テトラニリプロール - II. 審査報告 - 1. 審査報告書の対象農薬及び作成目的

II. 審查報告

1. 審査報告書の対象農薬及び作成目的

1.1 審査報告書作成の目的

本審査報告書は、新規有効成分テトラニリプロールを含む製剤の登録に当たって実施した審査結果をとりまとめた。

1.2 有効成分

1.2.1 申請者 バイエルクロップサイエンス株式会社

1.2.2 登録名 テトラニリプロール

1-(3-クロロ-2-ピリジル)-4'-シアノ-2'-メチル-6'-メチルカルバモイル-3-

1.2.3 一般名 tetraniliprole (ISO)

1.2.4 化学名

IUPAC名: 1-(3-chloro-2-pyridyl)-4'-cyano-2'-methyl-6'-methylcarbamoyl-3-

{[5-(trifluoromethyl)- 2*H*-tetrazol-2-yl]methyl}pyrazole-5-carboxanilide

CAS名: 1-(3-chloro-2-pyridinyl)-*N*-[4-cyano-2-methyl-6-

[(methylamino)carbonyl]phenyl]-3-[[5-(trifluoromethyl)-2*H*-tetrazol-

2-yl]methyl]-1*H*-pyrazole-5-carboxamide

(CAS No. 1229654-66-3)

1.2.5 コード番号 BCS-CL73507

1.2.6 分子式、構造式、分子量

分子式 C₂₂H₁₆ClF₃N₁₀O₂

構造式

分子量 544.88

1.2.7 農薬原体中の有効成分の含有濃度

900 g/kg 以上

1.3 製剤

1.3.1 申請者

バイエルクロップサイエンス株式会社

1.3.2 名称及びコード番号

名称 コード番号

ヨーバルフロアブル AKD-1193

ヨーバルトップ箱粒剤 BCM-141

1.3.3 製造者

バイエルクロップサイエンス株式会社

(製造場)

ヨーバルフロアブル

バイエル社 ドルマーゲン工場

バイエルクロップサイエンス株式会社 大田工場

バイエルクロップサイエンス株式会社 防府工場

ヨーバルトップ箱粒剤

バイエルクロップサイエンス株式会社 防府工場

1.3.4 剤型

水和剤 (ヨーバルフロアブル)

粒剤 (ヨーバルトップ箱粒剤)

1.3.5 用途

殺虫剤 (ヨーバルフロアブル)

殺虫殺菌剤(ヨーバルトップ箱粒剤)

1.3.6 組成

ヨーバルフロアブル

テトラニリプロール 18.2%

水、界面活性剤等 81.8%

ヨーバルトップ箱粒剤

テトラニリプロール 1.5%

イソチアニル 2.0%

鉱物質微粉、鉱物質細粒等 96.5%

テトラニリプロール - II. 審査報告 - 1. 審査報告書の対象農薬及び作成目的

1.4 農薬の使用方法

1.4.1 使用分野

農業用

1.4.2 適用害虫への効果

テトラニリプロールは筋小胞体のリアノジン受容体に作用し、カルシウムイオン放出による異常な筋収縮を引き起こし、その結果、昆虫の行動が阻害され、死に至ると考えられており、IRAC (insecticide Resistance Action Committee) によりジアミド系 (28) に分類されている。

1.4.3 申請された内容の要約

ヨーバルフロアブル(テトラニリプロール 18.2%水和剤)

適用作物 適用害虫

キャベツコナガ、アオムシ、ネキリムシ類、ハイマダラノメイガ、ハ

スモンヨトウ、アブラムシ類、ネギアザミウマ、ウワバ類、ヨ

トウムシ、オオタバコガ、アザミウマ類

はくさい
コナガ、アオムシ、ハイマダラノメイガ、ヨトウムシ、ハス

モンヨトウ、アブラムシ類、オオタバコガ

ブロッコリー コナガ、アオムシ、ハイマダラノメイガ、ハスモンヨトウ、

アブラムシ類、ヨトウムシ

非結球あぶらな科葉菜類 コナガ

いちご ハスモンヨトウ、オオタバコガ

ねぎ ネギアザミウマ、ハモグリバエ類、シロイチモジョトウ、ネ

ギコガ、アザミウマ類

レタス
ヨトウムシ、ハスモンヨトウ、オオタバコガ、ハモグリバエ

類、アブラムシ類、ウワバ類

非結球レタス ヨトウムシ、ハスモンヨトウ、オオタバコガ、ハモグリバエ

類、アブラムシ類、ウワバ類

えだまめ マメシンクイガ、ウコンノメイガ、ハスモンヨトウ

だいず マメシンクイガ、ウコンノメイガ、ハスモンヨトウ

さといも ハスモンヨトウ

未成熟とうもろこし アワノメイガ

なす
ハスモンヨトウ、ハモグリバエ類、アブラムシ類、コナジラ

ミ類、オオタバコガ

トマト
ハモグリバエ類、アブラムシ類、コナジラミ類、ハスモンヨ

トウ

ミニトマト
ハモグリバエ類、アブラムシ類、コナジラミ類、ハスモンヨ

トウ

ピーマンアブラムシ類、コナジラミ類、オオタバコガ

テトラニリプロール - II. 審査報告 - 1. 審査報告書の対象農薬及び作成目的

きゅうり ハモグリバエ類、アブラムシ類、ハスモンヨトウ、ウリノメ

イガ、コナジラミ類、アザミウマ類

メロンアブラムシ類、コナジラミ類、ハモグリバエ類すいかアブラムシ類、コナジラミ類、ハスモンヨトウ

なし ハマキムシ類、シンクイムシ類 もも シンクイムシ類、モモハモグリガ

ぶどう ハマキムシ類

かき カキノヘタムシガ

りんご
ハマキムシ類、シンクイムシ類、ギンモンハモグリガ、キン

モンホソガ、ヒメボクトウ

小粒核果類 ケムシ類

すもも ケムシ類、シンクイムシ類

おうとう ハマキムシ類、オウトウショウジョウバエ

茶
チャノコカクモンハマキ、チャハマキ、チャノホソガ、ヨモ

ギエダシャク

花き類・観葉植物 ハスモンヨトウ

樹木類 ケムシ類

ヨーバルトップ箱粒剤(テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

適用作物 適用病害虫

稲(箱育苗) イネドロオイムシ、ツマグロヨコバイ、コブノメイガ、イネ

ツトムシ、ニカメイチュウ、イネミズゾウムシ、フタオビコヤ

ガ

いもち病、苗腐敗症(もみ枯細菌病菌)、白葉枯病、苗立枯 細菌病、内穎褐変病、もみ枯細菌病、穂枯れ(ごま葉枯病菌)

1.4.4 諸外国における登録に関する情報

令和2年1月現在、韓国、インドネシア等で登録されている。

2. 審査結果

2.1 農薬の基本情報

2.1.1 農薬の基本情報

有効成分及び製剤の識別に必要な項目のすべてについて妥当な情報が提供された。

2.1.2 物理的·化学的性状

2.1.2.1 有効成分の物理的・化学的性状

表 2.1-1: 有効成分の物理的・化学的性状試験の結果概要

衣	: 2.1-	1:有効成分の物理的	・化字的性状試験の結	未做安
	試験項目		試験方法	試験結果
色調・形状・臭気		色調・形状・臭気	官能法	ベージュ色・粉末・酢酸臭
密度		密度	OECD 109 空気比較比重計法	1.52 g/cm ³ (20 °C)
融点			OECD 102 DSC法	227∼230 °C
沸点			OECD 103 DSC法	測定不能 (230 ℃以上で分解)
蒸気圧		蒸気圧	OECD 104 蒸気圧天秤法	3.2×10 ⁻⁶ Pa (20 °C) 4.6×10 ⁻⁶ Pa (25 °C) 2.3×10 ⁻⁵ Pa (50 °C)
熱安定性		熱安定性	OECD 113 DSC法	230 ℃以上で分解
		水	OECD 105 フラスコ法	1.2 mg/L (20 °C)
		メタノール	_	2.9 g/L (20 °C)
溶		n-ヘプタン		$<$ 0.001 g/L (20 $^{\circ}$ C)
解	有	トルエン		0.17 g/L (20 °C)
	機溶	ジクロロメタン	OECD 105 フラスコ法	5.3 g/L (20 °C)
度	媒	アセトン	- ////-//	21.8 g/L (20 °C)
		酢酸エチル		6.4 g/L (20 °C)
		ジメチルスルホキシド		> 280 g/L (20 °C)
解離定数			OECD 112 分光光度法	9.1 (23 °C)
		タノール/水分配係数	OECD 117 HPLC法	2.6 (25 °C、pH 4) 2.6 (25 °C、pH 7) 1.9 (25 °C、pH 9)
		加水分解性	OECD 111	pH 4:半減期 288 日(25 ℃) pH 7:半減期 38.8 日(25 ℃) pH 9:半減期 18 時間(25 ℃)
		水中光分解性	OECD 316	半減期 3.4 日 (pH 4、25 ℃、694 W/m²、300~800 nm)

2.1.2.2 代謝物 M22 の物理的・化学的性状

化学名

IUPAC名: 2-[1-(3-chloropyridin-2-yl)-3-{[5-(trifluoromethyl)-2*H*-tetrazol-2-yl]methyl}-

1*H*-pyrazol-5-yl]-3,8-dimethyl-4-oxo-3,4-dihydroquinazoline-6-carbonitrile

コード番号 BCS-CQ63359

分子式 C₂₂H₁₄ClF₃N₁₀O

構造式

分子量 526.9

表 2.1-2: 代謝物 M22 の物理的・化学的性状試験の結果概要

><	·> 1/3+TP3	A TOTAL MANAGEMENT
試験項目	試験方法	試験結果
蒸気圧	OECD 104 蒸気圧天秤法	5.1×10 ⁻¹⁰ Pa (20 °C) 1.3×10 ⁻⁹ Pa (25 °C)
水溶解度	OECD 105 カラム溶出法	0.19 mg/L (20 °C、pH 7緩衝液)
オクタノール/水分配係数 (log Pow)	OECD 117 HPLC法	3.5 (25 °C、 pH 5) 3.5 (25 °C、 pH 7) 3.5 (25 °C、 pH 9)
加水分解性*	OECD 111	安定 (25 ℃、30 日間、pH 4、7、9)
水中光分解性	OECD 316	半減期 0.42 日 (pH 7、25 ℃、676 W/m²、300~800 nm)

^{*:}テトラニリプロールを用いた加水分解性の試験結果から評価

2.1.2.3 製剤の物理的・化学的性状

ヨーバルフロアブル (テトラニリプロール 18.2 %水和剤)

本剤の代表的ロットを用いた試験結果を表 2.1-3 に示す。

表 2.1-3: ヨーバルフロアブルの物理的・化学的性状試験の結果概要

_	* *					
	試験項目	試験方法	試験結果			
外観 13 生産第 3987 号 官能検査			類白色粘稠懸濁液体			
	原液安定性	昭和 35 年 2 月 3 日 農林省告示 71 号	室温、72 時間放置後、沈殿、分離は認められない。 -5℃、72 時間放置後、外観、性状に変化はない。			

希釈液安定性	昭和 35 年 2 月 3 日 農林省告示 71 号	沈殿、分離は認められない。
比重 振動式密度計法(JIS K0061)		1.10 (20 °C)
8型粘度計 (ローター No.2 30rpm)		691 mPa s (25 °C)
懸垂率	昭和 35 年 2 月 3 日 農林省告示 71 号	99.6 % 15 分後懸濁液中に油状物、沈殿などは認められない。
pH (1%懸濁液)	昭和35年2月3日 農林省告示71号に準ずる方法	4.7

ヨーバルトップ箱粒剤 (テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

本剤の代表的ロットを用いた試験結果を表 2.1-4 に示す。

表 2.1-4: ヨーバルトップ箱粒剤の物理的・化学的性状試験の結果概要

<u> </u>		
試験項目	試験方法	試験結果
外観	13 生産第 3987 号 官能検査	類白色細粒
粒度	昭和 50 年 7 月 25 日 農林省告示 750 号	850-1,700 µm 85.0 % 500-850 µm 15.0 % 300-500 µm 0.0 % 63-300 µm 0.0 % 63 µm 未満 0.0 %
見かけ比重	昭和 35 年 2 月 3 日 農林省告示 71 号	1.52
水中崩壊性	13 生産第 3987 号	2.2 分 (被覆層のみ)
崩壊性	同上	ふるい分け時間 10分 20分 300-1700 μm 100.0% 100.0% 106-300 μm 0.0% 0.0% 45-106 μm 0.0% 0.0% 45 μm 以下 0.0% 0.0%
水分	カールフィッシャー試薬の 滴定による定量	0.81%
pH (1 %懸濁液)	昭和35年2月3日 農林省告示71号に準ずる方法	8.44

2.1.2.4 製剤の経時安定性

ヨーバルフロアブル

室温における 3 年間の経時安定性試験の結果、有効成分の減衰、製剤の外観及び容器の状態に変化は認められなかった。

ヨーバルトップ箱粒剤

室温における 4 年間の経時安定性試験の結果、有効成分の減衰、製剤の外観及び容器の状態に変化は認められなかった。

2.1.3 使用方法の詳細

ヨーバルフロアブル (テトラニリプロール 18.2%水和剤)

表 2.1-5:ヨーバルフロアブルの「適用病害虫の範囲及び使用方法」

作物名	適用病害虫名	希釈 倍数	使用液量	使用時期	本剤の 使用回数	使用 方法	テトラニリプ ロール を含む農薬の 総使用回数
	コナカ゛ アオムシ ネキリムシ類 ハイマタ゛ラノメイカ゛ ハスモンヨトウ アフ゛ラムシ類 ネキ゛アサ゛ミウマ	200 倍	tル成型育苗トレイ1 箱またはペーパーポット 1 冊 (約 30×60 cm、使用 土壌約 1.5~4 L) 当り	育苗期後半 ~定植当日	1 回	灌注	
キャベツ	コナカ゛ アオムシ ウワハ゛類 ハイマタ゛ラノメイカ゛ ヨトウムシ ハスモンヨトウ オオタハ゛コカ゛ アフ゛ラムシ類 アサ゛ミウマ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	
	コナカ゛ アオムシ ハイマタ゛ラノメイカ゛ ヨトウムシ ハスモンヨトウ アフ゛ラムシ類	200 倍	セル成型育苗トレイ1 箱またはペーパーポット 1 冊 (約 30×60 cm、使用 土壌約 1.5~4 L) 当り	育苗期後半 ~定植当日	1 回	灌注	4回以内(灌注 は1回以内、散 布は3回以内)
はくさい	コナカ゛ アオムシ ハイマタ゛ラノメイカ゛ ヨトウムシ ハスモンヨトウ オオタハ゛コカ゛ アフ゛ラムシ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	
	コナカ゛ アオムシ ハイマタ゛ラノメイカ゛ ハスモンヨトウ アフ゛ラムシ類	200 倍	tル成型育苗トレイ1 箱またはペーパーポット 1 冊 (約 30×60cm、使用 土壌約 1.5~4 L) 当り	育苗期後半 ~定植当日	1 回	灌注	
ブロッコリー	コナカ゛ アオムシ ハイマタ゛ラノメイカ゛ ヨトウムシ ハスモンヨトウ アフ゛ラムシ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	
非結球あぶらな科 葉菜類 いちご	コナカ゛ ハスモンヨトウ オオタハ゛コカ゛	5000 倍 2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	2 回以内	散布	2 回以内

ねぎ	ネギアザミウマ ハモグリバエ類	200 倍	tル成型育苗トレイ1 箱またはペーパーポット 1 冊 (約 30×60 cm、使用 土壌約 1.5~4 L) 当り	育苗期後半 ~定植当日	1 回	灌注	
N.S.C.	シロイチモシ゛ヨトウ ネキ゛コカ゛ ハモク゛リハ゛エ類		100∼300 L/10 a	収穫3日前 まで	3 回以内	散布	
	アザミウマ類	2500 倍					4 回以内(灌注
	ョトウムシ ハスモンョトウ オオタハ゛コカ゛ ハモク゛リハ゛エ類 アフ゛ラムシ類	200 倍	tw成型育苗トレイ1箱またはペーパーポット1冊 (約30×60cm、使用 土壌約1.5~4L)当り	育苗期後半 ~定植当日	1 回	灌注	は1回以内、散布は3回以内)
レタス 非結球レタス	ウワハ゛類 ョトウムシ ハスモンヨトウ オオタハ゛コカ゛ ハモク゛リハ゛エ類	2500~ 5000 倍		収穫前日	3 回以内		
	アブラムシ類	2500 倍		まで	- ' '		
えだまめ	マメシンクイカ゛ ウコンノメイカ゛ ハスモンヨトウ		100∼300 L/10 a			散布	3 回以内
だいず	マメシンクイカ゛ ウコンノメイカ゛ ハスモンヨトウ	5000 倍	収穫7日前まで	2 回以内		2 回以内	
さといも	ハスモンヨトウ			収穫前日			
未成熟 とうもろこし	アワノメイカ゛			まで	3 回以内		3 回以内
なす	ハスモンョトウ ハモク゛リハ゛エ類 アフ゛ラムシ類 コナシ゛ラミ類	200 倍	25 ml/株	育苗期後半 ~定植当日	1 回	灌注	
	ハスモンヨトウ オオタハ゛コカ゛ アフ゛ラムシ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	
トマト	ハモク゛リハ゛エ類 アフ゛ラムシ類 コナシ゛ラ:類	200 倍	25 ml/株	育苗期後半 ~定植当日	1 回	灌注	4回以内(灌注 は1回以内、散
ミニトマト	ハスモンヨトウ ハモク゛リハ゛エ類 アフ゛ラムシ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	布は3回以内)
	アブラムシ類 コナジラミ類	200 倍	25 ml/株	育苗期後半 ~定植当日	1 回	灌注	
ピーマン	オオタハ゛コカ゛ アフ゛ラムシ類 コナシ゛ラミ類	2500~ 5000 倍 2500 倍	100∼300 L/10 a	収穫前日まで	3 回以内	散布	

