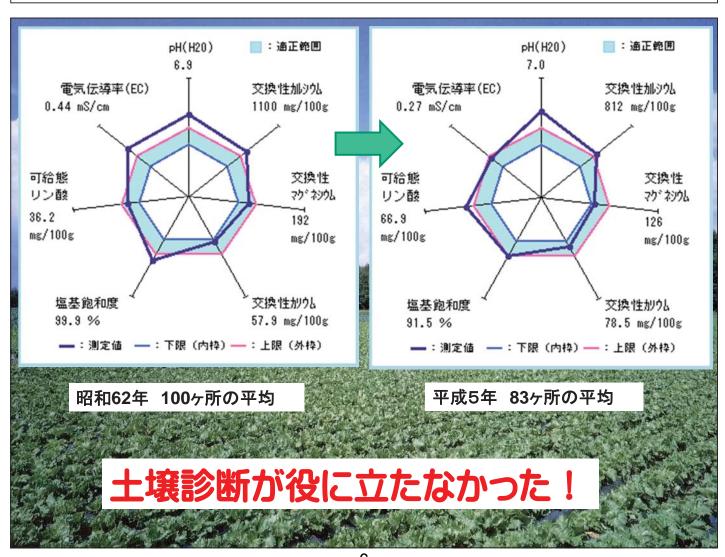
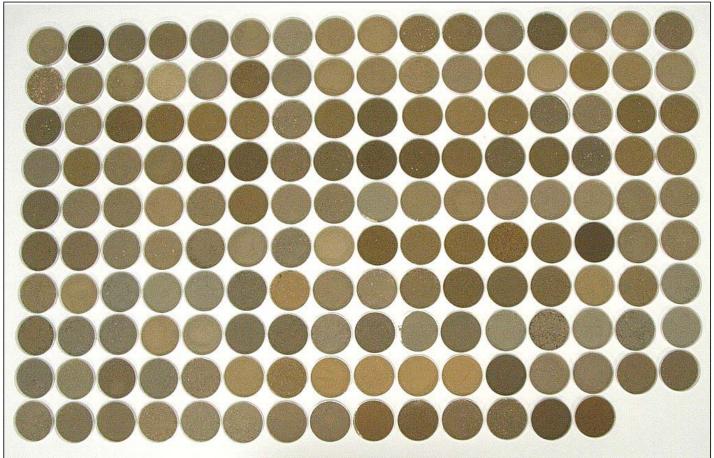


★ 昭和50年代から全国各地の野菜産地で土壌診断調査を始めた。

平成元年に「全国土の会」を立ち上げた

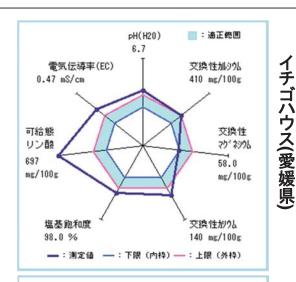
根こぶ病で全滅したカリフラワー畑


- ☆ 殺菌剤に頼り、まともな土壌酸性改良 を行っていなかった。
- ☆ 窒素施肥過剰で酸性化促進!
- ☆下層の緻密化が顕著。



ホモプシス根腐病で全滅したスイカハウス

- ★ 黒ボク土にもかかわらず、240mg/100g の可給態リン酸が蓄積。
- ☆ それでも、熔リンの施用を継続!
- ☆「土づくりのために」と堆肥の多量施用!


土壌肥料学の基礎・基本が農家に伝わっていない! それは、土壌肥料研究者の怠慢だ!

2003年に全国から156点のハウス土壌を集めた

協力:全国野菜園芸技術研究会

pH(H20)

- : 測定値 - : 下限(内枠) - : 上限(外枠)

電気伝導率(EC)

