味だけでなく、精米の度合いにも大きく影響する。
土地改良施設	土地改良事業で造成した用排水路、揚排水機施設、農道などの施設
トビイロウンカ	水稲の重要な害虫の一つ。7月以降、長翅型成虫が海外から飛来する。飛来後、吸汁加害能力の高い 短翅型成虫が増え、飛来時期が早いと「坪枯れ」を生じる。体長4~4.8mm。
ナ行	
中生熟期	収穫に至るまでの栽培期間の長さを基準とした性質(早晩性)を示す言葉で、早生より遅く、晩生より早く収穫できる品種のグループ。滋賀県の水稲では、「日本晴」、「秋の詩」が該当する。
中干し	水稲移植後に一定の生育量になった時点で、田面を乾かすこと。土壌に空気を入れて還元状態を和らげ根を健全化し、過剰分げつを抑制する他、土壌中のメタン発生を抑制する効果がある。

二重カーテン	施設栽培において、パイプハウスの内側にビニール展張し二重構造とすることで、ハウス内に空気膜 を作り保温効率を向上させる技術。
日本国温室効果ガスインベント リ報告書	日本において1年間に排出・吸収された温室効果ガスの量をとりまとめたデータのことで、気候変動枠組条約の規定に基づき、毎年作成され、公表されている。
農業集落排水施設	管路、付帯施設、特殊構造物からなる管路施設及び処理水槽、建屋、各種機械設備、電気設備等からなる汚水処理施設で構成される施設。
農業水利施設	農地へのかんがい用水の供給を目的とするかんがい施設(ダム、ため池、取水堰、用水路など)、農地における過剰な地表水および土壌水の排除を目的とする排水施設(排水路、排水機場など)および、これら施設の監視や制御・操作を行う水管理施設の総称。
農作物残渣	水稲収穫後の稲わらや麦類収穫後の麦わらなど、農作物の栽培を終えたときにほ場に残る植物体のこと。
農地の集積・集約化	集積とは、地域の中心となる農業経営体に農地の利用権を集中させること。集約とは、農地の利用権を交換すること等により、農作業を連続的に支障なく行えるように農地を集めること。
八行	
バイオエタノール	サトウキビ、トウモロコシ、大豆といった植物資源に含まれるグルコース(糖)などを発酵させて作られるエタノールのうち、燃料として利用されるもの。バイオ燃料の一つ。
バイオ炭	燃焼しない水準に管理された酸素濃度の下、350℃超の温度でバイオマスを加熱して作られる固形物のこと。これまで廃棄されてきた果樹の剪定枝、間伐竹、もみ殻などのバイオマスを原料としたものの利用が期待されている。
バイオ燃料	生物起源であるバイオマスを燃料化したもの。主な種類にバイオエタノール、バイオディーゼル(BDF)、バイオガスがある。バイオ燃料に含まれる炭素分は植物が成長する過程で大気中のCO ₂ を固定したものであるため、燃焼しても大気中のCO ₂ 量は増加しない。
バイオマス	生物量、生物資源量を表す言葉。生物由来の有機性資源のうち化石資源を除いたもの(木、稲わら、 食品廃棄物、家畜排せつ物など)。
バイオメタン発酵プラント	家畜排せつ物や食品廃棄物といった有機物を一定温度で酸素の無い環境に置くことで、メタン菌の働きによって有機物を分解し、メタンガスなどのバイオガスを発生させる施設のこと。バイオガスの利用だけでなく、家畜排せつ物等の悪臭防止、副産物である液肥の利用なども期待される。
排出係数	温室効果ガスの排出量の算定に使用する係数であり、対象となる排出活動ごとに、算定方法や係数 の値が国によって公表されている。
パイプハウス	農業用施設の一つ。鉄パイプを骨組みとして、ビニールなどの被覆資材で覆う。骨組みの鉄パイプが 太いほど強度が増す。
斑点米カメムシ類	水稲の穂を吸汁して玄米に斑紋を作る(斑点米)カメムシ類の総称。斑点米が生じることで玄米の等級が下がる要因となる。体長15mm程度の大型の種から5mm程度の小型の種まで様々な種が確認されている。
BDF	Bio Diesel Fuelの略で、バイオディーゼルのこと。バイオ燃料の一つで、油脂から作られる。大豆、パーム、なたね、ひまわりなどから搾油される植物油や、植物油を食用に利用した後の廃食油から精製される。一般に軽油の代替品としてディーゼルエンジンの燃料に利用される。
ヒートポンプ	施設園芸栽培で使用される暖房機器の名称。
びわ湖カーボンクレジット	国のJ-クレジット制度で認証されたものの中で、滋賀県内で生み出されたクレジットのこと。 J-クレジット制度は、省エネルギー機器の導入や森林経営などの取組によるCO2などの温室効果ガス排出量の削減量や吸収量を「クレジット」として国が認証する制度で、環境省・経済産業省・農林水産省により運営されている。
フードマイレージ	食料の輸送量に輸送距離を掛け合わせた指標で、食料の輸入や長距離輸送が地球環境に与える負荷を表したもの。フードマイレージの値が大きいほど、輸送に費やすエネルギーが大きくなるため、地球環境に与える負荷も大きくなる。
複数魚介類混養	養殖用の人工池等で、複数種類の魚介類を混合して養殖すること。一つの池で1種類の魚種を育てるのが一般的であるが、海産魚の中には2種類を混合飼育した場合に成長が促進される事例が知られている。
復旧治山	治山事業のうち、崩壊地や荒廃渓流等の荒廃山地の復旧整備を行う事業のこと。
閉鎖循環式養殖	主に海産の魚類で実用化されつつある養殖の形態で、使用する飼育水を循環ろ過しながら繰り返し使用する方法。電気代や設備投資・維持にコストがかかる一方で、魚病の発生を抑え、水温調節により成長速度をコントロールできるなど、養殖の効率化を図ることができる。

