作目:露地キク

	· ·								
生育ステージ	気象条件	要因	高温により発生が懸念 される障害・被害	発生要因	予防対策	発生時の対策	補足等	参考情報	技術開発の取組状況
親株(穂木採 取用株)	高温	生育·生理	早期発蕾	冬季温暖化傾向による低温遭遇時間の不足により、花芽の 分化が早期化し発蕾が早まる	冬至芽(株元や地中より発生するシュート)を親株として利用*1	親株の切り戻し, 親株の更新, 品種の 変更		*1: https://doi.org/10.1080/14620316.2013.11512977	
			穂木の伸長不良 (腋 芽の萌芽・伸長不良)	冬季の低温不足により、株の休眠打破が不十分となる*2	親株加温の開始時期を遅らせるなど、十分な低温遭遇期間をとる	発生後の有効な対策はありません		*2: https://doi.org/10.2503/jjshs.49.107	
		病虫害	ハダニ、アザミウマによる 吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止	予防対策に準じる			
			菌核病*3	高温・多湿環境下で糸状菌による感染が助長される	通気性改善 健全株の使用 マルチ等、土壌粒子の跳ね上げ抑制	病株の除去 治療効果のある農薬散布	糸状菌(Sclerotinia sclerotiorum)	*3: https://www.naro.affrc.go.jp/archive/flower/kakibyo/plant_search/ka/kiku/post_659.html	
			黒斑病·褐斑病	高温・多湿環境下で糸状菌による感染が助長される 落葉した罹病葉から水はねにより感染	土壌消毒*4, *5 健全株の使用 環境管理	農薬の潅注(土壌散布) 治療効果のある農薬散布 病株の除去	糸状菌(Septoria chrysanthemella、 Septoria obesa)	*4: https://www.pref.nara.jp/16496.htm *5: https://www.pref.oita.jp/uploaded/life/2221427_4476351_misc.pdf(大分県令和7年度防除方針:キク)	
			白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとっ て好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*6,*7,*8	病株の除去 治療効果のある農薬散布	糸状菌(Puccinia horiana)	*6: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *7: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *8: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発, 穂木の温湯処理 よる防除
さし芽 (適温範囲: 15~20℃)	高温·乾燥 時	生育·生理	生育·生理	発根不良	挿し芽時期の高温・乾燥による	日射量管理, かん水管理, 冷却 (頭上散水やヒートポンプ) インドール酪酸や1-NAAによる穂木の発 根促進, 低温処理による発根促進*9		*9: https://www.naro.affrc.go.jp/org/tarc/seika/jyouhou/H17/yasai/h17yasai27.html	
	高温·多湿 時	生育·生理	生育・生理	穂木の腐敗	高温・多湿環境での腐敗による	日射量管理, かん水管理, 冷却 (頭上散水やヒートポンプ) インドール酪酸や 1 - NAAによる穂木の発 根促進, 低温処理による発根促進*9		*9: https://www.naro.affrc.go.jp/org/tarc/seika/jyouhou/H17/yasai/h17yasai27.html	
			病虫害	白さび病	3月~梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*6, *7, *8	糸状菌(Puccinia horiana)	*6: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *7: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *8: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理 よる防除

作目:露地キク

生育ステージ	気象条件	要因	高温により発生が懸念 される障害・被害	発生要因	予防対策	発生時の対策	補足等	参考情報	技術開発の取組状況
栄養成長~発らい期	高温·乾燥 時		生育·生理	立ち枯れ、生育不良	土壌水分の不足による	かん水管理			
		生育·生理	生育・生理	花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる で成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	発生しにくい品種の選定
		病虫害	病虫害	ハダニ、アザミウマによる吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止			
	高温・多湿時	生育·生理	生育·生理	葉先や茎頂部の枯死	高温・多湿により急速に成長する部位の養分不足	温度や日射量に合わせたかん水、施肥		*12: https://www.naro.affrc.go.jp/org/warc/research_results/h10/yasai/cgk98138.html	
			生育·生理	花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用*11		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	発生しにくい品種の選定
			病虫害	土壌病害の発生	3月〜梅雨の期間までの温暖化傾向により、土壌病原菌に とって好適な環境が長期間継続する	土壌消毒*13 健全株の使用 適切な土壌管理	土壌病原菌(Rhizoctonia solani, Pythium spp., Fusarium solani, Fusarium oxysporum, Sclerotium rolfsiiなど)	*13: https://www.naro.affrc.go.jp/archive/flower/kakibyo/plant_search/ka/kiku/post_625.html	
			病虫害	白さび病	3月~梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*6, *7, *8	糸状菌(Puccinia horiana)	*6: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *7: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *8: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理はよる防除
	高温·乾燥時	生育·生理 ^操	生育·生理	花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用*11		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	発生しにくい品種の選定
			生育·生理	奇形花の発生、草姿の乱れ	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用*11		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	
			生育·生理	下葉の枯れ上がり	高温による水分不足	適切なかん水管理			
		病虫害	病虫害	ハダニ、アザミウマによる吸汁	3月以降の温暖化傾向により、書虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止			
発らい期〜収 穫	高温・多湿時	生育·生理	生育・生理	花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる で成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用*11		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	発生しにくい品種の選定
			生育·生理	奇形花の発生. 草姿の乱れ	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用*11		*10: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *11: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	
		病虫害	病虫害	白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*6, *7, *8	糸状菌(Puccinia horiana)	*6: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *7: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *8: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理に よる防除
			病虫害	キク花腐細菌病	高温・多湿条件下でキク花腐細菌病の感染が助長される	予防的な農薬散布*14	キク花腐細菌病 (Pseudomonas viridiflava)	*14: https://www.jstage.jst.go.jp/article/kyubyochu1955/49/0/49_0_56/_pdf	