作目:施設キク

作台:加i			高温により発生が懸念	≥	▽11十十4位	25.4-th かも445	油口红	公 本植和	++休用▼☆□+127□
生育ステージ	気家条件	要因	される障害・被害	発生要因	予防対策	発生時の対策	補足等	参考情報	技術開発の取組状況
親株(穂木採取用株)	高温	生育·生理	の本数や長さが減少す	高温遭遇時間が継続することにより親株の腋芽形成が阻 害され、腋芽が消失する	日射量管理, かん水管理, 冷却(頭上散水やヒートボンブ) 植物成長調整剤ベンジルアミノブリンの散布*1	腋芽が形成されている高さまで株を切り戻し, 萌芽を促す		*1: https://www.naro.go.jp/project/results/laboratory/karc/2002/konarc02-39.html	
			早期発蕾	冬季温暖化傾向による低温遭遇時間の不足により、花芽の分化が早期化し発蕾が早まる	冬至芽(株元や地中より発生するシュート)を親株として 利用*2	親株の切り戻し,親株の更新,品種の変更		*2: https://doi.org/10.1080/14620316.2013.11512977	
		病虫害	ハダニ、アザミウマによる 吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止	予防対策に準じる			
			黒斑病・褐斑病	高温・多湿環境下で糸状菌による感染が助長される	土壌消毒*3, *4 健全株の使用 環境管理	病株の除去	糸状菌(Septoria chrysanthemella、 Septoria obesa)	*3: https://www.pref.nara.jp/16496.htm *4: https://www.pref.oita.jp/uploaded/life/2221427_4476351_misc.pdf(大分県令和7年度防除 方針:キク)	
			白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*5, *6, *7	病株の除去 治療効果のある農薬散布	糸状菌(Puccinia horiana)	*5: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *6: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *7: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理による防除
さし芽 (適温範囲: 15~20℃)	高温·乾 燥時	生育·生理	活着不良、立ち枯れ	挿し芽後に高温・乾燥条件になることで発根不良および初 期生育の停滞が生じ、最終的に苗の萎凋や枯死を招く	日射量管理, かん水管理, 冷却 (頭上散水やヒートボンブ) インドール酪酸や 1 - NAAによる穂木の発根促進, 低温処理による発根促進*8	予防対策に準じる		*8: https://www.naro.affrc.go.jp/org/tarc/seika/jyouhou/H17/yasai/h17yasai27.html	
	高温·多 湿時	生育·生理	活着不良、立ち枯れ	高温・多湿条件が継続することにより生育不良となる	日射量管理, かん水管理, 冷却 (頭上散水やヒートボンブ) インドール酪酸や1-NAAによる穂木の発根促進, 低温処理による発根促進*8	予防対策に準じる		*8: https://www.naro.affrc.go.jp/org/tarc/seika/jyouhou/H17/yasai/h17yasai27.html	
		病虫害	土壌病害の発生	3月〜梅雨の期間までの温暖化傾向により、土壌病原菌 にとって好適な環境が長期間継続する	土壌消毒*9 健全株の使用 適切な土壌管理	農薬の潅注 (土壌散布) 病株の除去	土壌病原菌(Rhizoctonia solani, Pythium spp., Fusarium solani, Fusarium oxysporum, Sclerotium rolfsiiなど)	*9: https://www.naro.affrc.go.jp/archive/flower/kakibyo/plant_search/ka/kiku/post_625.html	
			白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*5, *6, *7	病株の除去 治療効果のある農薬散布	糸状菌(Puccinia horiana)	*5: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *6: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *7: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理 による防除
栄養成長期(消灯前)	高温·乾 燥時	生育·生理	生育不良、立ち枯れ	土壌水分の不足による	日射量管理, かん水管理, 冷却 (頭上散水やヒートポンプ) *10	予防対策に準じる		*10: https://www.pref.aichi.jp/uploaded/attachment/329810.pdf	
		病虫害	ハダニ、アザミウマによる 吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止	予防対策に準じる			
	高温·多 湿時	生育·生理	葉先や茎頂部の枯死	高温・多湿条件が継続することで、葉先や茎頂部 (成長が 旺盛な部分) で養分が不足する	換気や通風改善による蒸散促進 冷却(頭上散水やヒートボンブ) 温度や日射量に合わせたかん水、施肥	かん水量や施肥量の調整 カルシウム資材の薬面散布*11		*11: https://www.naro.affrc.go.jp/org/warc/research_results/h10/yasai/cgk98138.html	
			土壌病害の発生	3月〜梅雨の期間までの温暖化傾向により、土壌病原菌 にとって好適な環境が長期間継続する	土壌消毒*9 健全株の使用 適切な土壌管理	農薬の潅注 (土壌散布) 病株の除去	土壌病原菌(Rhizoctonia solani, Pythium spp., Fusarium solani, Fusarium oxysporum, Sclerotium rolfsiiなど)	*9: https://www.naro.affrc.go.jp/archive/flower/kakibyo/plant_search/ka/kiku/post_625.html	
			白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとっ て好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*5, *6, *7	病株の除去 治療効果のある農薬散布	糸状菌(Puccinia horiana)	*5: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *6: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *7: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理 による防除