	ハモク゛リハ゛ェ類 アフ゛ラムシ類	200 倍	25 ml/株	育苗期後半 ~定植当日	1 回	灌注	
きゅうり	ハスモンヨトウ ウリノメイカ゛ ハモク゛リハ゛ェ類	2500~ 5000 倍	100∼300 L/10 a	収穫前日	3 回以内		4回以内(灌注 4回以内(灌注 は1回以内、散 布は3回以内)
	アブラムシ類 コナジラミ類 アザミウマ類	2500 倍		まで			
	アブラムシ類 コナジラミ類	200 倍	25 ml/株	育苗期後半 ~定植当日	1 回	灌注	
メロン	ハモク゛リハ゛エ類 アフ゛ラムシ類 コナシ゛ラヾ類	2500~ 5000 倍 2500 倍	100∼300 L/10 a	収穫前日 まで	2 回以内	散布	3回以内(灌注
	77 うムシ類 コナシ゛ラミ類		25 ml/株	育苗期後半 ~定植当日	1 回	灌注	は1回以内、散 布は2回以内)
すいか	ハスモンヨトウ アフ゛ラムシ類 コナシ゛ラヾ類	2500~ 5000 倍 2500 倍	100∼300 L/10 a	収穫前日 まで	2 回以内	散布	
なし	- 177 / 大規 - ハマキムシ類 - シンクイムシ類	2300 百		収穫前日			
t t	シンクイムシ類 モモハモク゛リカ゛			まで	2 回以内	散布	2 回以内
ぶどう	ハマキムシ類	5000~		収穫7日前 まで 収穫前日			
かき	カキノヘタムシカ゛	10000 倍					
りんご	シンクイムシ類 シンクイムシ類 キ゛ンモンハモク゛リカ゛ キンモンホソカ゛ ヒメホ゛クトウ		200∼700 L/10 a				
小粒核果類 (すももを除く)	ケムシ類			まで			
すもも	ケムシ類 シンクイムシ類	5000 倍					
おうとう	ハマキムシ類 オウトウショウシ゛ョウハ゛ェ						
茶	チャノコカクモンハマキ チャハマキ チャノホソカ゛ ヨモキ゛エタ゛シャク	2500~ 5000 倍	200∼400 L/10 a	摘採7日前 まで	1回		1 回
花き類・観葉植物	ハスモンヨトウ		100∼300 L/10 a	∞ /- 5π+-	2 回以内		2 回以内
樹木類	ケムシ類	5000 倍	200∼700 L/10 a	発生初期	3 回以内		3 回以内

ヨーバルトップ箱粒剤 (テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

表 2.1-6:ヨーバルトップ箱粒剤の「適用病害	虫の範囲及び使用方法
--------------------------	------------

作				本剤の		テトラニリフ。ロールを	
物	適用病害虫名	使用量	使用時期	使用	使用方法	含む農薬の	含む農薬の
名				回数		総使用回数	総使用回数
	いもち病	育苗箱 (30×60×3 cm、	は種前		育苗箱の床土又は 覆土に均一に混和する		
	イネト [*] ロオイムシ	使用土壌約 5 L) 1 箱当り 50~75 g	は種時 (覆土前) 〜移植当日		育苗箱の上から 均一に散布する。		
	苗腐敗症		は種前		育苗箱の床土に 均一に混和する		
稲	(もみ枯細菌病菌) 	da Unite	は種時 (覆土前)	1 回	育苗箱の上から 均一に散布する。		3回以内 (移植時まで の処理は1回 以内、本田で は2回以内)
(箱育苗)	苗立枯細菌病		は種前		育苗箱の床土又は		
画	内穎褐変病	育苗箱 (30×60×3 cm、	100 (至1)3		覆土に均一に混和する		
	もみ枯細菌病 " ッマケ" ロヨコハ" イ " コブ" ノメイカ" " イネツトムシ " ニカメイチュウ イネミス" ソ" ウムシ フタオヒ" コヤカ"	使用土壌約 5 L) 1 箱当り 50 g	は種時 (覆土前) 〜移植当日		育苗箱の上から 均一に散布する。		
	穂枯れ (ごま葉枯病菌)		移植当日				

2.1.4 分類及びラベル表示

テトラニリプロール

毒劇物:テトラニリプロールは有機シアン化合物であるが、急性毒性試験(2.3.1.2 及び2.3.1.9 参照)の結果から、テトラニリプロール及びこれを含有する製剤は、毒物及び劇物取締法(昭和25年法律第303号)に規定する医薬用外劇物として指定されている「有機シアン化合物及びこれを含有する製剤」から除外する指定*がなされており、同法に規定する医薬用外毒物及び劇物に該当しない。

*:毒物及び劇物指定令(昭和40年政令第2号)において指定されている。

ヨーバルフロアブル

毒劇物: テトラニリプロール及びこれを含有する製剤は、毒物及び劇物取締法に規定する 医薬用外劇物として指定されている「有機シアン化合物及びこれを含有する製剤」 から除外する指定がなされており、同法に規定する医薬用外毒物及び劇物に該当 しない。

危険物:消防法(昭和 23 年法律第 186 号)により危険物として規制されている品目の含有量からみて、危険物の除外規定を満たすことから、同法に規定する危険物に該当しない。

テトラニリプロール - II. 審査報告 - 2. 審査結果

ヨーバルトップ箱粒剤

毒劇物:テトラニリプロール及びこれを含有する製剤は、毒物及び劇物取締法に規定する 医薬用外劇物として指定されている「有機シアン化合物及びこれを含有する製剤」 から除外する指定がなされており、同法に規定する医薬用外毒物及び劇物に該当 しない。

危険物:消防法により危険物として規制されている品目の含有量からみて、危険物の除外 規定を満たすことから、同法に規定する危険物に該当しない。

2.2 分析法

2.2.1 原体

原体中のテトラニリプロールはオクタデシルシリル化シリカゲル (C_{18}) カラムを用いて高速液体クロマトグラフ (HPLC) により分離し、紫外吸収 (UV) 検出器 (検出波長: 265 nm) により検出する。定量には絶対検量線法を用いる。

2.2.2 製剤

ヨーバルフロアブル(テトラニリプロール 18.2%水和剤)

製剤中のテトラニリプロールは C_{18} カラムを用いて HPLC により分離し、UV 検出器(検出 波長: 262 nm) により検出する。定量には絶対検量線法を用いる。

本分析法の性能は以下のとおりであり、製剤中のテトラニリプロールの分析法として、本 分析法は妥当であると判断した。

表 2.2-1: ヨーバルフロアブルの分析法の性能

選択性	妨害ピークは認められない。
直線性(r)	0.999
精確性(平均回収率(n=5))	99.5 %
繰り返し精度 (RSDr (n=5))	0.2 %

ヨーバルトップ箱粒剤(テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

製剤中のテトラニリプロールは C_{18} カラムを用いて HPLC により分離し、UV 検出器(検出 波長: 262 nm)により検出する。定量には内部標準法を用いる。

本分析法の性能は以下のとおりであり、製剤中のテトラニリプロールの分析法として、本 分析法は妥当であると判断した。

表 2.2-2:ヨーバルトップ箱粒剤の分析法の性能

選択性	妨害ピークは認められない。
直線性(r)	0.999
精確性(平均回収率(n=5))	100.0 %
繰り返し精度 (RSDr (n=5))	0.6 %

2.2.3 作物

2.2.3.1 分析法

テトラニリプロール及び代謝物 M22 の分析法

分析法①

分析試料をアセトニトリル/水/酢酸(90/10/0.5(v/v/v))で抽出し、 C_{18} ミニカラムで精製後、液体クロマトグラフタンデム型質量分析計(LC-MS-MS)で定量する。なお、水稲及びだいずは水で膨潤後、抽出する。

本分析法のバリデーション結果を表 2.2-3 に示す。作物中のテトラニリプロール及び代謝

物 M22 の分析法として、本分析法は妥当であると判断した。

表 2.2-3:作物残留分析法①のバリデーション結果

分析対象	定量限界 (mg/kg)	分析試料	メリン 加来 添加濃度 (mg/kg)	分析回数	平均回収率 (%)	RSDr (%)
	0.01	水稲	0.01	6	105	7.0
	0.01	(玄米)	0.5	6	96	4.9
	0.01	水稲	0.01	6	96	3.7
	0.01	(稲わら)	0.5	6	89	5.7
	0.01	水稲	0.01	6	100	12
	0.01	(もみ米)	0.5	6	99	2.4
	0.01	未成熟 とうもろこし · (子実)	0.01	6	107	5.3
	0.01		0.5	6	99	2.1
		だいず	0.01	6	80	3.2
	0.01	(乾燥子実)	0.5	6	94	2.6
		さといも	0.01	6	107	4.8
	0.01	(塊茎)	0.5	6	102	2.4
		はくさい (葉球)	0.01	6	95	7.3
			0.01	8	103	6.2
	0.01		0.5	6	99	4.9
			0.5	8	102	3.7
テトラニリプロール			2	8	97	2.9
	0.01	キャベツ (葉球)	0.01	6	96	4.4
			0.01	8	95	6.0
			0.5	6	102	2.3
			0.5	8	106	4.3
			1	8	104	2.9
			0.01	6	104	2.7
	0.01	こまつな (茎葉)	0.5	6	96	2.0
		(全米)	10	6	96	2.2
			0.01	6	93	4.3
	0.01	みずな (茎葉)	1	6	87	2.9
		(至未)	10	6	86	3.7
			0.01	6	100	2.9
	0.01	チンゲンサイ (茎葉)	0.5	6	92	2.3
		(全呆)	3	6	95	2.5
	0.01	ブロッコリー	0.01	6	76	4.3
		(花蕾)	0.01	5	109	6.2

			0.5	6	89	3.4
	0.01	ブロッコリー	0.5	5	98	2.9
	0.01	(花蕾)	4	6	95	3.9
			4	5	99	1.1
			0.01	6	102	4.5
			0.01	8	101	2.9
	0.01	レタス	0.5	6	95	2.4
	0.01	(葉球)	0.5	8	100	4.3
			2	6	95	1.5
			2	8	95	2.5
			0.01	6	96	5.8
	0.01	リーフレタス (茎葉)	0.5	6	90	1.8
		(主人)	20	6	94	2.2
			0.01	6	103	4.3
	0.01	サラダ菜 (茎葉)	1	6	91	1.6
			20	6	91	2.1
			0.01	6	95	7.8
			0.01	8	104	6.2
	0.01	ねぎ (茎葉)	0.5	6	91	2.6
テトラニリプロール		(主人)	0.5	8	97	2.3
			2	8	102	1.6
	0.01	ミニトマト (果実)	0.01	6	99	9.2
			0.01	5	99	10
			0.5	6	92	2.1
			0.5	5	103	2.1
			1	6	103	2.3
			0.01	6	100	6.2
	0.01	ピーマン (果実)	0.5	6	91	3.1
		(5/13/4)	2	6	97	2.6
			0.01	6	92	4.1
	0.01	なす	0.01	8	96	2.0
	0.01	(果実)	0.5	6	93	1.8
			0.5	8	96	1.5
	0.01	きゅうり	0.01	6	104	3.1
	0.01	(果実)	0.5	6	93	2.6
			0.01	6	109	4.0
	0.01	すいか	0.01	5	113	4.3
	0.01	(果肉)	0.5	6	92	3.5
			0.5	5	102	1.8

			0.01	6	108	5.5
	0.01	すいか	0.01	5	97	6.1
	0.01	(果実)	0.5	6	93	3.3
			0.5	5	98	1.6
		メロン	0.01	6	89	5.0
	0.01	(果肉)	0.5	6	94	2.8
		メロン	0.01	6	97	3.6
	0.01	(果実)	0.5	6	93	2.3
			0.01	5	89	2.7
	0.01	えだまめ (さや)	0.5	5	92	2.3
		(3.4)	1	5	95	2.1
	0.01	りんご (果実)	0.01	6	102	1.9
			0.5	6	102	2.0
		(果実)	1	5	92	1.9
	0.01	りんご	0.01	6	99	5.0
			0.5	6	99	1.5
		(可食部)1)	1	5	94	4.8
		りんご (非可食部)	0.01	6	94	5.0
テトラニリプロール	0.01		0.5	6	100	1.3
			1	5	92	3.7
	0.01	日本なし (果実)	0.01	6	109	7.9
			0.5	6	95	2.1
		日本なし	0.01	6	96	2.4
	0.01	(可食部) ¹⁾	0.5	6	95	2.4
		日本なし	0.01	6	91	6.5
	0.01	(非可食部)	0.5	6	99	2.2
		t t	0.01	6	101	9.2
	0.01	(果肉)	0.5	6	94	2.0
		t t	0.01	6	88	4.9
	0.01	(果実) ²⁾	0.5	6	91	8.6
		すもも	0.01	6	108	8.0
	0.01	(果実) ²⁾	0.5	6	103	3.1
		うめ	0.01	6	97	6.6
	0.01	(果実) ²⁾	0.5	6	90	4.1
			0.01	6	107	4.3
	0.01	おうとう (果実) ²⁾	0.5	6	96	2.6
		1	1 0.5	1	70	2.0

						•
			0.01	6	108	6.6
			0.01	5	90	5.4
	0.01	いちご	0.5	6	102	3.7
	0.01	(果実)	0.5	5	101	1.7
			1	6	107	4.7
テトラニリプロール			1	5	97	2.2
			0.01	6	111	7.0
	0.01	ぶどう (果実)	0.5	6	94	2.3
		()(50)	1	6	91	8.3
	0.01	かき	0.01	6	93	3.4
	0.01	(果実)	0.5	6	101	4.7
		水稲	0.008	6	91	6.5
	0.008	(玄米)	0.5	6	99	4.9
		水稲	0.008	6	84	8.8
	0.008	(稲わら)	0.5	6	91	3.5
	0.008	水稲 (もみ米)	0.008	6	91	8.8
			0.5	6	97	2.2
	0.008	未成熟	0.008	6	86	3.6
		とうもろこし (子実)	0.5	6	98	2.4
	0.008	だいず	0.008	6	89	2.3
		(乾燥子実)	0.5	6	94	1.4
		さといも (塊茎)	0.008	6	101	5.5
	0.008		0.5	6	99	3.8
/上海+世紀 N.500			0.008	6	101	3.6
代謝物 M22		はくさい	0.008	8	90	7.7
	0.008	(葉球)	0.5	6	98	3.1
			0.5	8	107	2.1
			0.008	6	108	2.8
	0.00=	キャベツ	0.008	8	91	5.0
	0.008	(葉球)	0.5	6	92	3.0
			0.5	8	105	2.9
		こまつな	0.008	6	97	1.2
	0.008	(茎葉)	0.5	6	92	0.8
		みずな	0.008	6	83	3.7
	0.008	(茎葉)	1	6	90	2.0
		チンゲンサイ	0.008	6	91	2.1
	0.008	ゲングンサイ (茎葉)	0.5	6	87	1.0

	_	T	Т	1		1
			0.008	6	92	3.0
	0.008	ブロッコリー	0.008	5	103	3.4
	0.008	(花蕾)	0.5	6	92	2.6
			0.5	5	101	2.1
			0.008	6	92	3.3
	0.000	レタス	0.008	8	108	4.9
	0.008	(葉球)	0.5	6	90	2.3
			0.5	8	100	2.7
	0.000	リーフレタス	0.008	6	97	5.2
	0.008	(茎葉)	0.5	6	87	1.2
	0.000	サラダ菜	0.008	6	92	1.0
	0.008	(茎葉)	1	6	89	0.8
		ねぎ (茎葉)	0.008	6	105	8.0
			0.008	8	110	6.2
	0.008		0.5	6	94	2.4
			0.5	8	101	2.9
			0.008	6	104	11
/ N. 28 L M		ミニトマト	0.008	5	97	4.9
代謝物 M22	0.008	(果実)	0.5	6	90	2.9
			0.5	5	100	1.5
	0.655	ピーマン (果実)	0.008	6	100	3.1
	0.008		0.5	6	93	3.1
			0.008	6	100	4.8
		なす	0.008	8	95	2.2
	0.008	(果実)	0.5	6	91	1.4
			0.5	8	95	1.8
	0.000	きゅうり	0.008	6	100	5.5
	0.008	(果実)	0.5	6	98	1.9
			0.008	6	100	3.4
		すいか	0.008	5	108	6.8
	0.008	(果肉)	0.5	6	94	2.9
			0.5	5	101	2.0
			0.008	6	99	1.6
		すいか	0.008	5	106	4.6
	0.008	(果実)	0.5	6	93	2.4
			0.5	5	100	1.3
L	1					1

		T	T	1		1
		メロン	0.008	6	93	5.2
	0.000	(果肉)	0.5	6	98	1.5
	0.008	メロン	0.008	6	97	3.7
		(果実)	0.5	6	92	2.3
	0.000	えだまめ (さや)	0.008	5	86	1.3
	0.008		0.5	5	92	0.9
	0.000	りんご	0.008	6	102	5.4
	0.008	(果実)	0.5	6	99	1.5
	0.000	りんご	0.008	6	92	2.1
	0.008	(可食部)1)	0.5	6	97	1.0
		りんご	0.008	6	93	6.0
	0.008	(非可食部)	0.5	6	97	1.5
	0.655	日本なし (果実)	0.008	6	90	3.5
	0.008		0.5	6	91	2.3
		日本なし (可食部) ¹⁾	0.008	6	110	3.6
	0.008		0.5	6	91	1.0
	0.008	日本なし (非可食部)	0.008	6	102	3.2
th mild o			0.5	6	95	2.7
代謝物 M22		5 5	0.008	6	102	8.1
	0.008	(果肉)	0.5	6	93	1.0
		もも (果実) ²⁾	0.008	6	90	5.4
	0.008		0.5	6	94	8.8
		すもも	0.008	6	102	3.7
	0.008	(果実) ²⁾	0.5	6	93	2.7
		うめ	0.008	6	97	3.8
	0.008	(果実)2)	0.5	6	87	1.5
		おうとう	0.008	6	100	7.6
	0.008	(果実) ²⁾	0.5	6	95	1.8
			0.008	6	96	3.2
		いちご	0.008	5	101	2.1
	0.008	(果実)	0.5	6	97	2.8
			0.5	5	100	1.5
		ぶどう	0.008	6	80	4.4
	0.008	(果実)	0.5	6	93	3.1
		かき	0.008	6	92	3.0
	0.008	かさ (果実)	0.5	6	96	3.5
1)・非可食部 (花おな	 - サロッド田+				70	3.3