1.46 mS/cm

塩基飽和度

122 %

可給態

リン酸

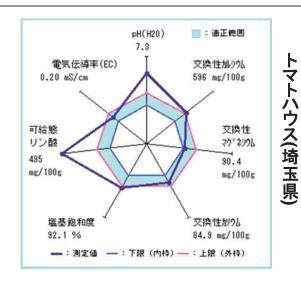
mg/100g

: 適正範囲

交換性加沙弘

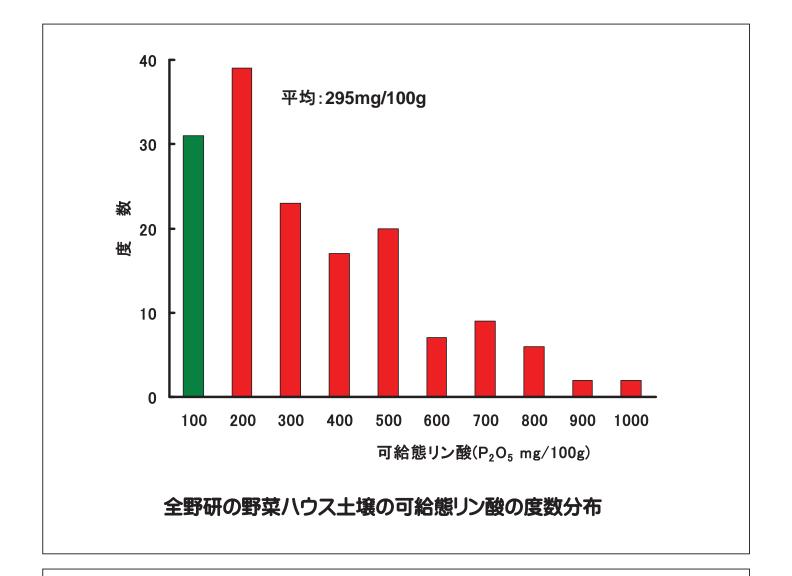
432 mg/100g

交換性から

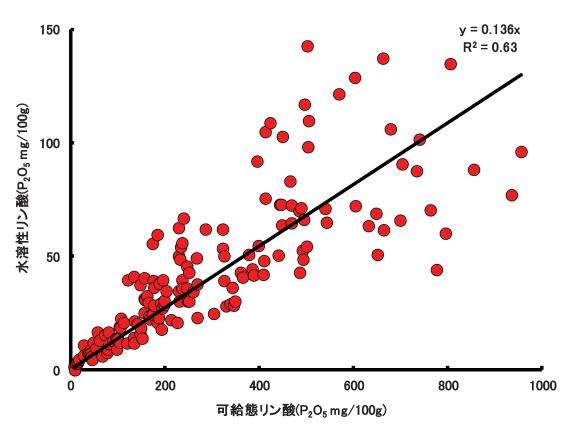

190 mg/100g

交換性

マク・ネシウム 74.6

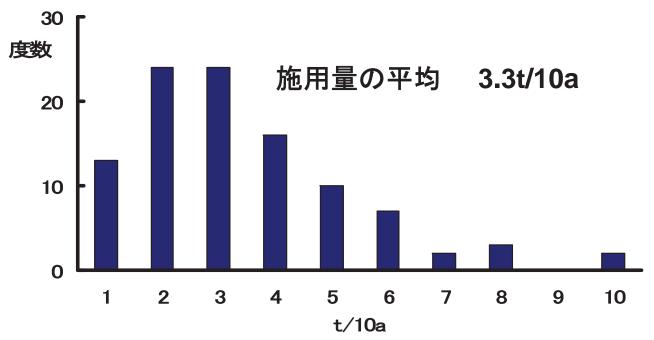

mg/100g

キュウリハウス(茨城県)

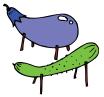


全野研のハウス土壌の土壌診断分析事例

★ いずれも、年季入りのベテラン農家



ハウス土壌には、驚異の水溶性リン酸!



全野研のハウス土壌における可給態リン酸と水溶性リン酸の関係

利用している堆肥の44%が家畜ふん堆肥

アンケート調査による施肥量(kg/10a)

種類	ハウス数	窒素	リン酸	カリ
トマト	29	23.0	23.1	23.8
キュウリ	27	57.1	44.1	37.2
イチゴ	7	19.8	16.1	9.6
全平均	61	37.3	31.1	28.2
牛糞堆肥※	分析例	8.7	10.4	10.2
豚ぷん堆肥※	分析例	35.5	55.4	15.4
鶏糞堆肥※	分析例	33.2	58.6	30.2

-9-

堆肥※:1t/10a当たりの肥料成分量

「土づくり迷信」&「堆肥迷信」

★ 農業生産者には「土づくり迷信」が蔓延している

- ☆「肥やし」を施せば、施すほどよい作物がたくさん穫れる。
- ☆「土づくり」の決め手は堆肥。
- ☆ 野菜づくりには石灰資材を必ず施す。
- ☆ 黒ボク土(火山灰土壌)には、リン酸資材を必ず施す。

★ 堆肥についても、「堆肥迷信」が根強い

- ★ 堆肥は、土づくり資材で肥やしではない。
- ☆ 完熟堆肥は「土」と同じ、たくさん施すほど土がよくなる。

ベテラン農家でも「迷信」に惑わされている!!これは、日本国内だけのことなのか?