作目:施設キク

作目:施記 生育ステージ	気象条件	要因	高温により発生が懸念 される障害・被害	発生要因	予防対策	発生時の対策	補足等	参考情報	技術開発の取組状況												
生殖成長期 (消灯〜発ら い)	高温・乾燥時	生育·生理	花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用, 適切な日射量管理, かん水管理, 冷却(頭上散水やヒートポンプ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
			奇形花の発生. 草姿 の乱れ	日中あるいは夜間に高温条件が数日以上継続することによる る 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理, かん水管理 冷却(頭上散水やヒートボンブ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
		病虫害	ハダニ、アザミウマによる 吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止	予防対策に準じる															
	高温·多湿時	生育·生理	葉先や茎頂部の枯死	高温・多湿条件が継続することで、葉先や茎頂部(成長が 旺盛な部分)で養分が不足する	換気や通風改善による蒸散促進 冷却(頭上散水やヒートポンプ) 温度や日射量に合わせたかん水、施肥	かん水量や施肥量の調整 カルシウム資材の葉面散布*11		*11: https://www.naro.affrc.go.jp/org/warc/research_results/h10/yasai/cgk98138.html													
			花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる る 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理, かん水管理 冷却(頭上散水やヒートボンブ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
			奇形花発生. 草姿の 乱れ	日中あるいは夜間に高温条件が数日以上継続することによる 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理, かん水管理 冷却(頭上散水やヒートポンプ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf/-char/ja													
		病虫害	白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*5, *6, *7	病株の除去 治療効果のある農薬散布	糸状菌(Puccinia horiana)	*5: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *6: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *7: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理 による防除												
生殖成長期(発らい〜収			下葉の枯れ上がり	高温による水分不足	換気の促進 冷却(頭上散水やヒートポンプ) 適切な日射量管理, かん水管理	予防対策に準じる															
			花芽形成の遅延	日中あるいは夜間に高温条件が数日以上継続することによる る 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理, かん水管理 冷却(頭上散水やヒートポンプ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
			花色の不良	アントシアニン系色素の減少*14, *15 赤からピンク系花色の発色不良	発色不良を起こしにくい品種*16 適切な日射量管理, かん水管理 冷却(頭上散水やヒートボンブ)	発生後の有効な対策はありません		*14: https://www.mdpi.com/2223-7747/13/13/1865 *15: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1003635/full *16: https://doi.org/10.1080/14620316.2006.11512130	発色不良を起こしにくい品種の選抜												
															奇形花の発生、草姿の 乱れ	日中あるいは夜間に高温条件が数日以上継続することによる る 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理, かん水管理 冷却(頭上散水やヒートボンブ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf	
			ハダニ、アザミウマによる 吸汁	3月以降の温暖化傾向により、害虫にとって好適な環境が 長期間継続する	予防的な農薬散布 早期発見 侵入阻止	予防対策に準じる															
穫)	高温・多湿時		下葉の枯れ上がり	葉の老化や根痛みによる水分吸収の不足	換気の促進 冷却(頭上散水やヒートポンプ)	発生後の有効な対策はありません															
			花芽形成の遅延	日中あるいは夜間に高温・乾燥条件が数時間以上継続することによる 花成ホルモン合成の低下による花芽発達抑制*12, *13	適切な日射量管理、かん水管理	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
			花色の不良	アントシアニン系色素の減少*14, *15 赤からピンク系花色の発色不良	発色不良を起こしにくい品種の利用*16 適切な日射量管理, かん水管理 冷却(頭上散水やヒートボンブ)	発生後の有効な対策はありません		*14: https://www.mdpi.com/2223-7747/13/13/1865 *15: https://www.frontiersin.org/journals/plant- science/articles/10.3389/fpls.2022.1003635/full *16: https://doi.org/10.1080/14620316.2006.11512130	発色不良を起こしにくい品種の選抜												
			奇形花の発生. 草姿 の乱れ	日中あるいは夜間に高温条件が数日以上継続することによる る 花成ホルモン合成の低下による花芽発達の障害*10, *11	高温開花性の高い品種の利用 適切な日射量管理,かん水管理 冷却(頭上散水やヒートポンプ)	発生後の有効な対策はありません		*12: https://www.naro.go.jp/project/results/laboratory/flower/2013/flower13_s02.html *13: https://www.jstage.jst.go.jp/article/hrj/18/4/18_381/_pdf													
		病虫害	白さび病	3月〜梅雨の期間までの温暖化傾向により、糸状菌にとって好適な環境が長期間継続する	予防的な農薬散布 抵抗性品種の利用 健全株の使用 穂木の温湯殺菌*5, *6, *7	病株の除去 治療効果のある農薬散布		*5: https://www.jstage.jst.go.jp/article/ktpps/2016/63/2016_41/_pdf *6: https://www.maff.go.jp/j/seisan/kaki/flower/attach/pdf/f_japanflower-13.pdf *7: https://www.naro.go.jp/laboratory/karc/prefectural_results/files/R01_5_10.pdf	抵抗性品種の開発,穂木の温湯処理による防除												