¹⁾: 非可食部 (花おち、芯及び果梗の基部) を除去したもの ²⁾: 種子を除去したもの

分析法②

分析試料をアセトニトリル/水/酢酸(90/10/0.5(v/v/v))で抽出し、グラファイトカーボンミニカラム及び C_{18} ミニカラムで精製後、LC-MS-MS で定量する。

本分析法のバリデーション結果を表 2.2-4 に示す。作物中のテトラニリプロール及び代謝 物 M22 の分析法として、本分析法は妥当であると判断した。

表 2.2-4: 作物残留分析法2のパリアーション結果									
分析対象	定量限界 (mg/kg)	分析試料	添加濃度 (mg/kg) 分析回数		平均回収率 (%)	RSDr (%)			
			0.01	6	89	11			
テトラニリプロール			0.01	6	85	3.5			
	0.01	茶	0.5	6	95	4.6			
	0.01	(荒茶)	0.5	6	95	1.3			
			100	6	86	4.8			
			100	6	99	3.9			
			0.008	6	79	6.2			
			0.008	6	88	1.7			
代謝物 M22	0.000	茶	0.5	6	96	1.9			
1 (副170 IVI 2 2	0.008	(荒茶)	0.5	6	93	1.7			
			4	6	91	2.4			
		l				1			

表 2.2-4:作物残留分析法②のバリデーション結果

分析法③

分析試料を C_{18} ミニカラムで精製後、LC-MS-MSで定量する。

本分析法のバリデーション結果を表 2.2-5 に示す。作物中のテトラニリプロール及び代謝 物 M22 の分析法として、本分析法は妥当であると判断した。

96

2.4

表 2.2 g: 自 构次出为 自 L D D D D D D D D D D D D D D D D D D								
分析対象	定量限界	分析試料	添加濃度	分析回数	平均回収率	RSDr		
20 017 3231	(mg/kg)	22 NI H. 4/1 I	(mg/kg)	2 4 11 11 294	(%)	(%)		
テトラニリプロール		茶 (浸出液) ¹⁾	0.01	6	83	2.9		
	0.01		0.5	6	95	1.4		
			80	6	91	2.7		
		-140	0.008	6	93	0.9		
代謝物 M22	0.008	茶 (浸出液) ¹⁾	0.5	6	81	1.5		
			1	6	99	3.0		

表 2.2-5: 作物残留分析法③のバリデーション結果

2.2.3.2 保存安定性

水稲、未成熟とうもろこし、だいず、さといも、はくさい、キャベツ、こまつな、みずな、 チンゲンサイ、ブロッコリー、レタス、リーフレタス、サラダ菜、ねぎ、ミニトマト、ピーマ

^{1):} 荒茶に熱湯を加え5分間静置し、ろ過したもの

ン、なす、きゅうり、すいか、メロン、えだまめ、りんご、日本なし、もも、すもも、うめ、おうとう、いちご、ぶどう、かき及び茶を用いて実施した-20 ℃におけるテトラニリプロール及び代謝物 M22 の保存安定性試験の報告書を受領した。

試験には粉砕試料を用いた。分析法は2.2.3.1に示した作物残留分析法を用いた。

結果を表 2.2-6 に示す。残存率は添加回収率による補正を行っていない。いずれの試料についても、テトラニリプロール及び代謝物 M22 は安定(≧70%)であった。

作物残留試験における各試料の保存期間には、保存安定性試験における保存期間を超えるものはなかった。

表 2.2-6: 作物試料中における保存安定性試験の結果概要

表 2.2-6:作物記	7/19 1 1 (C 401)	る所行外に	二十二十八河大マファ	阳水侧女	,	
分析対象	分析試料	添加濃度 (mg/kg)	保存期間 (日)	残存率 (%)	添加回収率 ¹⁾ (%)	作物残留試験における 最長保存期間 (日)
	水稲 (玄米)	1	106	97	101	91
	水稲 (稲わら)	2	106	96	99	91
	水稲 (もみ米)	1	106	96	99	91
	未成熟 とうもろこし (子実)	1	108	88	89	98
	だいず (乾燥子実)	1	103	92	91	95
	さといも (塊茎)	1	76	94	91	72
	はくさい (葉球)	0.5	112	103	101	102
	キャベツ (葉球)	0.5	217	98	98	202
テトラニリプロール	こまつな (茎葉)	1	49	96	91	32
	みずな (茎葉)	1	22	86	90	20
	チンゲンサイ (茎葉)	1	84	92	96	74
	ブロッコリー (花蕾)	1	89	94	91	83
	レタス (葉球)	0.5	288	112	100	287
	リーフレタス (茎葉)	1	64	88	87	58
	サラダ菜 (茎葉)	1	105	90	93	101
	ねぎ (茎葉)	0.5	173	100	89	166
	ミニトマト (果実)	1	126	96	88	118
	ピーマン (果実)	1	65	96	91	56

	なす (果実)	0.5	266	95	96	257
	きゅうり (果実)	1	91	98	91	85
	すいか (果肉)	1	78	98	98	75
	すいか (果実)	1	78	92	95	75
	メロン (果肉)	0.5	78	100	100	70
	メロン (果実)	0.5	78	100	101	70
	えだまめ (さや)	1	180	98	96	175
	りんご (果実)	0.5	79	93	90	74
	りんご (可食部) ²⁾	0.5	79	96	88	76
	りんご (非可食部)	0.5	79	94	89	76
	日本なし (果実)	0.5	90	97	96	74
テトラニリプロール	日本なし (可食部) ²⁾	0.5	90	98	101	76
	日本なし (非可食部)	0.5	90	100	95	76
	もも (果肉)	1	139	94	94	124
	もも (果実) ³⁾	1	139	98	94	126
	すもも (果実) ³⁾	1	121	100	102	113
	うめ (果実) ³⁾	1	153	92	94	141
	おうとう (果実) ³⁾	1	138	100	99	128
	いちご (果実)	1	63	98	104	57
	ぶどう (果実)	0.5	132	94	99	125
	かき (果実)	1	68	102	99	63
	茶 (荒茶)	1	117	91	89	91
	水稲 (玄米)	1	106	96	98	91
	水稲 (稲わら)	2	106	96	98	91
代謝物 M22	水稲 (もみ米)	1	106	93	97	91
	未成熟 とうもろこし	1	108	90	92	98
	(子実) だいず	1	103	88	87	95
	(乾燥子実)	1	103	00	01	73

	さといも (塊茎)	1	76	100	95	72
	はくさい (葉球)	0.5	112	93	100	102
	キャベツ (葉球)	0.5	217	99	97	202
	こまつな (茎葉)	1	49	92	92	31
	みずな (茎葉)	1	22	86	84	19
	チンゲンサイ (茎葉)	1	84	86	90	73
	ブロッコリー (花蕾)	1	89	104	100	82
	レタス (葉球)	0.5	288	98	97	287
	リーフレタス (茎葉)	1	64	92	86	57
	サラダ菜 (茎葉)	1	105	92	89	100
	ねぎ (茎葉)	0.5	173	99	104	166
	ミニトマト (果実)	1	126	94	91	117
	ピーマン (果実)	1	65	99	98	55
代謝物 M22	なす (果実)	0.5	266	90	93	257
	きゅうり (果実)	1	91	90	92	85
	すいか (果肉)	1	78	95	98	75
	すいか (果実)	1	78	98	99	75
	メロン (果肉)	0.5	78	102	102	70
	メロン (果実)	0.5	78	100	101	70
	えだまめ (さや)	1	180	94	91	174
	りんご (果実)	0.5	79	91	92	74
	りんご (可食部) ²⁾	0.5	79	92	87	76
	りんご (非可食部)	0.5	79	91	92	76
	日本なし (果実)	0.5	90	94	85	74
	日本なし (可食部) ²⁾	0.5	90	94	91	76
	日本なし (非可食部)	0.5	90	94	90	76
	もも (果肉)	1	139	94	98	124

	もも (果実) ³⁾	1	139	96	91	125
	すもも (果実) ³⁾	1	121	94	96	113
	うめ (果実) ³⁾	1	153	92	98	140
代謝物 M22	おうとう (果実) ³⁾	1	138	89	93	127
1 气韵1 40 IVI 2 2	いちご (果実)	1	63	94	96	56
	ぶどう (果実)	0.5	132	97	100	125
	かき (果実)	1	68	100	97	63
	茶 (荒茶)	1	117	91	89	91

- 1): 添加濃度は 0.1 mg/kg (テトラニリプロール)、0.08 mg/kg (代謝物 M22)
- 2):非可食部(花おち、芯及び果梗の基部)を除去したもの
- 3):種子を除去したもの

2.2.4 家畜

2.2.4.1 分析法

テトラニリプロール、代謝物 M1 及び代謝物 M22 の分析法

分析法①

分析試料をアセトニトリル/水/ギ酸 (80/20/1 (v/v/v)) 及びアセトニトリル/水 (80/20 (v/v)) で抽出し、 C_{18} ミニカラムで精製後、LC-MS-MS で定量する。

本分析法のバリデーション結果を表 2.2-7 に示す。畜産物中のテトラニリプロール、代謝物 M1 及び代謝物 M22 の分析法として、本分析法は妥当であると判断した。

表 2.2-7: 家畜残留分析法①のバリデーション結果

分析対象	定量限界 ¹⁾ (mg/kg)	分析試料	添加濃度 ¹⁾ (mg/kg)	分析回数	平均回収率 (%)	RSDr (%)
		乳	0.01	14	95	6.2
		和	0.3	3	104	3.5
		クリーム	0.01	3	93	4.1
) y A	0.5	3	97	3.1
		無脂肪乳	0.01	3	96	0.6
		灬 加日加7千L	0.2	3	95	4.6
テトラニリプロール	0.01	筋肉	0.01	4	86	3.5
		肋例	0.1	3	79	9.6
		肝臓	0.01	5	86	6.5
		刀 加較	1.6	3	101	0
			0.01	4	87	1.7
		腎臓	0.03	3	86	1.8
			0.3	5	101	4.3

(代謝物 M22 Pip A							
代謝物 M1 0.01			巫	0.01	14	101	6.9
代謝物 M1			4L	0.3	3	112	5.4
代謝物 M1			27 11)	0.01	3	104	1.0
代謝物 M1			99-5	0.5	3	109	2.3
代謝物 M1 0.01 筋肉 0.01 4 86 2.0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4世 11年11年11	0.01	3	108	2.4
所向			無相別犯	0.2	3	104	9.3
日本語画	代謝物 M1	0.01	於 広	0.01	4	86	2.0
下臓			肋例	0.1	3	77	11
Pim 1.6 3 100 2.5 0.01 4 91 5.8 0.03 3 96 7.3 0.3 5 97 5.9 14 99 2.8 0.01 14 99 2.8 0.01 3 96 1.6 0.5 3 85 1.8 1.8 0.01 3 100 0.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.6 3 81 6.8 1.7 1.6 3 89 1.7 1.6 3 89 1.7 1.6 3 86 2.4 1.7 1.8			日工日本	0.01	5	88	4.0
呼職 0.03 3 96 7.3			万丁 加权	1.6	3	100	2.5
(大謝物 M22				0.01	4	91	5.8
(代謝物 M22			腎臓	0.03	3	96	7.3
発 0.3 3 94 2.7				0.3	5	97	5.9
(代謝物 M22 の.01 の.01 の.01 の.01 の.01 の.01 の.01 の.01			爫	0.01	14	99	2.8
(代謝物 M22			子 L	0.3 3	94	2.7	
代謝物 M22 0.01 0.5 3 85 1.8 無脂肪乳 0.01 3 100 0.6 0.2 3 81 6.8 0.01 4 98 4.3 0.1 3 91 8.3 1.6 3 89 1.7 0.01 4 96 2.8 腎臓 0.03 3 86 2.4			カリール	0.01	3	96	1.6
代謝物 M22 無脂肪乳 0.2 3 81 6.8 筋肉 0.01 4 98 4.3 0.1 3 91 8.3 日藤 0.01 5 95 5.9 1.6 3 89 1.7 0.01 4 96 2.8 腎臓 0.03 3 86 2.4			99.4	0.5	3	85	1.8
代謝物 M22 0.01 0.2 3 81 6.8 6.8 0.01 4 98 4.3 0.1 3 91 8.3 0.01 5 95 5.9 1.6 3 89 1.7 0.01 4 96 2.8 腎臓 0.03 3 86 2.4			4年11年11年31	0.01	3	100	0.6
新肉			無相別犯	0.2	3	81	6.8
肝臓 0.1 3 91 8.3 0.01 5 95 5.9 1.6 3 89 1.7 0.01 4 96 2.8 0.03 3 86 2.4	代謝物 M22	0.01	於 広	0.01	4	98	4.3
肝臓 1.6 3 89 1.7 0.01 4 96 2.8 腎臓 0.03 3 86 2.4				0.1	3	91	8.3
1.6 3 89 1.7 0.01 4 96 2.8 腎臓 0.03 3 86 2.4			田忠	0.01	5	95	5.9
腎臓 0.03 3 86 2.4			月17加段	1.6	3	89	1.7
				0.01	4	96	2.8
0.3 5 90 5.5			腎臓	0.03	3	86	2.4
				0.3	5	90	5.5

1): テトラニリプロール等量換算

分析法②

分析試料をヘキサン/アセトニトリル/水/ギ酸(50/40/10/0.5(v/v/v/v))及びアセトニトリル/水(80/20(v/v))で抽出し、 C_{18} ミニカラムで精製後、LC-MS-MS で定量する。

本分析法のバリデーション結果を表 2.2-8 に示す。畜産物中のテトラニリプロール、代謝物 M1 及び代謝物 M22 の分析法として、本分析法は妥当であると判断した。

表 2.2-8: 家畜残留分析法②のバリデーション結果

分析対象	定量限界 ¹⁾ (mg/kg)	分析試料	添加濃度 ¹⁾ (mg/kg)	分析回数	平均回収率 (%)	RSDr (%)
		0.01		4	84	4.9
		脂肪 (大網)	1.1	3	102	1.7
テトラニリプロール	0.01	脂肪 (腎周囲)	0.01	4	86	2.5
	0.01	加加 (有冲进)	1.1	3	103	1.7
		脂肪 (皮下)	0.01	4	84	6.0
		加加 (汉下)	1.1	3	96	6.0 0.6 7.6 3.1 6.9 3.3
		脂肪 (大網)	0.01	4	85	7.6
		加百加月 (人)、附中	1.1	3	97	3.1
代謝物 M1	0.01	脂肪 (腎周囲)	0.01	4	87	6.9
1 CB31 427 IVI I		加加 (有冲四)	1.1	3	97	3.3
		脂肪 (皮下)	0.01	4	84	11
		лылл (лх т)	1.1	3	88	1.7
		脂肪 (大網)	0.01	4	96	4.7
		カ目カグ (ノ 、 州中)	1.1	3	94	0.6
代謝物 M22	0.01	脂肪 (腎周囲)	0.01	4	95	3.1
\ 1 \ 103 101 101 102 103	0.01	加印加 ("月"四四)	1.1	3	95	1.1
		脂肪 (皮下)	0.01 4	93	3.5	
1) -1 - 11		71 (1X I)	1.1	3	87	1.3

^{1):} テトラニリプロール等量換算

2.2.4.2 保存安定性

分析試料の最長保存期間は30日未満であったため、試験実施は不要であると判断した。

2.2.5 土壌

2.2.5.1 分析法

(1) 水田土壌

テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 の分析法 分析試料をアセトニトリル/水/酢酸(80/20/0.6(v/v/v))で抽出し、 C_{18} ミニカラムで精製後、LC-MS-MS で定量する。

本分析法のバリデーション結果を表 2.2-9 に示す。水田土壌中のテトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 の分析法として、本分析法は妥当であると判断した。

表 2.2-9: 水田土壌分析法のバリデーション結果

	定量限界	分析試料	添加濃度	分析回数	平均回収率	RSDr
	(mg/kg)		(mg/kg) 0.005	3	(%) 101	(%) 4.4
			0.1	3	97	1.0
		壤土	0.25	3	99	2.7
			1	3	97	1.2
テトラニリプロール	0.005		0.005	3	105	1.5
			0.003	3	96	1.6
		シルト質壌土	0.25	3	98	1.0
				3	98	
			1			1.8
		壌土	0.004	3	94	3.3
			0.08	3	97	1.0
代謝物 M20	0.004		0.25	3	97	1.0
		, ,) ssiz i	0.004	3	97	2.7
		シルト質壌土	0.08	3	97	0.0
			0.25	3	97	1.6
	0.004		0.004	3	99	1.5
		壤土	0.08	3	100	0.6
代謝物 M21			0.25	3	99	2.1
1 404 10 3:323			0.004	3	99 102 100	2.0
		シルト質壌土	0.08	3		1.5
			0.25	3	98	2.1
			0.004	3	99	6.2
		壤土	0.08	3	94	1.6
/上語+## 3.4 22	0.004		0.25	3	91	1.9
代謝物 M22	0.004		0.004	3	100	2.5
		シルト質壌土	0.08	3	101	10
			0.25	3	92	1.3
			0.002	3	104	2.9
		壤土	0.08	3	97	1.6
15 76 1 4 1			0.25	3	96	1.8
代謝物 M43	0.002		0.002	3	105	2.0
		シルト質壌土	0.08	3	101	0.6
			0.25	3	96	1.0

