
「Webみどりくん」のレーダーチャート

畑・施設土壌用レーダーチャート

水田用レーダーチャート

★ 土壌診断レーダーチャートの全国統一化(分析項目と位置)ができないだろうか?

実践、土壌診断分析に基づいた施肥管理事例

北海道富良野市 奥野農園

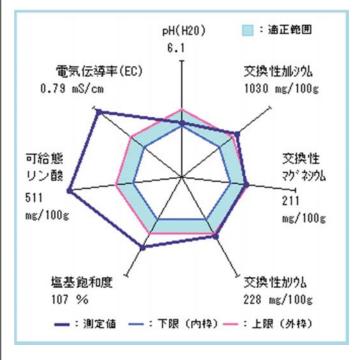
タマネギ ···11ha

ニンジン ・・・ 3ha

ニンニク ··· 2ha

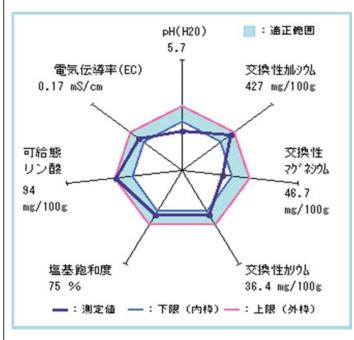
ホウレンソウ · · · 1ha

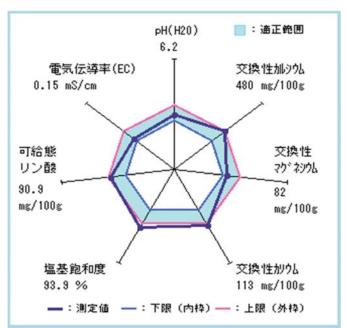
2002年 第14回 富良野大会から入会


収穫後に土壌診断

分析結果から施肥改善に

ホウレンソウ(タマネギ苗床ハウス)


: 適正範囲 pH(H20) 6.4 電気伝導率(EC) 交換性加沙鬼 0.41 mS/cm 782 mg/100g 可給態 交換性 リン酸 マケ・ネシウム 373 121 mg/100g mg/100g 塩基飽和度 交換性別先 113 % 138 mg/100g : 測定値 — : 下限(内枠) — : 上限(外枠)


2004年 可給態リン酸 511mg/100g

2011年 可給態リン酸 373mg/100g

ホウレンソウの基肥を尿素のみに変更

タマネギ畑

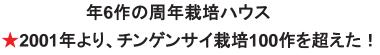
2004年

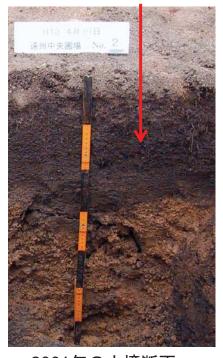
2015年

転炉スラグを施用→塩基バランスが改善

「全国土の会」入会前 施用量 (kg/10a)

作付品目	N	P ₂ O ₅	K ₂ 0	価格/10a
タマネギ	13	20	10	14, 000
ニンジン	12	20	10	11, 000
ホウレンソウ	7. 2	9.6	7. 2	7, 650


「全国土の会」入会後


作付品目	N	$P_{2}O_{5}$	K_20	価格/10a
タマネギ	15	5	5	9, 600
ニンジン	9.8	5.6	6.3	8, 050
ホウレンソウ	9.6	_	_	1, 580

土壌診断分析に基づいた施肥改善の実証試験事例

角田農園の青梗菜ハウスと入会当時の土壌断面 (遠州土の会) 可給態リン酸:540mg/100g

2001年の土壌断面

長年にわたる豚ぷん堆肥施用により 作土に有機物が蓄積して黒色化 (土壌は赤黄色土)

生ごみ100%の生ごみ肥料「みどりくん」

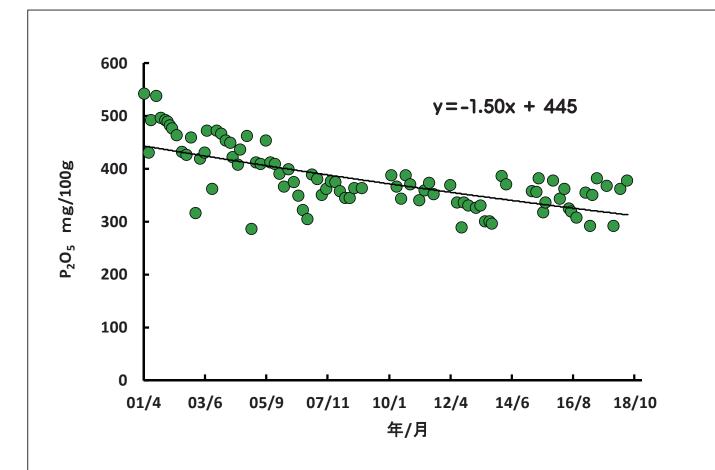
搾油

成型

生ごみ乾燥物 油脂 19% C/N 13.1

搾油物 油脂 7.2% C/N10.5

生ごみ肥料 (4-1-1)