韓国のハクサイ畑の土壌化学性								
地域	地点数	pH(H ₂ O)	腐植	可給態リン酸	7 7 10 7 1	交換性塩基(cmol ⁺ kg ⁻¹)		
			g/kg	mg/kg	K	Ca	Mg	dS/m
北部	82	6.1	30.1	747	2.06	6.9	1.6	0.66
中部	202	5.6	29.1	870	1.02	6.3	1.7	0.85
南部	145	5.6	26.5	629	1.30	6.5	1.9	1.63
平均	429	5.7	28.4	765	1.32	6.5	1.8	0.71
畑の記	適正域	6.0-6.5	20-30	300-500	0.5-0.6	5.0-6.0	1.5-2.0	2以下

韓国のハクサイ畑は、「メタボ土壌」! 低pH、リン酸・カリウム過剰!

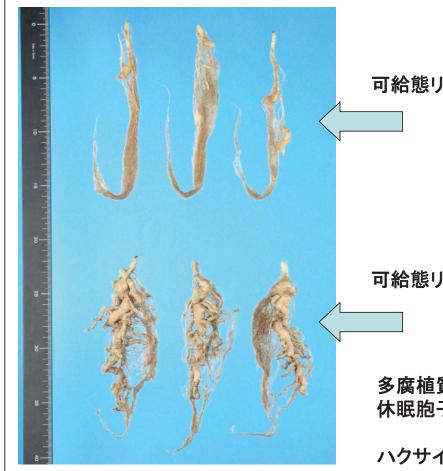
★ 下記の文献より引用

고랭지 주요작물의 시비 및 토양관리 실태

이정태 * · 이계준 · 장용선 · 황선웅 · 임 수 정 1 · 김창배 2 · 문영혼 3

고령지농업연구소 * , 강원도농업기술원 1 , 경상북도농업기술원 2 , 전라북도농업기술원 3

施肥推奨量と農家施肥量の比較


地域	作物	地点数	N-P ₂	O ₅ -K ₂ O 施肥量(kg/	ha)
			推奨量(A)	農家施用量(B)	B/A
	ジャガイモ	32	137-33-114	245-203-203	1.8-6.1-1.8
	ハクサイ	82	238-30- 71	365-236-281	1.5-7.9-4.0
北部	ダイコン	31	252-30- 68	304-203-202	1.2-6.8-3.0
	ニンジン	25	180-40- 74	263-208-247	1.5-5.2-3.3
	タマネギ	25	233-30-155	276-199-254	1.2-6.6-1.6
	キャベツ	41	312-30-217	355-222-243	1.1-7.4-1.1
	ジャガイモ	13	137-33-114	279-232-255	2.0-7.0-2.2
中部	ハクサイ	194	238-30- 71	378-248-297	1.6-8.3-4.2
	ダイコン	46	252-30- 68	306-215-245	1.2-7.2-3.6
	キャベツ	27	312-30-217	313-224-246	1.0-7.5-1.1
	ジャガイモ	14	137-33-114	235-141-155	1.7-4.3-1.4
南部	ハクサイ	145	238-30- 71	336-138-245	1.4-4.6-3.5
	ダイコン	71	252-30- 68	322-125-225	1.3-4.2-3.3

★ 下記の文献より引用

고랭지 주요작물의 시비 및 토양관리 실태

이정태* · 이계준 · 장용선 · 황선웅 · 임수정1 · 김창배 · 문영훈3

고령지능업연구소*, 강원도농업기술원1, 경상북도농업기술원2, 전라북도농업기술원3

可給態リン酸適正区(約20mg/100g)

発病度36

可給態リン酸過剰区(約200mg/100g)

発病度97

多腐植質黒ボク土、pH(H₂O) 6 休眠胞子密度 6×10⁶/g

ハクサイ(栽培期間 約1ヶ月)

可給態リン酸の過剰が根こぶ病の発病を助長する!