(2) 畑地土壌

テトラニリプロール、代謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29 及び代謝物 M30 の分析法

分析試料をアセトニトリル/水/酢酸(80/20/0.6(v/v/v))で抽出し、 C_{18} ミニカラムで精製後、LC-MS-MS で定量する。

本分析法のバリデーション結果を表 2.2-10 に示す。畑地土壌中のテトラニリプロール、 代謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29、及び代謝物 M30 の分析法として、 本分析法は妥当であると判断した。

表 2.2-10: 畑地土壌分析法のバリデーション結果

分析対象	定量限界 (mg/kg)	分析試料	添加濃度 (mg/kg)	分析回数	平均回収率 (%)	RSDr (%)	
	(IIIg/kg)		0.005	3	92	11	
		火山灰 壌土	0.1	3	101	6.0	
		- 壊工	1	3	92	4.1	
テトラニリプロール	0.005		0.005	3	92	2.5	
		沖積 壌土	0.1	3	96	4.3	
			1	3	90	6.8	
			0.005	3	78	13	
		火山灰 壌土	0.1	3	88	2.9	
代謝物 M11	0.005		1	3	84	1.8	
(同 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\	0.005	3	86	12	
		沖積 壌土	0.1	3	85	1.2	
			1	3	83	6.6	
	0.005		0.005	3	89	14	
		火山灰 壌土	0.1	3	94	5.6	
代謝物 M14			1	3	89	6.6 14	
(193) 193 IVII 14		\d. 4**	0.005	3	87	10	
		沖積 壌土	0.1	3	90	4.0	
			1	3	89	12	
			0.004	3	106	4.4	
		火山灰 壌土	0.1	3	92	6.1	
代謝物 M22	0.004		1	3	84	1.8	
7 (成为 170 1 V 122	0.004) I set	0.004	3	112	1.4	
		沖積 壌土	0.1	3	89	4.3	
			1	1 3	83	3.7	
		1=	0.005	3	101	5.6	
代謝物 M29	0.005	火山灰 壌土	0.1	3	93	0.6	
		—	1	3	84	3.0	

			0.005	3	105	1.5
代謝物 M29	0.005	沖積 壌土	0.1	3	88	1.3
		4	1	3	87	13
			0.004	3	81	9.3
		火山灰 壌土	0.1	3	94	7.4
/♪=铂+₩m N /20	0.004		1	3	90	5.3
代謝物 M30	0.004		0.004	3	86	1.2
		沖積 壌土	0.1	3	92	2.7
		1 九上	1	3	88	9.8

2.2.5.2 保存安定性

(1) 水田土壌

本試験では、試料到着後、直ちに抽出し、抽出液が-30 ℃で保存されており、壌土及びシルト質壌土の抽出液を用いて実施した-30 ℃におけるテトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 の保存安定性試験の報告書を受領した。

分析法は2.2.5.1 に示した水田土壌分析法を用いた。

試験結果の概要を表 2.2-11 に示す。いずれの試料についても、テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 は安定 (≥ 70 %) であった。

土壌残留試験における各試料の保存期間には、保存安定性試験における保存期間を超えるものはなかった。

分析対象	分析試料	添加濃度 (mg/kg)	保存期間 (日)	残存率 (%)	添加回収率 (%)	土壌残留試験における 最長保存期間
- 1 - 11 - 0	壌土	0.5	47	92	_	(日)
テトラニリプロール	シルト質壌土	0.5	65	104	_	43
(十三計+Hm M20	壤土	0.5	181	106	_	172
代謝物 M20	シルト質壌土	0.5	181	108	_	140
代謝物 M21	壌土	0.5	174	104	_	172
1 人 耐 170 IVI 2 I	シルト質壌土	0.5	174	102	_	140
代謝物 M22	壌土	0.5	47	98	_	32
1 (副 49) [VI 22	シルト質壌土	0.5	65	88	_	43
/→ 章計/// N A A 2	壌土	0.5	210	94	_	205
代謝物 M43	シルト質壌土	0.5	210	96	_	165

表 2.2-11: 水田土壌抽出液中における保存安定性試験の結果概要

(2) 畑地土壌

本試験では、試料到着後、直ちに抽出し、抽出液が-30 ℃で保存されており、火山灰壌土及び沖積壌土の抽出液を用いて実施した-30 ℃におけるテトラニリプロール、代謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29、及び代謝物 M30 の保存安定性試験の報告書を受

領した。

分析法は2.2.5.1 に示した畑地土壌分析法を用いた。

試験結果の概要を表 2.2-12 に示す。いずれの試料についても、テトラニリプロール、代 謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29、及び代謝物 M30 は安定(≧70 %)で あった。

土壌残留試験における各試料の保存期間には、保存安定性試験における保存期間を超え るものはなかった。

土壌残留試験における 添加濃度 保存期間 残存率 添加回収率 分析対象 分析試料 最長保存期間 (mg/kg) (目) (%) (%) (目) 火山灰壤土 0.5 194 71 88 テトラニリプロール 沖積壌土 0.5 199 92 77 火山灰壤土 0.5 117 92 71 代謝物 M11 沖積壌土 0.5 77 117 96 火山灰壤土 0.5 117 95 71 代謝物 M14 沖積壌土 0.5 117 89 77 火山灰壤土 71 0.5 194 94 代謝物 M22 沖積壌土 0.5 199 90 77 火山灰壤土 0.5 117 95 71 代謝物 M29 沖積壌土 0.5 117 94 77 火山灰壤土 71 0.5 117 99 代謝物 M30 沖積壌土

表 2.2-12: 畑地土壌抽出液中における保存安定性試験の結果概要

0.5

2.2.6 田面水

2.2.6.1 分析法

テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 の分析法

117

101

77

分析試料に体積の5%の2%酢酸を加え、 C_{18} ミニカラムで精製後、LC-MS-MSで定量する。 本分析法のバリデーション結果を表 2.2-13 に示す。田面水中のテトラニリプロール、代謝 物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 の分析法として、本分析法は妥当である と判断した。

表 2.2-13: 田面水分析法のバリデーション結果

分析対象	定量限界 (mg/L)	分析試料	添加濃度 (mg/L)	分析回数	平均回収率 (%)	RSDr (%)
			0.001	3	96	0.6
	0.001	田面水 (砂質埴壌土)	0.1	3	97	1.0
テトラニリプロール		(0 4 2 3 1)	0.5	3	96	1.2
		田面水	0.001	3	96	2.2
		(シルト質壌土)	0.1	3	97	0.6

			0.5	3	99	0.6
		田面水	0.0008	3	92	1.7
代謝物 M20	0.0009	(砂質埴壌土)	0.1	3	97	2.4
1 (1811-19) WIZU	0.0008	田面水	0.0008	3	94	1.6
		(シルト質壌土)	0.1	3	97	1.2
		田面水	0.0008	3	98	1.0
人謝物 M21	0.0008	(砂質埴壌土)	0.1	3	99	1.0
1 (0.0008	田面水 (シルト質壌土)	0.0008	3	97	1.6
			0.1	3	100	0.6
		田面水	0.0008	3	88	0.7
人謝物 M22	0.0009	(砂質埴壌土)	0.1	3	96	1.2
1 (1811-19) IVIZZ	0.0008	田面水	0.0008	3	89	2.8
		(シルト質壌土)	0.1	3	94	1.6
		田面水	0.0004	3	87	2.0
代謝物 M43	0.0004	(砂質埴壌土)	0.1	3	98	6.8
「人耐」170 1814-3	0.0004	田面水	0.0004	3	94	5.3
		(シルト質壌土)	0.1	3	101	5.4

2.2.6.2 保存安定性

水質汚濁性試験においては、試料採取当日に分析が行われていることから、保存安定性試験は不要と判断した。

2.3 ヒト及び動物の健康への影響

2.3.1 ヒト及び動物の健康への影響

2.3.1.1 動物代謝

ピラゾール-カルボキサミド基の炭素を 14 C で標識したテトラニリプロール (以下「[pyc- 14 C] テトラニリプロール」という。)、フェニル-カルバモイル基の炭素を 14 C で標識したテトラニリプロール (以下「[phc- 14 C]テトラニリプロール」という。)、ピリジン環の 2 位の炭素を 14 C で標識したテトラニリプロール (以下「[pyr- 2 - 14 C] テトラニリプロール」という。)及びテトラゾリル基の炭素を 14 C で標識したテトラニリプロール (以下「[tet- 14 C]テトラニリプロール」という。)を用いて実施した動物代謝試験の報告書を受領した。

放射性物質濃度及び代謝物濃度は、特に断りがない場合には、テトラニリプロール換算で表示した。

$$[pyc^{-14}C] \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C] \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C] \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C] \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{y} \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{\tau} = \vec{\tau} = \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{\tau} = \vec{\tau} = \vec{\tau} = \vec{\tau} = -\nu$$

$$(phc^{-14}C) \vec{\tau} \mid \vec{\tau} = \vec{\tau} =$$

*:14C 標識の位置

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1)から(4)に転記する。

(1) ラット①

① 吸収

a 血中濃度推移

Wistar ラット (一群雌雄各 4 匹) に、[pyc-¹⁴C]テトラニリプロールを 2 mg/kg 体重 (以

下 $[2.3.1.1(1) \sim (4)]$ において「低用量」という。)若しくは 20 mg/kg 体重(以下 [2.3.1.1(1)] において「中用量」という。)で単回経口投与、又は Wistar ラット(雄 4 匹)に、非標識テトラニリプロールを低用量で 14 日間反復経口投与後、 $[pyc^{14}C]$ テトラニリプロールを低用量で単回経口投与(以下 [2.3.1.1(1)] において「反復経口投与」という。)して、血漿中濃度推移について検討された。

血漿中薬物動態学的パラメータは表 2.3-1 に示されている。

単回投与群と反復投与群との間で血漿中濃度に顕著な差は認められず、投与量の増加に伴って吸収率の低下がみられた。血漿中濃度は雄に比べて雌でやや高めに推移し、低用量及び中用量投与群ともに雌の AUC が雄の約2倍となった。

	我 2.5-1: 血永 「 未 例					
	投与量 (投与方法)		2 mg/kg体重 (単回経口)		20 mg/kg体重 (単回経口)	
性	別	雄	雌	雄	雄	雌
Tmax	T _{max} (hr)		1.60	1.02	1.35	3.97
C _{max} (II	規化値)	0.151	0.214	0.131	0.00695	0.00940
T. (1.)	吸収相		0.40	0.20	0.49	0.18
T _{1/2} (hr) 消失相		27.9	18.0	30.1	14.3	4.1
AUC _{0-∞} (正規化値)	1.21	2.36	1.27	0.06	0.12

表 2.3-1: 血漿中薬物動態学的パラメータ

b 吸収率

胆汁中排泄試験 [2.3.1.1(1) ④ b] における胆汁及び尿中に排泄された放射性物質並びに体内残留放射性物質の合計から、低用量投与後 48 時間におけるテトラニリプロールの体内吸収率は、少なくとも雄で 45.6%、雌で 29.6% と算出された。

② 分布

Wistar ラット(一群雌雄各 4 匹)に、[pyc-¹⁴C]テトラニリプロールを低用量、中用量若しくは 200 mg/kg 体重(以下 [2.3.1.1 (1)]において「高用量」という。)で単回経口投与又は Wistar ラット(雄 4 匹)に、[pyc-¹⁴C]テトラニリプロールを反復経口投与して、体内分布試験が実施された。中用量及び高用量投与群では、標識化合物と非標識化合物が混合され、投与された。

投与72時間後における主要臓器及び組織中の残留放射性物質濃度は表2.3-2に示されている。

いずれの投与群においても、臓器及び組織中の残留放射性物質濃度は低かった。放射性物質は肝臓において最も高く認められたが、最大でも 0.221 % TAR であり、低用量投与群雌のカーカス* (0.107 % TAR) を除き、その他の臓器及び組織において 0.1 % TAR を超えるものはなかった。

注) C_{max} 及び AUC_{0∞}の値は、血漿中放射性物質濃度を体重当たりの投与放射性物質量で除した補正値(正規化値)を用いて算出された(単位: kg(体重)/kg(血漿試料)及び hr kg(体重)/kg(血漿試料))。

^{*:}組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

投与量 (投与方法)	雄	雌
2 mg/kg体重 (単回経口)	肝臓(0.0593)、腎臓(0.0052)、血漿(0.0035)、血球(0.0020)	肝臓(0.111)、腎周囲脂肪(0.0261)、腎臓(0.0115)、副腎(0.0086)、卵巣(0.0078)、血漿(0.0057)、子宮(0.0054)、皮膚(0.0048)、肺(0.0045)、カーカス(0.0042)、血球(0.0035)
2 mg/kg体重/日 (反復経口)	肝臓(0.0658)、血漿(0.0062)、腎臓(0.0046)、肺(0.0026)、皮膚(0.0018)、 血球(0.0017)	
20 mg/kg体重 (単回経口)		肝臓(0.0636)、腎周囲脂肪(0.0075)、腎臓(0.0060)、血漿(0.0030)
200 mg/kg体重 (単回経口)	全ての組織(<loq)< td=""><td>肝臓(0.425)、その他(<loq)< td=""></loq)<></td></loq)<>	肝臓(0.425)、その他(<loq)< td=""></loq)<>

表 2.3-2: 投与 72 時間後 a における主要臓器及び組織中の残留放射性物質濃度 (μg/g)

③ 代謝

排泄試験[2.3.1.1(1)④]で得られた尿、糞及び胆汁を試料として、代謝物同定・定量試験が実施された。

尿、糞及び胆汁中代謝物は表 2.3-3 に示されている。

糞中放射性物質の主要成分は未変化のテトラニリプロールであり、低用量投与群で 50.8 %TAR~64.3 %TAR、中用量及び高用量投与群で 88.8 %TAR~108 %TAR を占めた。 尿中では未変化のテトラニリプロールは雄で 0.53 %TAR~0.94 %TAR、雌で 2.09 %TAR~2.20 %TAR 検出された。胆汁中では未変化のテトラニリプロールは検出されなかった。 いずれの試料においても多くの代謝物が同定されたが、各代謝物の生成量は少なく、最大で 7.72 %TAR(反復投与群雄の糞中代謝物 M3)であった。代謝物プロファイルに性差はほとんど認められなかった。

表 2.3-3: 尿、糞及び胆汁中代謝物 (%TAR)

投与量	性別	試料	採取時間	テトラニ	同定された代謝物	
(投与方法)	177/2 1	h. A.I.I.	(投与後時間 ^a)	リプロール	1: 4/5 C W A L C L AND 1/2	
					M3(0.87), M39(0.51), M42(0.50), M38(0.38), M31(0.29), M1	
		尿	24	0.53	(0.21) 、 $M40(0.21)$ 、 $M12(0.18)$ 、 $M27(0.17)$ 、 $M43(0.13)$ 、	
		///	24	0.55	M23(0.10), M32(0.08), M8(0.05), M22(0.05), M41(0.04),	
					M6(<0.01), M34(<0.01)	
	雄				M3(5.29) 、 $M17(4.44)$ 、 $M8(3.87)$ 、 $M1(3.03)$ 、 $M4(2.87)$ 、	
			48	53.8	M31(2.71), M39(2.70), M43(1.99), M5(1.80), M41(1.52),	
		糞			M2(1.44), M19(1.23), M32(1.15), M18(1.14), M26(1.04),	
2 mg/kg体重					M34(1.00), M23(0.89), M16(0.80), M12(0.78), M9(0.72),	
(単回経口)					M22(0.43), M6(0.39), M27(0.14), M24(0.06)	
(平凹)性口)					M38(0.80)、M42(0.72)、M39(0.68)、M3(0.57)、M31(0.46)、	
		尿	48		M1(0.22), M40(0.16), M43(0.16), M22(0.11), M12(0.10),	
					M32(0.10)、M41(0.09)、M23(0.07)、M27(0.04)、M34(0.02)	
	雌				M17(5.36) 、M4(4.28) 、M3(3.36) 、M31(2.95) 、M39(2.69) 、	
					M5(2.54) 、 $M19(2.35)$ 、 $M1(2.25)$ 、 $M8(2.05)$ 、 $M2(1.58)$ 、	
		糞 48	48		M43(1.52), M23(1.48), M34(1.28), M6(0.91), M22(0.84),	
					M18(0.80)、M26(0.77)、M32(0.55)、M12(0.44)、M9(0.43)、	
				M41(0.42), M16(0.38), M24(0.28)		