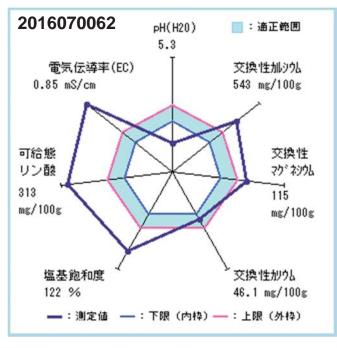

↔

超L型低成分肥料

★ 2010年: 仮登録

★ 2012年:特許取得

★ 2018年10月:公定規格 「食品残さ加工肥料」


「みどりくん」区における可給態リン酸の経時変化

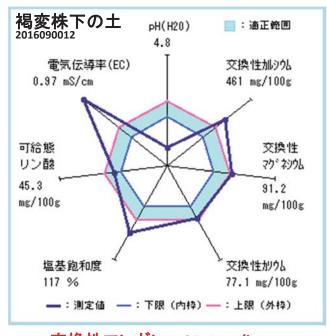
チンゲンサイ(100作)のリン酸量収支

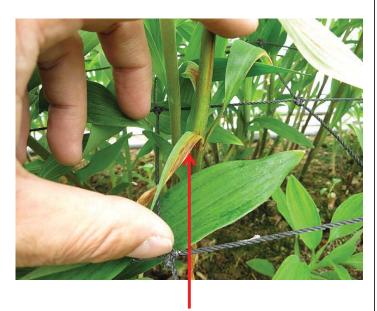
100作あたりのリン酸量収支	P_2O_5 kg/10a
チンゲンサイによる吸収量	-375
施肥量(「生ごみ肥料」由来)	247
吸収量 - 施肥量	-128
土壌のリン酸量の増減	-144

- ★ リン酸過剰土壌で、リン酸施用量を作物吸収量以下に削減すれば 土壌中のリン酸が減少することは、当たり前!
- ★ 18年間にわたる角田ハウスでの栽培試験で、新たな知見!

★最近、慣行区の硫酸イオンの蓄積が顕著になった★

2016070064 pH(H20) : 適正範囲 6.9 電気伝導率(EC) 交換性加沙鬼 0.30 mS/cm 652 mg/100g 可給態 交換性 リン酸 マグニネジウム 299 91.9 mg/100g mg/100g 塩基飽和度 交換性別別 109 % 35.6 mg/100g : 測定値 —: 下限(内枠) —: 上限(外枠)


硫酸イオン(SO₄²⁻) 慣行区:156 mg/100g 硝酸態窒素 6.6mg/100g 「みどりくん」区: 9.2mg/100g


2.0mg/100g

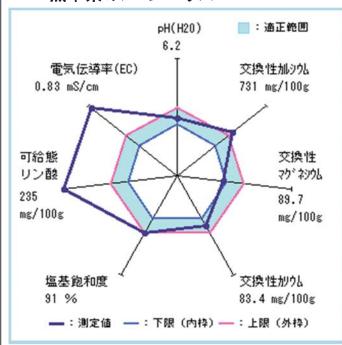
[慣行区での硫酸イオン蓄積原因]: 有機配合肥料に7.5%の硫酸イオンが含まれていたため。

硫酸イオンの蓄積が、pH(H₂O)の低下と電気伝導率の上昇をもたらす!

北海道のアルストロメリアハウスで、葉部に褐変が出現した!

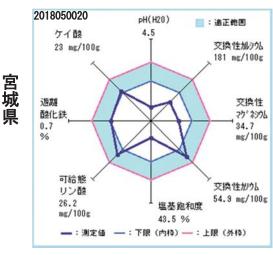
葉部に褐変症状

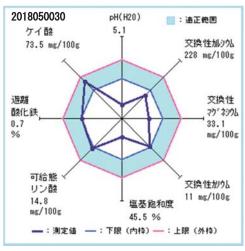
交換性マンガン: 35.4mg/kg 可給態マンガン: 16.4mg/kg 硝酸態窒素 : 23.2mg/100g 硫酸イオン


:102mg/100g

★ アルストロメリアの葉にマンガン過剰症による褐変 その原因は、硝酸態窒素・硫酸イオン過剰による土壌酸性化!