斃死	野垂れ次ぬ、行き倒れになって死ぬこと。ここでは、動物が突然死ぬことを指す。	
ペレット化	利用しやすいように小さい固まりに加工すること。堆肥をペレット化することで、運搬や散布がしやす くなり、利便性が向上する。	
保安林	私たちの暮らしを守るために、特に重要な役割を果たしている森林で、水源の涵養(かんよう)・土砂災害の防止・生活環境の保全など特定の目的をもって森林法に基づき指定する森林。保安林では、それぞれの目的に沿った森林の機能を確保するため、立木の伐採や土地の形質の変更等が規制される。	
防除	農作物の病害や虫害を防ぎ、除くこと。	
包摂的	一定の範囲の中に包みこむこと。ここでは、誰も排除しないという意味。	
マ行		
メタン	温室効果ガスの一つで、有機物が嫌気状態で腐敗・発酵するときに生じる気体。温室効果ガスのうち、二酸化炭素に次いで多く、温室効果は二酸化炭素の25倍とされている。農林水産業においては、主に水稲の栽培時や牛の消化管内発酵(ゲップ)によって排出される。	
木育	子どもから大人までを対象に、木材や木製品とのふれあいを通じて木への親しみや木の文化への理解を深めて、木材の良さや利用の意義を学んでもらうための教育活動。	
木質バイオマス	樹木に由来するバイオマスのこと。樹木の木部、樹皮、葉などで、隣地に残された材や製材工場の残材、建築解体材も含む。	
藻場	藻場とは海では魚介類の産卵繁殖や生育場所となる海藻類が生育した浅場のことをいうが、琵琶湖では、同様の機能を持つ水草が生育する浅場や、根元が水に浸かったヨシ(水ヨシ)などの植物が生育する湖岸部のことをいう。これらを人工的に作ることを藻場造成といい、ヨシ帯造成もこれに含める。	
ヤ行		
予防治山	治山事業のうち、山地災害の防止のため、荒廃危険山地の崩壊等の予防等を行う事業のこと。	
ラ行		
緑肥作物	収穫を目的とせずに作付けされ、土壌に鋤き込むことで肥料になる作物のこと。窒素などの養分供給ができる他、炭素固定源としても利用される。主なものにレンゲやヘアリーベッチがある。	
連作	同一ほ場で、毎連続して同じ作物を栽培すること。連続して栽培することで、特定の菌が増える等、土 壌中の微生物や養分のバランスが偏り、作物の生育に支障を来すようになる。	
ワ行		
和牛胚移植	和牛の受精卵(和牛胚)を別の雌牛の子宮に移し、分娩させる技術。例えば、和牛胚を乳用種の雌牛の子宮に移すことにより、乳用種から和牛子牛が出生する。	
収穫に至るまでの栽培期間の長さを基準とした性質(早晩性)を示す言葉で、極早生よ 早生熟期 より早く収穫でき、比較的に生育期間が短い品種のグループ。滋賀県の水稲では、「み 「コシヒカリ」が該当する。		

CO₂ネットゼロ実現と気候変動への適応 ~みらいを創る しがの農林水産業気候変動対策実行計画~

発行 令和4年(2022年) 3月

滋賀県琵琶湖環境部森林政策課

TEL: 077-528-3910 FAX: 077-528-4886

滋賀県農政水産部農政課

TEL: 077-528-3812 FAX: 077-528-4880

〒520-8577 滋賀県大津市京町四丁目 1-1