^{/:} 実施せず a: 反復投与群では最終投与 72 時間後 <LOQ: 定量限界未満

注)定量限界値は投与放射性物質濃度に対する割合で算出されたため、各用量群で異なる。

				_	
			48		M3(1.54), M39(0.52), M1(0.49), M8(0.47), M31(0.31),
		尿		0.94	M42(0.31), M38(0.27), M12(0.19), M43(0.16),
	ļ				M41(0.13), M32(0.11), M40(0.06), M34(0.03)
			48	56.0	M22(0.87) 、 $M3(0.86)$ 、 $M1(0.49)$ 、 $M4(0.41)$ 、 $M6(0.30)$ 、
	ļ <u></u>	糞			M23(0.24), M41(0.08), M39(0.06), M32(0.05), M27(0.04),
	雄				M34(0.04)
				ND	M7(4.45), $M16(3.72)$, $M34(2.62)$, $M43(2.24)$, $M2(2.18)$,
			1		M26(1.97), M9(1.96), M31(1.71), M19(1.52), M41(1.52),
		胆汁	48		M3(1.51), $M5(1.51)$, $M25(1.37)$, $M39(1.37)$, $M4(1.15)$,
2 mg/kg体重 (単回経口)					M32(1.14), M17(0.93), M23(0.76), M40(0.52), M27(0.35),
					M13(0.32), M15(0.23), M24(0.21), M6(0.12)
(/		尿	48	2.09	M3(0.74), M1(0.39), M39(0.29), M42(0.20), M31(0.13),
	ļ				M8(0.10), M12(0.10), M38(0.10), M34(0.07), M43(0.06),
					M32(0.04), M40(0.04), M41(0.03)
	ļ	糞	24	64.3	M3(1.00) 、 $M4(0.90)$ 、 $M1(0.76)$ 、 $M22(0.65)$ 、 $M31(0.25)$ 、
	雌	兵	<i>∠</i> 4		M39(0.19)、M41(0.19)、M43(0.12)
	- elic	胆汁	1		M7(2.63)、M34(1.81)、M2(1.72)、M16(1.72)、M43(1.45)、
			48		M26(1.36)、M19(1.22)、M3(1.14)、M31(1.07)、M17(1.01)、
				ND	M5(0.90) \(M9(0.88) \(M25(0.88) \) \(M41(0.86) \(M40(0.81) \)
					M32(0.66)、M4(0.62)、M13(0.39)、M39(0.38)、M23(0.29)、
					M6(0.21)、M24(0.16)、M15(0.14) 、M27(0.14)
	雄	尿	24	0.56	M3(0.99), M42(0.66), M39(0.61), M38(0.50), M31(0.31),
					M1(0.24), M43(0.21), M12(0.15), M40(0.14), M8(0.11),
					M32(0.11), M41(0.07), M27(0.04), M23(0.03)
2 mg/kg体重		糞	48		M3(7.72), M17(4.76), M8(4.68), M2(3.16), M4(3.12), M1(3.01),
(反復経口)				50.8	M39(2.72), M19(2.61), M31(2.39), M5(2.09), M26(1.87),
					M12(1.70), M43(1.58), M32(1.32), M18(1.26), M23(1.03),
					M41(0.97) 、 M9(0.92) 、 M34(0.86) 、 M6(0.47) 、 M16(0.37) 、
				1	M22(0.35)
			48		M3(1.21) 、M17(0.66) 、M8(0.58) 、M31(0.53) 、M1(0.49) 、
	雄			98.6	M39(0.41), M23(0.40), M41(0.35), M19(0.31), M43(0.31),
	эр			76.0	M2(0.27) , $M12(0.27)$, $M18(0.26)$, $M4(0.22)$, $M5(0.20)$,
20 mg/kg体重		糞			M32(0.14), M9(0.13), M26(0.11)
(単回経口)	ļ	~	48		M3(0.80), M17(0.63), M23(0.35), M4(0.32), M31(0.32),
	雌			103	M39(0.30) 、M1(0.29) 、M8(0.28) 、M41(0.21) 、M12(0.19) 、
				103	M5(0.18), M43(0.16), M22(0.15), M2(0.14), M18(0.12),
					M19(0.12), M26(0.10), M34(0.09), M9(0.07)
200 mg/kg体重	雄	- 糞	48	108	M3(0.24)、M22(0.07)
(単回経口)	雌	異	72	88.8	M23(0.21)、M3(0.15)、M17(0.15)、M4(0.12)、M22(0.12)
					

a: 反復投与群では最終投与後の時間 ND: 検出されず

④ 排泄

a 尿及び糞中排泄

Wistar ラット(一群雌雄各 4 匹)に、 $[pyc-^{14}C]$ テトラニリプロールを低用量、中用量若しくは高用量で単回経口投与又は Wistar ラット(雄 4 匹)に、 $[pyc-^{14}C]$ テトラニリプロールを低用量で反復経口投与して、尿及び糞中排泄試験が実施された。

投与後72時間における尿及び糞中排泄率は表2.3-4に示されている。

いずれの投与群においても尿中排泄率は低く、投与放射性物質の大部分が糞中に排泄された。なお、Wistar ラット(雄 4 匹)に $[pyc^{-14}C]$ テトラニリプロールを 5 mg/kg 体重で単回経口投与して実施された予備試験において、呼気中に排泄された放射性物質

注)検出限界値は投与放射性物質濃度に対する割合で算出されたため、各用量群で異なる。

は僅か(投与後48時間で0.002%TAR程度)であった。

表 2.3-4:投与後 72 時間 a における尿及び糞中排泄率(%TAI	表 2.3-4: 投与後 7	2 時間 ª におけ	る尿及び糞中排泄率	(%TAR)
---------------------------------------	----------------	------------	-----------	--------

投与量 (投与方法)	2 mg/kg体重 (単回経口)		2 mg/kg 体重/日 (反復経口)	20 mg/kg体重 (単回経口)		200 mg/kg体重 (単回経口)	
性別	雄	雌	雄	雄	雌	雄	雌
尿	4.66	6.69	4.95	0.34	0.41	0.09	0.53
糞	98.6	94.5	103	107	110	109	93.7
体内残留 (消化管を除く)	0.189	0.396	0.204	0.012	0.013	nc	0.011

a: 反復投与群では最終投与後 72 時間 nc: 全例で定量限界未満

b 胆汁中排泄

胆管カニューレを挿入した Wistar ラット(一群雌雄各 3 匹)に $[pyc-^{14}C]$ テトラニリプロールを低用量で単回経口投与して、胆汁中排泄試験が実施された。

投与後48時間における胆汁、尿及び糞中排泄率は表2.3-5に示されている。

胆汁中排泄率は雄で 38.9 % TAR、雌で 24.7 % TAR であり、本試験並びに尿及び糞中排泄試験 [2.3.1.1 (1) ④ a] における糞中排泄率から、糞中排泄の一部は胆汁を介した排泄であることが示された。

表 2.3-5: 投与後 48 時間における胆汁、尿及び糞中排泄率 (%TAR)

20 20 20 20 20 20 20 20 20 20 20 20 20 2	17 9/211 (//////) 34 1/11/21	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
投与量	2 mg/kg体重			
(投与方法)	(単回経口)			
性別	雄	雌		
胆汁	38.9	24.7		
尿	5.66	4.45		
糞	59.6	71.6		
体内残留 (消化管を除く)	1.01	0.459		

(2) ラット②

① 吸収

a 血中濃度推移

Wistar ラット (雌雄各 4 匹) に[phc- 14 C]テトラニリプロールを低用量で単回経口投与して、血漿中濃度推移について検討された。

血漿中薬物動態学的パラメータは表 2.3-6 に示されている。

血漿中の放射性物質濃度は投与 1~2 時間後に最大になり、以後速やかに減少した。 雌における血漿中の放射性物質濃度は雄と比較してやや高く推移し、雌の AUC は雄 の約 2 倍となった。

注)定量限界値は投与放射性物質濃度に対する割合で算出されたため、各用量群で異なる。

	与量 -方法)	2 mg/kg体重 (単回経口)	
性	別	雄	雌
T _{max} (hr)		1.69	1.79
C _{max} (II	規化値)	0.161	0.235
T. (1-1)	吸収相	0.70	0.46
T _{1/2} (hr)	消失相	22.9	25.0
AUC₀∞ (正規化値)		1.29	2.32

表 2.3-6: 血漿中薬物動態学的パラメータ

b 吸収率

胆汁中排泄試験は実施されていないが、血中濃度推移が雌雄ともに[pyc-14C]テトラニリプロールを用いた試験 [2.3.1.1 (1)] の低用量投与群とほぼ同じであったことから、吸収率も同程度と推察された。

② 分布

Wistar ラット(雌雄各 4 匹) に[phc- 14 C]テトラニリプロールを低用量で単回経口投与して、体内分布試験が実施された。

投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度は表 2.3-7 に示されている。

臓器及び組織中の残留放射性物質濃度は低かった。放射性物質は肝臓において最も高く認められたが、最大でも 0.207 %TAR であった。雌のカーカス (0.110 %TAR) を除き、その他の臓器及び組織において 0.1 %TAR を超えるものはなかった。

表 2.3-7: 投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度(µg/g)

投与量 (投与方法)	雄	雌
0 0	肝臟(0.0705)、腎臟(0.0065) 、血漿(0.0049)、 肺(0.0026)、皮膚(0.0025) 、血球(0.0024)	肝臓(0.0923)、腎周囲脂肪(0.0197)、腎臓(0.0091)、卵巣(0.0065)、副腎(0.0064)、血漿(0.0053)、子宮(0.0049)、皮膚(0.0041)、カーカス(0.0040)、肺(0.0038)、血球(0.0030)

③ 代謝

排泄試験[2.3.1.1(2)④]で得られた尿及び糞を試料として、代謝物同定・定量試験が実施された。

尿及び糞中代謝物は表 2.3-8 に示されている。

糞中放射性物質の主要成分は未変化のテトラニリプロールであり、雄で 52.0 % TAR、雌で 57.9 % TAR を占めた。尿中では未変化のテトラニリプロールは雄で 0.64 % TAR、雌で 1.61 % TAR 検出された。いずれの試料においても多くの代謝物が同定されたが、各代謝物の生成量は少なく、最大で 6.30 % TAR(雄の糞中代謝物 M1)であった。代謝物プロ

注) C_{max} 及び AUC₀∞の値は、血漿中放射性物質濃度を体重当たり投与放射性物質量で除した補正値(正規化値)を用いて算出された(単位: kg(体重)/kg(血漿試料)及び hr kg(体重)/kg(血漿試料))。

ファイルに性差はほとんど認められなかった。

表 2.3-8: 尿及び糞中代謝物 (%TAR)

投与量 (投与方法)	性別	試料	テトラニ リプロール	同定された代謝物	
	雄	尿	0.64	0.64 M1(0.98), M38(0.34), M31(0.28), M12(0.16), M27(0.10), M32(0.09), M8(0.07) M23(0.05), M22(0.02), M34(0.01), M6(<0.01)	
2 mg/kg体重		粪	52.0	M1(6.30), M8(3.72), M17(3.47), M4(3.41), M31(2.37), M19(2.35), M5(2.14), M23(1.53), M12(1.31), M34(1.22), M22(1.01), M32(0.96), M6(0.93), M2(0.89), M26(0.83), M16(0.57), M27(0.47), M24(0.41), M9(0.40)	
(単回経口)		尿	1.61	M3(0.73), M38(0.65), M31(0.31), M1(0.21), M8(0.08), M12(0.08), M32(0.07), M22(0.04), M23(0.04), M27(0.04)	
	雌	糞	57.9	M3(5.01), M17(4.24), M4(3.59), M31(3.41), M1(2.98), M8(2.42), M19(2.18), M5(1.84), M2(1.44), M18(1.16), M23(0.96), M34(0.95), M12(0.84), M6(0.81), M22(0.76), M32(0.66), M9(0.44), M16(0.35), M24(0.26), M26(0.21), M27(0.10)	

④ 排泄

Wistar ラット(雌雄各 4 匹) に[phc- 14 C]テトラニリプロールを低用量で単回経口投与して、尿及び糞中排泄試験が実施された。

投与後72時間における尿及び糞中排泄率は表2.3-9に示されている。

いずれの投与群においても、尿中排泄率は低く、投与放射性物質の大部分が糞中に排泄された。

表 2.3-9: 投与後 72 時間における尿及び糞中排泄率 (%TAR)

投与量 (投与方法)	2 mg/kg体重 (単回経口)		
性別	雄	雌	
尿	4.05	4.60	
糞	95.7	96.6	
体内残留 (消化管を除く)	0.245	0.380	

(3) ラット③

① 吸収

a 血中濃度推移

Wistar ラット(雌雄各 4 匹)に[pyr-2-14C]テトラニリプロールを低用量で単回経口投与して、血漿中濃度推移について検討された。

血漿中薬物動態学的パラメータは表 2.3-10 に示されている。

雌雄ともに血漿中の放射性物質濃度は投与約 1 時間後に最大になり、以後速やかに減少した。[pyc- 14 C]テトラニリプロールを用いた試験 [2.3.1.1 (1)] と比較して血漿中濃度が低かった。

X 2.5 10: 血水 1 水 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1				
	与量	2 mg/kg体重		
(投与	-方法)	(単四	経口)	
性	别	雄	此隹	
T _{max} (hr)		0.80	1.42	
C _{max} (II	規化値)	0.096	0.111	
T. (1-1)	吸収相	0.14	0.36	
T _{1/2} (hr)	消失相	36.0	11.3	
AUC₀-∞ (正規化値)		1.04	1,21	

表 2.3-10: 血漿中薬物動態学的パラメータ

b 吸収率

胆汁中排泄試験は実施されていないが、[pyc-¹⁴C]テトラニリプロールを用いた試験 [2.3.1.1 (1)] の低用量投与群と比較して血漿中濃度が低く、特に雌では AUC が約 1/2 であったことから、他の標識体の試験と比較して吸収率が低かった可能性が考えられた。

② 分布

Wistar ラット(雌雄各 4 匹)に $[pyr-2-^{14}C]$ テトラニリプロールを低用量で単回経口投与して、体内分布試験が実施された。

投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度は表 2.3-11 に示されている。

臓器及び組織中の残留放射性物質濃度は低かった。放射性物質は肝臓において最も高く認められたが、最大でも 0.176 % TAR であった。その他の臓器及び組織において 0.1 % TAR を超えるものはなかった。

表 2.3-11: 投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度 (μg/g)

投与量	雄	雌
(投与方法)	冶比	川 住
2 mg/kg体重	肝臓(0.0778)、腎臓(0.0101)、血漿(0.0063)、血	肝臓(0.0730)、腎臓(0.0081)、副腎(0.0036)、血
(単回経口)	球(0.0042)	漿(0.0036)、血球(0.0034)

③ 代謝

排泄試験[2.3.1.1(3)④]で得られた尿及び糞を試料として、代謝物同定・定量試験が実施された。

尿及び糞中代謝物は表 2.3-12 に示されている。

糞中放射性物質の主要成分は未変化のテトラニリプロールであり、雄で 61.3 %TAR、雌で 70.2 %TAR を占めた。尿中では未変化のテトラニリプロールは雄で 0.55 %TAR、雌で 1.21 %TAR 検出された。いずれの試料においても多くの代謝物が同定されたが、各代謝物の生成量は少なく、最大で 6.73 %TAR(雄の糞中代謝物 M3)であった。代謝物プロ

注) C_{max} 及び AUC₀ の値は、血漿中放射性物質濃度を体重当たり投与放射性物質量で除した補正値(正規化値)を用いて算出された(単位: kg(体重)/kg(血漿試料)及び hr kg(体重)/kg(血漿試料))。

ファイルに性差はほとんど認められなかった。

表 2.3-12: 尿及び糞中代謝物 (%TAR)

投与量 (投与方法)	性別	試料	テトラニ リプロール	同定された代謝物
	雄	尿	0.55	M3(1.00), M39(0.51), M1(0.18), M12(0.18), M27(0.05), M8(0.02), M23(0.01)
2 mg/kg体重		糞	61.3	M3(6.73), M4(3.78), M8(3.00), M19(2.66), M39(2.60), M17(2.41), M1(2.36), M5(1.62), M2(1.38), M8/M15(1.25), M6(1.18), M22(1.11), M23(0.90), M16(0.68), M18(0.56), M27(0.47), M24(0.31)
(単回経口)		尿	1.21	M3(0.44), M39(0.27), M1(0.10), M12(0.05), M22(0.05), M27(0.03), M23(0.02)
	雌	糞	70.2	M3(4.31), M4(2.80), M22(2.28), M17(2.14), M19(2.11), M1(1.87), M39(1.71), M8(1.41), M5(1.28), M2(1.09), M23(1.04), M8/M15(0.82), M6(0.55), M16(0.43), M24(0.38), M27(0.29)

④ 排泄

Wistar ラット(雌雄各 4 匹)に $[pyr-2-^{14}C]$ テトラニリプロールを低用量で単回経口投与して、尿及び糞中排泄試験が実施された。

投与後72時間における尿及び糞中排泄率は表2.3-13に示されている。

いずれの投与群においても、尿中排泄率は低く、投与放射性物質の大部分が糞中に排泄された。

表 2.3-13: 投与後 72 時間における尿及び糞中排泄率 (%TAR)

	, , , , , , , , , , , , , , , , , , ,	,
投与量 (投与方法)	2 mg/k (単回	g体重 経口)
性別	雄	雌
尿	3.04	2.51
糞	102	102
体内残留 (消化管を除く)	0.293	0.162

(4) ラット④

① 吸収

a 血中濃度推移

Wistar ラット(雌雄各 4 匹)に[tet-¹⁴C]テトラニリプロールを低用量で単回経口投与して、血漿中濃度推移について検討された。

血漿中薬物動態学的パラメータは表 2.3-14 に示されている。

雌雄ともに血漿中の放射性物質濃度は投与 1~2 時間後に最大になり、以後速やかに減少した。

	与量 方法)	2 mg/kg体重 (単回経口)	
性	別	雄	雌
T _{max} (hr)		1.03	1.55
C _{max} (II	E規化値)	0.163	0.232
T (1)	吸収相	0.22	0.45
T _{1/2} (hr)	消失相	31.6	25.0
AUC₀∞ (正規化値)		1.27	2.00

表 2.3-14: 血漿中薬物動態学的パラメータ

b 吸収率

胆汁中排泄試験は実施されていないが、血中濃度推移が雌雄ともに[pyc-14C]テトラニリプロールを用いた試験 [2.3.1.1 (1)] の低用量投与群とほぼ同じであったことから、吸収率も同程度と推察された。