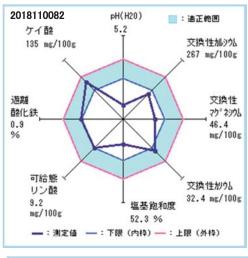
[注]可給態マンガン:DTPA可溶性

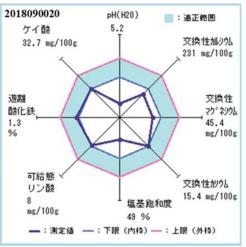

硫酸イオンが電気伝導率に及ぼす影響は、リン酸過剰で助長される!


黒ボク土のハウスと露地畑 熊本県のメロンハウス 茨城県のナガイモ畑

2017090015 : 適正範囲 pH(H20) 6.1 電気伝導率(EC) 交換性加沙鬼 0.16 mS/cm 312 mg/100g 可給態 交換性 マケドネシウム リン酸 3.7 54.8 mg/100g mg/100g 塩基飽和度 交換性別处 63.3 % 60.6 mg/100g - : 測定値 - : 下限(内枠) - : 上限(外枠)

硝酸態窒素 8.1mg/100g 硫酸イオン 154mg/100g 硝酸態窒素 2.9mg/100g 硫酸イオン 91.8mg/100g





出

山県

地力の低下が目立つ水園芸土壌とは対照的に

兵庫県

愛知県

農業者に役立つ土壌診断分析(化学性)

- ★ 土壌診断室間での手合わせ分析の励行
- ★ 土壌診断室での迅速土壌診断分析法の普及
- ★ 分析項目の取捨選択による省力化・迅速化
 - ☆ 腐植含有量は、土色でわかる
 - ☆リン酸吸収係数は不要
 - ☆ 微量要素は年に一度で充分
- ★リアルタイム土壌診断分析の 普及
 - ☆ 普及指導員・営農指導員・肥料商技術者向け: 電極法・簡易比色計法
 - ☆ 農業者向け:試験紙法
- ★ 簡易土壌試料採取器具の普及:土壌診断スコップ
- ★ 土壌診断室での堆肥分析の実施☆ 全量分析ではなく、0.5M/L 塩酸あるいは2%クエン酸抽出法

土色から	表 リン酸吸収係数の分析値と分析法				
判断できる腐植含有量	分析機関 _リ	ン酸吸収係数	女 分析法		
	<u>P</u>	$_{2}0_{5}$ mg/100g			
20%以上	平29-12	160	1:20 正リン酸法		
	平29-23	189	1:20 正リン酸法		
	平29-09	198	1:20 正リン酸法		
10~20%	平29-22	209	1:20 正リン酸法		
	平29-01	1270	1:2 リン安法		
	平29-15	1347	1:2 リン安法		
5~10%	平29-11	1410	1:2 リン安法		
	平29-02	1490	1:2 リン安法		
	平29-27	1520	1:2 リン安法		
	平29-03 平均	1550	1:2 リン安法		
3~ 5%	平29-10 1,570	1570	1:2 リン安法		
	平29-07	1600	1:2 リン安法		
	平29-14	1601	1:2 リン安法		
0~3%	平29-18 平29-24	1624 1774	1:2 リン安法 1:2 リン安法		
	平29-24 平29-08	1800	1:2 リン安法 1:2 リン安法		
	平29-17	1801	1:2 リン安法		
	注:可給態リン	竣 590mg/100g	(黒ボク土)		

農業者による「土壌診断に基づいた土づくり」 の普及に向けて

- ★「土づくりコンソーシアム」の主役は、農業者
- ★ 農業者に対する、「土と肥料の科学」の啓発
 - ★ 土壌医検定講習会・全肥商連施肥技術講習会への農業者の参加促進※ 農業者向け講座の新設など
 - ☆ 各種「土づくり講習会」の開催案内窓口の開設
 - ※ 地域土壌医の会・土を考える会・全国土の会 など
- ★ 土壌診断分析結果に対応できる肥料銘柄の供給
 - ☆リン酸過剰土壌にはV型肥料
 - ☆ リン酸・カリ過剰土壌にはL型肥料
 - ☆ 硫酸イオンが蓄積した園芸土壌には、無硫酸根肥料
 - ☆ 可給態ケイ酸・鉄欠乏・酸性化水田土壌には、転炉スラグ
 - ☆ 系統・商系の枠を取り外した肥料の流通自由化

田んぼや畑に肥やしを撒くのは農業者