② 分布

Wistar ラット(雌雄各 4 匹)に $[tet-^{14}C]$ テトラニリプロールを低用量で単回経口投与して、体内分布試験が実施された。

投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度は表 2.3-15 に示されている。

臓器及び組織中の残留放射性物質濃度は低かった。放射性物質は肝臓において最も高く認められたが、最大でも 0.151 %TAR であった。その他の臓器及び組織において 0.1 %TAR を超えるものはなかった。

表 2.3-15: 投与 72 時間後における主要臓器及び組織中の残留放射性物質濃度 (μg/g)

投与量 (投与方法)	雄	雌
2 mg/kg体重 (単回経口)	肝臓(0.0737)、腎臓(0.0061)、血漿(0.0052)、血球(0.0037)	肝臟(0.0672)、腎周囲脂肪(0.0087)、腎臓(0.0072)、子宮(0.0049)、副腎(0.0045)、血漿(0.0043)、卵巣(0.0042)、血球(0.0033)

③ 代謝

排泄試験[2.3.1.1(4)④]で得られた尿及び糞を試料として、代謝物同定・定量試験が実施された。

尿及び糞中代謝物は表 2.3-16 に示されている。

糞中放射性物質の主要成分は未変化のテトラニリプロールであり、雄で 46.3 %TAR、雌で 54.7 %TAR を占めた。尿中では未変化のテトラニリプロールは雄で 0.46 %TAR、雌で 1.41 %TAR 検出された。いずれの試料においても多くの代謝物が同定されたが、各代謝物の生成量は少なく、最大で 9.23 %TAR(雄の糞中代謝物 M3)であった。代謝物プロファイルに性差はほとんど認められなかった。

注) C_{max} 及び AUC₀ の値は、血漿中放射性物質濃度を体重当たり投与放射性物質量で除した補正値(正規化値)を用いて算出された(単位: kg(体重)/kg(血漿試料)及び hr kg(体重)/kg(血漿試料))。

投与量 (投与方法)	性別	試料	テトラニ リプロール	同定された代謝物
		尿	0.46	M44(2.03), M3(0.82), M42(0.45), M39(0.38), M31(0.17), M1(0.14), M12(0.12), M40(0.12), M43(0.11), M27(0.07), M8(0.05), M32(0.03), M22(0.02), M23(0.02), M6 (0.01), M34(0.01), M41(0.01)
2 mg/kg体重 (単回経口)	雄	糞	46.3	M3(9.23), M8(4.21), M1(3.43), M19(3.40), M31(3.35), M39(3.33), M43(2.80), M4(2.62), M17(2.60), M41(2.26), M2(1.97), M12(1.87), M5(1.74), M9(1.57), M32(1.50), M16(0.82), M26(0.79), M18(0.35), M6(0.21), M22(0.16), M27(0.08), M34(0.03), M24(0.02)
(早四座口)	雌	尿	1 41	M44(1.99)、M3(0.64)、M42(0.46)、M39 (0.41)、M31(0.20)、M40(0.12)、M1(0.09)、M12(0.09)、M22(0.08)、M43(0.08)、M27(0.07)
		糞	54.7	M3(7.56), M1(3.22), M17(3.15), M26(2.93), M39(2.64), M4(2.49), M31(2.26), M8(1.91), M5(1.73), M12(1.61), M2(1.49), M19(1.38), M43(1.31), M9(1.15), M16(1.13), M41(1.00), M18(0.54), M34(0.35), M32(0.33), M22(0.32), M6(0.21), M27(0.16)

表 2.3-16: 尿及び糞中代謝物 (%TAR)

④ 排泄

Wistar ラット(雌雄各 4 匹)に $[tet-^{14}C]$ テトラニリプロールを低用量で単回経口投与して、尿及び糞中排泄試験が実施された。

投与後72時間における尿及び糞中排泄率は表2.3-17に示されている。

いずれの投与群においても、尿中排泄率は低く、投与放射性物質の大部分が糞中に排泄された。

投与量 (投与方法)	2 mg/kg体重 (単回経口)	
性別	雄	雌
尿	5.38	5.94
糞	97.9	96.0
体内残留 (消化管を除く)	0.246	0.257

表 2.3-17: 投与後 72 時間における尿及び糞中排泄率 (%TAR)

[2.3.1.1 (1) ~ (4)] より、テトラニリプロールのラットにおける推定代謝経路は、①フェニル環のメチル基、N-メチル基及びピリジン環の水酸化による代謝物 M1、M3 及び M4 の生成、その後の代謝物 M1 及び M3 のグルクロン酸抱合による代謝物 M2 及び M9 の生成、②分子内縮合(環化)による代謝物 M22 の生成、③フェニル環の脱離による代謝物 M39 の生成、④ピリジン環の脱離による代謝物 M3 の生成、⑤テトラゾール環の脱離による代謝物 M44 の生成、⑥脱メチル化による代謝物 M12 の生成、⑦脱塩素化及びその後の抱合化等による代謝物 M15、M16 及び M17 の生成等であり、広範に代謝されると考えられた。

2.3.1.2 急性毒性

テトラニリプロール原体を用いて実施した急性経口毒性試験、急性経皮毒性試験、急性吸入毒性試験、皮膚刺激性試験、眼刺激性試験及び皮膚感作性試験の報告書を受領した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1)及び(2)に 転記する。

(1) 急性毒性試験

テトラニリプロール(原体)のラットを用いた急性毒性試験が実施された。 結果は表 2.3-18 に示されている。

表 2.3-18: 急性毒性試験結果概要 (原体)

投与経路	動物種	LD50 (mg/kg体重)		知命とした古山
女子 在 始	期/初性	雄	雌	観察された症状
経口 a、b	Wistarラット 雌6匹		>2,000	投与量: 2,000 mg/kg 体重 症状及び死亡例なし
経皮	Wistarラット 雌雄各5匹	>2,000	>2,000	症状及び死亡例なし
	Wistarラット 雌雄各5匹	LC ₅₀ (mg/L)	努力性呼吸、くしゃみ、呼吸音増大、活動性低下、円 背位、眼周囲の脱毛
吸入 ^c		>5.01	>5.01	雄: 5.01 mg/Lで死亡例 雌: 死亡例なし

 a:毒性等級法による評価
 b:溶媒として PEG400 が用いられた。
 c:4 時間鼻部暴露

/:該当なし

(2) 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼及び皮膚刺激性試験が実施された。

眼刺激性試験では、結膜において投与1時間後に発赤、浮腫及び分泌物が認められたが、 投与 48 時間後には減弱し、72 時間以内に完全に回復した。また皮膚に対して軽度の刺激 性が認められた。

CBA マウスを用いた皮膚感作性試験(LLNA法)が2試験実施され、いずれにおいても 皮膚感作性が認められた。

2.3.1.3 短期毒性

テトラニリプロール原体を用いて実施した 90 日間反復経口投与毒性試験の報告書を受領 した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1) \sim (3)に転 記する。

(1)90 日間亜急性毒性試験(ラット)

Wistar ラット(主群:一群雌雄各 10 匹)を用いた混餌(原体:0、900、3,000 及び 10,000 ppm: 平均検体摂取量は表 2.3-19 参照) 投与による 90 日間亜急性毒性試験が実施された。投与 12 週に舌下静脈から採血して、テトラニリプロールの血漿中濃度が測定された(結果は表 2.320 参照)。対照群及び高用量投与群については、雌雄各 10 匹の回復群が設定され、90 日間の投与後 1 か月間基礎飼料のみを与えて回復性が検討された。

表 2 3-19 · 90	日間亜急性毒性試験	(ラット)	の平均給体摂取量
$-4\times$ Δ)-17 . 70	- 14 141 ft かんして 111 1 T ft が次	1 / / 1 / 1	

投与群		900 ppm	3,000 ppm	10,000 ppm
平均検体摂取量	雄	55.0	178	608
(mg/kg体重/日)	雌	65.7	213	723

表 2.3-20: テトラニリプロールの血漿中濃度 (µg/mL)

投与群	900 ppm	3,000 ppm	10,000 ppm
雄	0.266	0.315	0.406
雌	0.875	0.778	0.915

10,000 ppm 投与群の雄で肝比重量増加が認められたが、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認められなかったので、適応性変化であると考えられた。

本試験において、いずれの投与群でも検体投与の影響は認められなかったので、無毒性量は雌雄とも本試験の最高用量 10,000~ppm(雄: 608~mg/kg 体重/日、雌: 723~mg/kg 体重/日)であると考えられた。

(2)90 日間亜急性毒性試験(マウス)

C57BL/6J マウス (一群雌雄各 10 匹) を用いた混餌 (原体: 0、900、2,700 及び 6,000 ppm: 平均検体摂取量は表 2.3-21 参照) 投与による 90 日間亜急性毒性試験が実施された。投与 12 週に舌下静脈から採血して、テトラニリプロールの血漿中濃度が測定された (結果は表 2.3-22 参照)。

表 2.3-21:90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		900 ppm	2,700 ppm	6,000 ppm
平均検体摂取量	雄	145	426	973
(mg/kg体重/日)	雌	180	544	1,220

表 2.3-22: テトラニリプロールの血漿中濃度 (µg/mL)

投与群	900 ppm	2,700 ppm	6,000 ppm	
雄	0.364	0.412	0.570	
雌	0.697	0.774	1.01	

6,000 ppm 投与群の雌で肝比重量増加が認められたが、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認められなかったので、適応性変化であると考えられた。

本試験において、いずれの投与群でも検体投与の影響は認められなかったので、無毒性

量は雌雄とも本試験の最高用量 6,000 ppm (雄:973 mg/kg 体重/日、雌:1,220 mg/kg 体重/ 日)であると考えられた。

(3)90 日間亜急性毒性試験(イヌ)

分析対象化合物

投与群

雄

雌

ビーグル大(一群雌雄各 4 匹)を用いた混餌(原体:0、800、3,200 及び12,800 ppm:平 均検体摂取量は表 2.3-23 参照) 投与による 90 日間亜急性毒性試験が実施された。試験終了 時に採血して、テトラニリプロール及び代謝物 M22 の血漿中濃度が測定された(結果は表 2.3-24 参照)。

表 2.3-23:90 日間亜急性毒性試験(イヌ)の平均検体摂取量 投与群 12,800 ppm 800 ppm 3,200 ppm 雄 25.6 126 440 平均検体摂取量 (mg/kg体重/日) 雌 29.9 138 485

代謝物M22

3,200 ppm

0.770

1.14

12,800 ppm

1.70

1.63

テトラニリプロール

3,200 ppm

2.92

3.89

12,800 ppm

4.65

4.94

800 ppm

0.405

0.400

表 2.3-24:テトラニリプロール及び代謝物 M22 の血漿中濃度(μg/mL)

各投与群で認められた毒性所見は表 2.3-25	に示されている
1 1 1 大 一	(アンノ ロック (アノン)

800 ppm

2.01

2.68

12,800 ppm 投与群の雄で PLT の有意な増加(504×10%L)が認められたが、背景データ (208×10°~611×10°/L、平均値:359×10°/L) の範囲内の変動であり、関連する病理組織学的 変化が認められないため、毒性学的意義はないものと考えられた。

本試験において、12,800 ppm 投与群の雌雄で体重増加抑制、ALP 増加等が認められたの で、無毒性量は雌雄とも 3,200 ppm(雄:126 mg/kg 体重/日、雌:138 mg/kg 体重/日)であ ると考えられた。

表 2.3-25:90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

投与群	雄	雌
12,800 ppm	・体重増加抑制(投与1-8日以降) [§] ・摂餌量減少(投与1-7週) [§] ・ALP 増加§	・体重増加抑制(投与1-8日以降) ・摂餌量減少(投与1-11週) [§] ・ALP 増加
3,200 ppm 以下	毒性所見なし	毒性所見なし

^{§:}統計学的有意差はないが、検体投与の影響と判断した。

2.3.1.4 遺伝毒性

テトラニリプロール原体を用いて実施した復帰突然変異試験、染色体異常試験、小核試験 及び遺伝子突然変異試験の報告書を受領した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1)に転記する。

(1) 遺伝毒性試験

テトラニリプロール (原体) の細菌を用いた復帰突然変異試験、チャイニーズハムスター肺由来細胞 (V79) を用いた遺伝子突然変異試験及び染色体異常試験並びにヒトリンパ球及びマウスを用いた小核試験が実施された。

試験結果は表 2.3-26 に示されているとおり全て陰性であったことから、テトラニリプロール (原体) に遺伝毒性はないものと考えられた。

表 2.3-26: 遺伝毒性試験の結果概要 (原体)

Ī	試験	対象	処理濃度・投与量	結果
	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA102、TA1535、 TA1537株)	3~5,000 μg/プ レート(+/-S9) (プ レート法) 10~5,000 μg/プ レート(+/-S9) (プ レインキュベーション法)	陰性
in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA102、TA1535、 TA1537株)	3~5,000 μg/ブ゚ レート(+/-S9) (プ レート法) 10~5,000 μg/ブ゚ レート(+/-S9) (ブ゚ レインキュベーション法)	陰性
	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA102、TA1535、 TA1537株)	3~5,000 μg/プレート(+/-S9) (プレート法) 3~5,000 μg/プレート(+/-S9) (プレインキュベーション法、TA98及びTA100) 10~5,000 μg/プレート(+/-S9) (プレインキュベーション法、TA102、TA1535及びTA1537)	陰性
	遺伝子突然変異試験	チャイニーズハムスター 肺由来細胞(V79) (Hprt遺伝子)	81.3~1,300 μg/mL(-S9)(4時間処理) 20.3~325 μg/mL(+S9)(4時間処理) 40.6~243 μg/mL(-S9)(24時間処理) 81.3~325 μg/mL(+S9)(4時間処理)	陰性
	遺伝子突然変異試験	チャイニーズハムスター 肺由来細胞(V79) (Hprt遺伝子)	8.8~140 μg/mL(+/-S9)(4時間処理) 17.5~210 μg/mL(-S9)(24時間処理) 17.5~176 μg/mL(+S9)(4時間処理)	陰性
	染色体	チャイニーズハムスター	81.3~1,300 μg/mL (-S9) (4時間処理) 40.6~163 μg/mL (+S9) (4時間処理) 40.6~163 μg/mL (-S9) (18時間処理)	陰性
	異常試験		125~200 µg/mL(+S9)(4時間処理) 140~180 µg/mL(+S9)(4時間処理)	陰性 陰性
	小核試験	ヒトリンパ球	46.5~142 μg/mL(+S9)(4時間処理) 32.0~98.0 μg/mL(-S9)(4時間処理) 24.4~74.6 μg/mL(-S9)(20時間処理)	陰性
in vivo	小核試験	NMRIマウス(骨髄細胞) (一群雌雄各6匹)	2,000 mg/kg体重(単回強制経口投与) (投与24 及び48 時間後に採取)	陰性

+/-S9:代謝活性化系存在下及び非存在下

2.3.1.5 長期毒性及び発がん性

テトラニリプロール原体を用いて実施した 1 年間反復経口投与毒性試験、1 年間反復経口投与毒性/発がん性併合試験及び発がん性試験の報告書を受領した。

食品安全委員会による評価(URL:

<u>http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102</u>) を以下(1) \sim (3)に転記する。

(1)1年間慢性毒性試験(イヌ)

分析対象化合物

投与4か月後

試験終了時

雄

雌

雄

雌

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、650、2,900 及び12,800 ppm:平 均検体摂取量は表 2.3-27 参照) 投与による 1 年間慢性毒性試験が実施された。投与 4 か月 後及び試験終了時に採血して、テトラニリプロール及び代謝物 M22 の血漿中濃度が測定さ れた(結果は表 2.3-28 参照)。

2 2.3 27 1 1 17	X 2.5 27 · 1 · I · I · I · I · I · I · I · I · I						
投与群		650 ppm 2,900 ppm		12,800 ppm			
平均検体摂取量	雄	19.8	91.2	440			
(mg/kg体重/日)	雌	18.3	88.4	408			

表 2.3-28: テトラニリプロール及び代謝物 M22 の血漿中濃度 (µg/mL)

代謝物M22

0.793

0.708

1.13

1.37

12,800 ppm

2.43

1.99

2.82

3.04

テトラニリプロール

2.75

2.56

3.59

2.37

4.75

5.86

6.35

7.34

0.322

0.342

0.516

0.685

投与群 650 ppm 2,900 ppm 12,800 ppm 650 ppm 2,900 ppm

表 2 3-27:1 年間慢性毒性試験 (イヌ) の平均検体摂取量

各投与群で認められた毒性所見は表 2.3-29 に示されている。

1.98

1.70

1.81

2.85

12.800 及び 2,900 ppm 投与群の雌雄並びに 650 ppm 投与群の雌で PLT の有意な増加が認 められたが、関連する病理組織学的所見が認められないことから、毒性学的意義はないも のと考えられた。

12,800 及び 2,900 ppm 投与群の雌雄並びに 650 ppm 投与群の雄で流涎が認められ、イヌ を用いた90日間亜急性毒性試験[2.3.1.3(3)]でも流涎が認められることから投与による 影響の可能性があると考えられたが、本剤には刺激性があることから局所刺激性による影 響と判断した。

650 ppm 以上投与群の雌雄で軽微から軽度の副腎び漫性球状帯空胞化が認められたが、 副腎重量に影響は認められなかったこと、関連する他の血液生化学的パラメータの変化及 び病理組織学的変化が認められないことから、毒性学的意義は低いと考えられた。

650 ppm 以上投与群の雄で精子低形成が認められたが、び漫性の変化ではなく限局性又 は多発性の変化であり、用量相関性が明確でないこと、精巣重量に影響は認められなかっ たことから、毒性学的意義は低いと考えられた。

本試験において、12,800 ppm 投与群の雌雄で体重増加抑制等が認められたので、無毒性 量は雌雄とも 2,900 ppm(雄:91.2 mg/kg 体重/日、雌:88.4 mg/k 体重/日)であると考えら れた。

表 2.3-29:1年	間慢性毒性試験	(イヌ)	で認められた	.毒性所見

投与群	雄	雌
12,800 ppm	・体重増加抑制(投与1-9日以降) ・ALP増加	・体重増加抑制(投与1-9日以降)
2,900 ppm 以下	毒性所見なし	毒性所見なし

(2)2年間慢性毒性/発がん性併合試験(ラット)

Wistar ラット(主群:一群雌雄各 60 匹、52 週中間と殺群:一群雌雄各 10 匹)を用いた 混餌(原体:0、900、4,000 及び 18,000 ppm: 平均検体摂取量は表 2.3-30 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。投与 3 及び 12 か月後並びに試験終了時に 舌下静脈から採血して、テトラニリプロール及び代謝物 M22 の血漿中濃度が測定された (結果は表 2.3-31 参照)。

表 2.3-30:2年間慢性毒性/発がん性併合試験 (ラット) の平均検体摂取量

投与群		900 ppm	4,000 ppm	18,000 ppm
平均検体摂取量	雄	35.3	159	741
(mg/kg体重/日)	雌	51.2	221	1,050

表 2.3-31: テトラニリプロール及び代謝物 M22 の血漿中濃度 (µg/mL)

分析対象化合物		テトラニリプロール			代謝物M22		
投与	投与群		4,000 ppm	18,000 ppm	900 ppm	4,000 ppm	18,000 ppm
投与3か月後	雄	0.33	0.37	0.54	0.09	0.26	0.78
₩ 投 分3 /29月後	雌	0.63	0.68	0.96	0.34	0.71	3.49
売上10か日然	雄	0.30	0.41	0.90	0.10	0.31	1.10
投与12か月後	雌	0.70	1.2	2.3	0.36	0.88	3.5
試験終了時	雄	0.38	0.65	0.75	0.12	0.40	1.0
	雌	1.1	1.5	1.7	0.39	1.1	3.9

各投与群で認められた毒性所見(非腫瘍性病変)は表 2.3-32 に示されている。 検体投与により発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、18,000 ppm 投与群の雄で体重増加抑制、雌で体重増加抑制、子宮頚部 扁平上皮過形成等が認められたので、無毒性量は雌雄とも4,000 ppm (雄:159 mg/kg 体重/日、雌:221 mg/kg 体重/日) であると考えらえた。発がん性は認められなかった。

表 2.3-32:2年間慢性毒性/発がん性併合試験 (ラット) で認められた毒性所見

投与群	雄	雌
18,000 ppm	・体重増加抑制(投与1-8日以降)	・体重増加抑制(投与1-8日以降) ・子宮頚部扁平上皮過形成(び漫性) ・子宮内膜扁平上皮化生(限局性) [§] ・膣扁平上皮過形成(び漫性) ・卵巣黄体減少 [§]
4,000 ppm 以下	毒性所見なし	毒性所見なし

§:統計学的有意差はないが検体投与の影響と判断した。

(3) 18 か月間発がん性試験(マウス)

C57BL/6Jマウス(主群:一群雌雄各50匹、52週中間と殺群:一群雌雄各10匹)を用いた混餌(原体:0、260、1,300及び6,500ppm:平均検体摂取量は表2.3-33参照)投与による18か月間発がん性試験が実施された。投与4及び12か月後並びに試験終了時に眼窩静脈叢から採血して、テトラニリプロール及び代謝物M22の血漿中濃度が測定された(結果は表2.3-34参照)。

次 2:5 55:10 7 万間元 7 7 日本 W (・					
投与群		260 ppm	1,300 ppm	6,500 ppm	
平均検体摂取量雄		32.9	166	825	

215

1.070

表 2.3-33:18 か月間発がん性試験(マウス)の平均検体摂取量

表 2.3-34: テトラニリプロール及び代謝物 M22 の血漿	中濃度	(µg/mL)
----------------------------------	-----	---------

43.1

分析対象化合物		テトラニリプロール			代謝物M22		
投	戸群	260 ppm	1,300 ppm	6,500 ppm	260 ppm	1,300 ppm	6,500 ppm
投与4か月後	雄	0.454	0.601	0.704	0.051	0.121	0.349
	雌	0.556	0.982	1.18	0.041	0.121	0.501
提与13か.日後	雄	0.419	0.584	0.758	0.043	0.110	0.395
投与12か月後	雌	0.600	0.951	1.16	0.035	0.126	0.598
試験終了時	雄	0.345	0.541	0.681	0.050	0.106	0.373
	雌	0.607	1.17	1.52	0.076	0.171	0.954

検体投与により発生頻度の増加した腫瘍性病変は認められなかった。

6,500 ppm 投与群の雄で肝絶対及び比重量増加が認められたが、肝毒性を示唆する血液生化学的パラメータの変化及び病理組織学的変化が認められなかったので、適応性変化であると考えられた。

本試験において、いずれの投与群にも検体投与の影響は認められなかったので、無毒性量は雌雄とも本試験の最高用量 6,500 ppm(雄:825 mg/kg 体重/日、雌:1,070 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。

2.3.1.6 生殖毒性

(mg/kg体重/日)

テトラニリプロール原体を用いて実施した繁殖毒性試験及び催奇形性試験の報告書を受領した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1) \sim (3)に転記する。

(1)2世代繁殖試験(ラット)

Wistar ラット (一群雌雄各 24 匹) を用いた混餌 (原体: 0、300/150、600/300、2,700/1,350

及び 12,000/6,000 ppm*: 平均検体摂取量は表 2.3-35 参照)投与による 2 世代繁殖試験が実施された。交配用に選抜されなかった F1 及び F2 動物については、70 日齢まで投与された。

*: 雌において、哺育期間の摂餌量増加により最高用量投与群で 1,000 mg/kg 体重/日を著しく超過しないよう、哺育期間の飼料中濃度が 150、300、1,350 及び 6,000 ppm に変更された。

投	投与群			600 (300) ppm	2,700 (1,350) ppm	12,000 (6,000) ppm
	- 111 715	雄	22	44	196	896
	P世代	雌	25 (23)	51 (47)	224 (211)	1,030 (890)
平均検体摂取量	Fı世代	雄	28	57	253	1,140
(mg/kg体重/日)	FIET.	雌	30 (23)	63 (47)	266 (215)	1,220 (947)
F ₂ 世代	雄	34	69	307	1,360	
	F2 匹1人	雌	34	68	312	1,390

表 2.3-35:2 世代繁殖試験 (ラット) の平均検体摂取量

注)()内は哺育期間中の値

各投与群で認められた毒性所見は表 2.3-36 に示されている。

12,000 ppm 投与群において、 F_1 児動物の雌で膣開口完了時期遅延が、 F_2 児動物の雄で包皮分離完了時期遅延が認められたが、これらの完了時期の体重は対照群と同様であったことから、発育遅延に起因した変化であると考えられた。

本試験において、12,000 ppm 投与群の親動物及び児動物で体重増加抑制等が認められたので、無毒性量は親動物及び児動物とも 2,700 ppm (P 雄:196 mg/kg 体重/日、P 雌:224 mg/kg 体重/日、 F_1 雄:253 mg/kg 体重/日、 F_1 雌:266 mg/kg 体重/日、 F_2 雄:307 mg/kg 体重/日、 F_2 雌:312 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。

	投与群	親:P、児:Fı		親:F1、児:F2		F ₂ (成育期間)	
	欠 分 群	雄	雌	雄	雌	雄	雌
親動	12,000 ppm	12,000 ppm以 下	・体重増加抑制(妊娠期間)	• 体重増加抑制	• 体重増加抑 制	• 体重増加抑制	・体重増加抑 制
物	2,700 ppm以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし
児動物	12,000 ppm	・体重増加抑 制	・体重増加抑制・膣開口完了時期遅延	・体重増加抑制 ・包皮分離完 で時期遅延	• 体重増加抑 制		
1/3	2,700 ppm以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし		

表 2.3-36:2 世代繁殖試験 (ラット) で認められた毒性所見

/: 実施せず

(2) 発生毒性試験(ラット)

SD ラット (一群雌 23 匹) の妊娠 $6\sim20$ 日に強制経口 (原体:0、62.5、250 及び 1,000 mg/kg 体重/日、溶媒:0.5%MC 水溶液) 投与して、発生毒性試験が実施された。

本試験において、母動物ではいずれの投与群にも検体投与の影響は認められず、胎児では 1,000 mg/kg 体重/日投与群で低体重が認められたので、無毒性量は母動物で本試験の最

高用量 1,000 mg/kg 体重/日、胎児で 250 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。

(3) 発生毒性試験(ウサギ)

NZW ウサギ(一群雌 23 匹)の妊娠 $6\sim28$ 日に強制経口(原体:0、62.5、250 及び 1,000 mg/kg 体重/日、溶媒:0.5 %MC 水溶液) 投与して、発生毒性試験が実施された。最終投与約 24 時間後に母動物の耳静脈から採血して、テトラニリプロール及び代謝物 M22 の血漿中濃度が測定された(結果は表 2.3-37 参照)。

2 2 2 10 0 1 1 7 7 7 7	, %CO (M)11 M 1/12=	- III 71 - 175 / Pr 8 111	
投与群	62.5 mg/kg体重/日	250 mg/kg体重/日	1,000 mg/kg体重/日
テトラニリプロール	0.240	0.375	0.574
代謝物M22	0.099	0.327	0.739

表 2.3-37: テトラニリプロール及び代謝物 M22 の血漿中濃度 (µg/mL)

本試験において、いずれの投与群でも検体投与の影響は認められなかったので、無毒性量は母動物及び胎児とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。

2.3.1.7 その他の試験

テトラニリプロール原体を用いて実施したステロイドホルモン合成スクリーニング試験 及び子宮肥大及び膣開口影響試験の報告書を受領した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1)及び(2)に転記する。

(1) H295R 細胞(ヒト副腎皮質由来細胞株)を用いたステロイドホルモン合成スクリーニング試験

テトラニリプロール及び代謝物 M22 を、ヒト由来 H295R 細胞株に 48 時間暴露させ、培地中の各種ホルモン(プロゲステロン、テストステロン、エストラジオール及びコルチゾール)濃度が測定された。被験物質の暴露濃度は、イヌを用いた 1 年間慢性毒性試験、ラットを用いた 2 年間慢性毒性/発がん性併合試験及びマウスを用いた 18 か月間発がん性試験 [2.3.1.5 (1)、(2)及び (3)]での試験終了時におけるテトラニリプロール及び代謝物 M22 の血漿中濃度に基づいて設定された。

結果は表 2.3-38 に示されている。

テトラニリプロールでは $3 \mu M$ 以上、代謝物 M22 では $1 \mu M$ 以上の濃度で H295R 細胞株におけるエストラジオール及びコルチゾール分泌の明らかな増加が認められた。

被験物質	濃度(μM)	プロゲステロン	テストステロン	エストラジオール	コルチゾール
	0 (対照)	3,300±129	6,760±152	411±26	33,400±7,330
	0.1	3,420±176	7,060±770	393±18	40,300±3,590
	0.1	(104)	(104)	(96)	(121)
	0.2	$3,380\pm67$	7,510±324	400±21	45,100±1,880
	0.3	(103)	(111)	(97)	(135)
	1	3,600±201	7,550±431	392±25	44,500±3,830
テトラニ	1	(109)	(112)	(95)	(133)
リプロール	2	$4,540\pm214$	8,920±231	563±17	$62,400\pm2,500$
	3	(138)	(132)	(137)	(187)
	10	$4,810\pm200$	9,000±581	809±24	107,000±14,900
	10	(146)	(133)	(197)	(321)
	12	4,590±165	$8,420\pm294$	853±91	112,000±7,850
	12	(139)	(125)	(208)	(336)
	15	$4,320\pm287$	8,020±265	927±29	110,000±5,880
	13	(131)	(119)	(226)	(329)
	0 (対照)	3,230±14	7,470±268	359±6	38,200±3,570
	0.1	$3,060\pm23$	6,850±391	360±13	38,100±2,880
		(95)	(92)	(100)	(100)
	0.2	$3,170\pm80$	7,210±95	407 <u>±</u> 27	42,200±968
	0.3	(98)	(96)	(114)	(110)
	1	$3,740\pm319$	8,130±942	510±34	57,800±9,400
the methods	1	(116)	(109)	(142)	(151)
代謝物M22	2	$4,250\pm95$	$9,140\pm205$	667±48	$75,700\pm547$
	2	(131)	(122)	(186)	(198)
	4	$4,030\pm168$	$8,780\pm678$	734±7	a
	4	(125)	(117)	(204)	a
	8	3,230±38	10,300±288	778±41	65,400±2,720
	O	(100)	(138)	(217)	(171)
	12	$2,640\pm40$	10,800±333	649±68	46,000±1,680
注) 数値けり		(82)	(145) 対昭値に対する%を示	(181)	(120)

表 2.3-38: 培地中ホルモン濃度 (pg/mL)

<ステロイドホルモン合成に対する影響に関する考察>

ヒト由来 H295R 細胞株を用いた in vitro 試験で、テトラニリプロールはエストロゲン及 びコルチゾール合成促進作用を有する可能性が示唆されたが、ラットを用いた動物体内運 命試験 $[2.3.1.1(1) \sim (4)]$ においてステロイドホルモン産生臓器への移行性は低いことから、テトラニリプロールがヒトの生体においてステロイドホルモン合成に影響を及ぼ す可能性は低いと考えられた。

(2) 未成熟ラットを用いた子宮肥大及び膣開口影響試験

未成熟 SD ラット (19 日齢、一群雌 6 匹) に、テトラニリプロールを 0、100、400 及び 800 mg/kg 体重/日の用量で 3 日間強制経口投与し、最終投与 24 時間後に膣開口の観察及び子宮重量の測定を行って、エストロゲン様作用の検査が実施された。また、未成熟 SD ラット (19 日齢、一群雌 6 匹) に、テトラニリプロールを 0 及び 600 mg/kg 体重/日の用量で 20 日間強制経口投与し、投与 10 日から 21 日の剖検まで毎日膣開口を観察し、最終投与 24 時

注)数値は平均値±標準偏差 ()内の数値は対照値に対する%を示す。

a: データなし(全測定値が測定曲線を超えていたため)

間後に子宮重量の測定を行って、抗エストロゲン様作用の検査が実施された。

テトラニリプロールを3又は20日間強制経口投与した未成熟ラットにおいて、子宮重量 及び膣開口時期に対照群との間で差は認められず、生体におけるテトラニリプロールのエ ストロゲン様作用又は抗エストロゲン様作用は認められなかった。

2.3.1.8 代謝物の毒性

テトラニリプロールの代謝物 M14 を用いて実施した急性経口毒性試験及び復帰突然変異試験の報告書を受領した。

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) を以下(1)及び(2)に転記する。

(1) 急性毒性試験

主として土壌由来の分解物 M14 のラットを用いた急性毒性試験が実施された。 結果は表 2.3-39 に示されている。

表 2.3-39: 急性毒性試験結果概要 (分解物 M14)

投与経路	動物種	LD50 (mg/kg体重)	観察された症状
経口 a、b	Wistarラット 雌6匹	>2,000	症状及び死亡例なし

a: 毒性等級法による評価 **b**: 溶媒として **PEG400** が用いられた。

(2) 遺伝毒性試験

主として土壌由来の分解物 M14 について、細菌を用いた復帰突然変異試験が実施された。 試験結果は表 2.3-40 に示されているとおり陰性であった。

表 2.3-40: 遺伝毒性試験概要 (分解物 M14)

試験		対象	処理濃度・投与量				
	in vitro	復帰突然 変異試験		3~5,000 μg/プ゚ レート(+/-S9) (プ レート法) 33~5,000 μg/プ゚ レート(+/-S9) (プ レインキュベーション法)	陰性		

2.3.1.9 製剤の毒性

ヨーバルフロアブル(テトラニリプロール 18.2 %水和剤)及びヨーバルトップ箱粒剤(テトラニリプロール 1.5 %・イソチアニル 2.0 %粒剤)を用いて実施した急性経口毒性試験、急性経皮毒性試験、皮膚刺激性試験、眼刺激性試験及び皮膚感作性試験の報告書を受領した。結果の概要を表 2.3-41 及び表 2.3-42 に示す。

表 2.3-41: ヨーバルフロアブルの急性毒性試験の	の結果概要
-----------------------------	-------

P	, , , , , , , , , , , , , , , , , , , ,	14-12-1-16-16-16-16-16-16-16-16-16-16-16-16-1
試験	動物種	結果概要
急性経口毒性	Wistar ラット	LD ₅₀ 雌雄 : >2,000 mg/kg 体重 毒性徴候なし
急性経皮毒性	Wistar ラット	LD ₅₀ 雌雄:>2,000 mg/kg 体重 毒性徴候なし
皮膚刺激性	NZW ウサギ	刺激性なし
眼刺激性	NZW ウサギ	弱い刺激性あり 結膜の発赤及び浮腫が認められたが、24 時間以内に症状は消失
皮膚感作性(LLNA 法)	CBA/J Rj マウス	感作性なし

表 2.3-42: ヨーバルトップ箱粒剤の急性毒性試験の結果概要

試験	動物種	結果概要
急性経口毒性	SD ラット	LD ₅₀ 雌:>2,000 mg/kg 体重 毒性徴候なし
急性経皮毒性	SD ラット	LD ₅₀ 雌雄 : >2,000 mg/kg 体重 毒性徴候なし
皮膚刺激性	NZW ウサギ	刺激性なし
眼刺激性	NZW ウサギ	弱い刺激性あり 結膜の発赤及び浮腫が認められたが、24 時間以内に症状は消失
皮膚感作性(Buehler 法)	Hartley モルモット	感作性なし

(参考) イソチアニル原体の急性吸入毒性試験及び皮膚感作性試験の結果概要

試験	動物種	結果概要
急性吸入毒性	SD ラット	LC ₅₀ 雌雄:4.75 mg/L 症状及び死亡例なし
皮膚感作性	Hartley	感作性疑い
(Maximization 法)	モルモット	10/20 例で紅斑が認められた

2.3.2 ADI 及び ARfD

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102)を以下に転記する。(本項末まで)

各試験における無毒性量等は表 2.3-43 に示されている。

表 2.3-57: 各試験における無毒性量等

動物種	試験	投与量 (mg/kg体重/日)	無毒性量 (mg/kg体重/日)	最小毒性量 (mg/kg体重/日)	備考*
	亜急性	## 0 FF 0 170 COO	雄:608 雌:723	雄:-	雌雄:毒性所見なし
フット	2年間慢性毒性/	0、900、4,000、18,000 ppm	雄:159	雄:741	雌雄:体重増加抑制等
		## 0 25 2 150 741	雌:221	雌:1,050	(発がん性は認められない)

動物種	試験	投与量	無毒性量	最小毒性量	備考*			
到小小里	PNO大	(mg/kg体重/日)	(mg/kg体重/日)		DHI (2)			
		0、300、600、2,700、12,000 ppm		親動物及び 児動物				
		P雄:0、22、44、196、896		P雄:896	親動物及び児動物:			
	2世代			P雌: 1,030	体重増加抑制等			
	313 / E IF VION	F ₁ 雄:0、28、57、253、1,140	Fı雄:253	Fı雄:1,140	(気がですから)~ よし よって 日ノ郊豚 たこごむ き			
= 1		Fı雌: 0、30、63、266、1,220	F ₁ 雌:266	F ₁ 雌:1,220	(繁殖能に対する影響は認め られない)			
ラット		F ₂ 雄: 0、34、69、307、1,360	F ₂ 雄:307	F ₂ 雄:1,360	(D) 10/2 (1)			
		F ₂ 雌: 0、34、68、312、1,390	F2雌:312	F2雌:1,390				
					母動物:毒性所見なし			
	発生毒性	0、62.5、250、1,000		母動物:-	胎児:低体重			
	試験	0,02.5,250,1,000	胎 児:250	胎 児:1,000				
					(催奇形性は認められない)			
	亜急性	0、900、2,700、6,000 ppm	雄:973	雄:-				
		雄:0、145、426、973	雌:1,220	雌:—	雌雄:毒性所見なし			
マウス	毒性試験	雌:0、180、544、1,220	. ,					
	発がん性	0、260、1,300、6,500 ppm	雄:825	雄:-	雌雄:毒性所見なし			
		雄:0、32.9、166、825	•	雌:—	(70, 20) [d]) 1-27 (2 3 3 1 2 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1			
	試験	雌:0、43.1、215、1,070	,		(発がん性は認められない)			
	=>> 11 → 1-11	10 62 5 250 1 000			母動物及び胎児:			
ウサギ	発生毒性			母動物:一	毒性所見なし			
	試験		胎 児:1,000	胎 児:一	(皮太政州)+割みさわねい)			
					(催奇形性は認められない)			
		0、800、3,200、12,800 ppm	雄:126	雄:440	雌雄:			
	亜急性		雌:138	雌: 485	体重增加抑制、ALP 增加等			
イヌ	毒性試験	雌:0、29.9、138、485						
, -		0、650、2,900、12,800 ppm	雄:91.2	雄:440	雌雄:			
	慢性	雄:0、19.8、91.2、440	'	雌: 408	体重増加抑制等			
	毒性試験	雌:0、18.3、88.4、408	. 00.т	, TOO	11 =7. B\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
			NOAEL: 88.4					
	ADI			SF: 100				
			ADI: 0.88					
	AΓ	NI設定根拠資料	イヌ1年間慢性	毒性試験				

ADI: 一日摂取許容量 NOAEL: 無毒性量 SF: 安全係数

-:最小毒性量は設定できなかった。

1): 備考欄には最小毒性量で認められた毒性所見の概要を示した。

食品安全委員会は、各試験で得られた無毒性量のうち最小値は、イヌを用いた 1 年間慢性毒性試験の 88.4 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.88 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

また、テトラニリプロールの単回経口投与等により生ずる可能性のある毒性影響は認められなかったため、急性参照用量(ARfD)は設定する必要がないと判断した。

ADI 0.88 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

テトラニリプロール - II. 審査報告 - 2. 審査結果

(無毒性量) 88.4 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

2.3.3 水質汚濁に係る農薬登録保留基準

2.3.3.1 農薬登録保留基準値

中央環境審議会土壌農薬部会農薬小委員会による評価結果(URL:

http://www.env.go.jp/water/tetraniliprole.pdf) を以下に転記する。(本項末まで)

表 2.3-12 水質汚濁に係る農薬登録保留基準値

公共用水域の水中におり	公共用水域の水中における予測濃度に対する基準値 2.3 mg/L								
以下の算出式により農業	以下の算出式により農薬登録保留基準値を算出した。1)								
0.88 (mg/kg 体重/日) ADI	× 53.3 (kg) 平均体重		2 (L/人/日) = 2.34(mg/L) 飲料水摂取量						

¹⁾ 農薬登録保留基準値は有効数字 2 桁(ADIの有効数字)とし、3 桁目を切り捨てて算出した。

2.3.3.2 水質汚濁予測濃度と農薬登録保留基準値の比較

水田使用及び水田以外使用について申請されている使用方法に基づき算定したテトラニリプロールの第 1 段階水質汚濁予測濃度(水濁 PEC_{tier1})は、水田使用 3.0×10^{-3} mg/L、水田以外使用 1.3×10^{-5} mg/L、合計 3.0×10^{-3} mg/L(2.5.3.5 参照)であり、農薬登録保留基準値 2.3 mg/L を下回っている。

2.3.4 使用時安全性

(1) ヨーバルフロアブル (テトラニリプロール 18.2 %水和剤)

ョーバルフロアブルを用いた急性経口毒性試験 (ラット) における半数致死量 (LD_{50}) は >2,000 mg/kg 体重であることから、急性経口毒性に係る注意事項の記載は必要ないと判断した。

ョーバルフロアブルを用いた急性経皮毒性試験(ラット)における LD_{50} は>2,000 mg/kg 体重であり、供試動物に毒性徴候が認められなかったことから、急性経皮毒性に係る注意 事項の記載は必要ないと判断した。

テトラニリプロール原体を用いた急性吸入毒性試験(ラット)における半数致死濃度 (LC₅₀) は>5.01 mg/Lであり、供試動物に毒性徴候が認められた。推定無毒性量は農薬散 布時の推定吸入量よりも十分大きいため、急性吸入毒性に係る注意事項の記載は必要ない と判断した。

ョーバルフロアブルを用いた皮膚刺激性試験(ウサギ)の結果は刺激性なしであったことから、皮膚刺激性に係る注意事項の記載は必要ないと判断した。

ョーバルフロアブルを用いた眼刺激性試験(ウサギ)の結果は弱い刺激性ありであったが、24時間以内に症状が消失したことから、眼刺激性に係る注意事項の記載は必要ないと

判断した。

テトラニリプロール原体を用いた皮膚感作性試験(マウス)の結果は陽性であった。ヨーバルフロアブルを用いた皮膚感作性試験(マウス)の結果は陰性であったが、原体の皮膚感作性試験(マウス)の結果、感作性が疑われることから、農薬用マスク・手袋・作業衣の着用、かぶれやすい体質の人への注意、使用後の衣服の交換・洗濯に関する注意事項の記載が必要であると判断した。

ョーバルフロアブルは適用作物に樹木類があり、子供や通行人が近寄る可能性が高い場所で使用されることから、散布中及び散布後における散布に関係のない者の立入を制限する注意事項の記載が必要であると判断した。

以上の結果から、使用時安全に係る注意事項(農薬登録申請書第9項 人畜に有毒な農薬については、その旨及び解毒方法)は、次のとおりと判断した。

- 1) 使用の際は農薬用マスク、手袋、長ズボン・長袖の作業衣などを着用すること。 作業後は直ちに手足、顔などを石けんでよく洗い、うがいをするとともに衣服を交換 すること。
- 2) 作業時に着用していた衣服等は他のものとは分けて洗濯すること。
- 3) かぶれやすい体質の人は取扱いに十分注意すること。
- 4) 街路、公園等で使用する場合は、散布中及び散布後(少なくとも散布当日) に小児や 散布に関係のない者が散布区域に立ち入らないよう縄囲いや立て札を立てるなど配 慮し、人畜等に被害を及ぼさないよう注意を払うこと。

なお、これらの内容は、平成 30 年 11 月 27 日に開催された農薬使用時安全性検討会において了承された。(URL: http://www.acis.famic.go.jp/shinsei/gijigaiyou/shiyouji30_2.pdf)

農薬登録申請者より、上記の注意事項1)に記載した防護装備のうち、手袋を不浸透性 手袋にしたいとの提案があった。また、上記の注意事項に加え、次の注意事項を記載した いとの提案があった。この内容については、安全な取扱いについてより一層の注意喚起を 求める内容であり、農薬のラベルに記載することは問題ないと判断した。

・誤飲などのないように注意すること。本剤使用中に身体に異常を感じた場合には直ち に医師の手当を受けること。

(2) ヨーバルトップ箱粒剤 (テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

ョーバルトップ箱粒剤を用いた急性経口毒性試験(ラット)における LD₅₀ は>2,000 mg/kg 体重であることから、急性経口毒性に係る注意事項の記載は必要ないと判断した。

ョーバルトップ箱粒剤を用いた急性経皮毒性試験 (ラット) における LD_{50} は>2,000 mg/kg 体重であり、供試動物に毒性徴候が認められなかったことから、急性経皮毒性に係る注意 事項の記載は必要ないと判断した。

テトラニリプロール原体を用いた急性吸入毒性試験 (ラット) における LC_{50} は> $5.01 \, mg/L$ であり、供試動物に毒性徴候が認められた。イソチアニル原体を用いた急性吸入毒性試験 (ラット) における LC_{50} は> $4.75 \, mg/L$ であり、供試動物に毒性徴候は認められなかった。テトラニリプロール原体の推定無毒性量は農薬散布時の推定吸入量よりも十分大きいため、急性吸入毒性に係る注意事項の記載は必要ないと判断した。

ヨーバルトップ箱粒剤を用いた皮膚刺激性試験(ウサギ)の結果は刺激性なしであった ことから、皮膚刺激性に係る注意事項の記載は必要ないと判断した。

ョーバルトップ箱粒剤を用いた眼刺激性試験(ウサギ)の結果は弱い刺激性ありであったが、24時間以内に症状が消失したことから、眼刺激性に係る注意事項の記載は必要ないと判断した。

テトラニリプロール原体を用いた皮膚感作性試験(マウス)の結果は陽性であった。イソチアニル原体を用いた皮膚感作性試験(モルモット)の結果は陽性(陽性率50%)であった。ヨーバルトップ箱粒剤を用いた皮膚感作性試験(モルモット)の結果は陰性であったが、テトラニリプロール原体の皮膚感作性試験(マウス)及びイソチアニル原体の皮膚感作性試験(マウス)及びイソチアニル原体の皮膚感作性試験(モルモット)の結果、感作性が疑われることから、農薬用マスク・手袋・作業衣の着用、かぶれやすい体質の人への注意、使用後の衣服の交換・洗濯に関する注意事項の記載が必要であると判断した。

以上の結果から、使用時安全に係る注意事項(農薬登録申請書第9項 人畜に有毒な農薬については、その旨及び解毒方法)は、次のとおりと判断した。

- 1) 使用の際は農薬用マスク、手袋、長ズボン・長袖の作業衣などを着用すること。 作業後は直ちに手足、顔などを石けんでよく洗い、うがいをするとともに衣服を交換 すること。
- 2) 作業時に着用していた衣服等は他のものとは分けて洗濯すること。
- 3) かぶれやすい体質の人は取扱いに十分注意すること。

なお、これらの内容は、平成30年11月27日に開催された農薬使用時安全性検討会において了承された。(URL: http://www.acis.famic.go.jp/shinsei/gijigaiyou/shiyouji30_2.pdf)

農薬登録申請者より、上記の注意事項に加え、次の注意事項を記載したいとの提案があった。この内容については、安全な取扱いについてより一層の注意喚起を求める内容であり、農薬のラベルに記載することは問題ないと判断した。

・誤食などのないよう注意すること。本剤使用中に身体に異常を感じた場合には直ちに 医師の手当を受けること。

2.4 残留

2.4.1 残留農薬基準値の対象となる化合物

2.4.1.1 植物代謝

本項には、残留の観点から実施した植物代謝の審査を記載した。

ピラゾール-カルボキサミド基の炭素を 14 C で標識したテトラニリプロール (以下 $^{\lceil}$ [pyc- 14 C] テトラニリプロール」という。)及びフェニル-カルバモイル基の炭素を 14 C で標識したテトラニリプロール (以下 $^{\lceil}$ [phc- 14 C]テトラニリプロール」という。)を用いて実施した水稲、ばれいしょ、レタス、りんご、トマト及びとうもろこしにおける植物代謝試験の報告書を受領した。

放射性物質濃度及び代謝物濃度は、特に断りがない場合はテトラニリプロール換算で表示した。

$$[pyc^{-14}C] \vec{\tau} | \vec{\tau} = \vec{y} \vec{\tau} = \vec$$

*:14C 標識の位置

(1) 水稲

水稲 (品種: Balilla) における植物代謝試験は土壌処理及び茎葉処理の 2 種類の処理区を設けて実施した。供試作物は砂壌土 (pH 6.8 (CaCl₂)、有機炭素含有量 (OC) 1.2%) を充填した容器 $(0.5\,\mathrm{m}^2)$ に、幼苗 (BBCH $13\sim14:3\sim4$ 葉期) を容器当たり 11 株ずつ移植し、水深 $2\,\mathrm{cm}$ に湛水して温室内で栽培した。

土壌処理区においては、 $[pyc^{-14}C]$ テトラニリプロール及び $[phc^{-14}C]$ テトラニリプロールを それぞれ 0.9 %粒剤に調製し、移植時に 200 g ai/ha の用量で植穴に処理した。処理 64 日後 (BBCH 34-35: 節間伸長期)に茎葉を、処理 150 日後 (BBCH 89-92: 完熟期~過熟期)に 玄米、もみ殻及び稲わらを採取した。

茎葉処理区においては、[pyc-¹⁴C]テトラニリプロール及び[phc-¹⁴C]テトラニリプロールを それぞれフロアブル剤に調製し、4 葉期 (BBCH 14) 及び 1 回目処理 42 日後 (BBCH 73-77:乳熟前期~後期) に 45 g ai/ha の用量で合計 2 回茎葉散布した。1 回目処理 13 日後 (BBCH 34-35) に茎葉を、2 回目処理 56 日後 (BBCH 89-92) に玄米、もみ殻及び稲わらを 採取した。

茎葉、玄米、もみ殼及び稲わらは液体窒素中で均質化後、アセトニトリル/水/ギ酸(8/2/0.1 (v/v/v))で常温抽出し、茎葉処理区のもみ殼及び稲わらの抽出残渣はアセトニトリル/水/

ギ酸(8/2/0.1(v/v/v))でマイクロ波抽出(5 分間加熱後、100 \mathbb{C} 、20 分間)した。抽出画分は液体シンチレーションカウンター(LSC)で放射能を測定後、薄層クロマトグラフ(TLC)及び高速液体クロマトグラフ(HPLC)で放射性物質を定量し、TLC、HPLC、液体クロマトグラフ質量分析計(LC-MS)及び液体クロマトグラフタンデム型質量分析計(LC-MS-MS)で同定した。抽出残渣はサンプルオキシダイザーで燃焼後、LSC で放射能を測定した。

稲における放射性物質濃度の分布を表 2.4-1 及び表 2.4-2 に示す。

土壌処理区においては、玄米中の総残留放射性物質濃度(TRR)は $0.003\sim0.004\,\mathrm{mg/kg}$ であり、常温抽出により $49\sim76\,$ %TRR が抽出された。もみ殻及び稲わら中の TRR はそれぞれ $0.018\sim0.026\,\mathrm{mg/kg}$ 及び $0.069\sim0.098\,\mathrm{mg/kg}$ であり、常温抽出により $85\sim91\,$ %TRR が抽出された。 茎葉中の TRR は $0.008\sim0.011\,\mathrm{mg/kg}$ であり、 $89\sim91\,$ %TRR が抽出された。

茎葉処理区においては、玄米中の TRR は $0.024\sim0.040\,\mathrm{mg/kg}$ であり、常温抽出により 93 \sim 94% TRR が抽出された。もみ殼及び稲わら中の TRR は $2.1\sim2.5\,\mathrm{mg/kg}$ 及び $4.3\sim4.6\,\mathrm{mg/kg}$ であり、常温抽出により $94\sim99\,\mathrm{%TRR}$ 、マイクロ波抽出により $1.2\sim5.0\,\mathrm{%TRR}$ が抽出された。 茎葉中の TRR は $1.3\sim2.6\,\mathrm{mg/kg}$ であり、常温抽出により $98\sim99\,\mathrm{%TRR}$ が抽出された。

我 2. 4-1 .	工表处在四少	川田であるで	O NXXIIIT.	の貝依/CV	2 71 411			
		[py	c- ¹⁴ C]テトラ	ラニリプロー	ール			
		葉 4日後)	玄米 (処理150日後)		もみ殻 (処理150日後)		稲わら (処理150日後)	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
抽出画分	0.010	89.1	0.002	75.8	0.022	84.8	0.089	90.8
抽出残渣	0.001	10.9	0.001	24.2	0.004	15.2	0.009	9.2
TRR	0.011	_	0.003	_	0.026	_	0.098	_
		[ph	c- ¹⁴ C]テトラ	ラニリプロー	ール			
		葉 4日後)	玄米 (処理150日後)		もみ殻 (処理150日後)		稲わら (処理150日後)	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
抽出画分	0.008	91.2	0.002	49.0	0.016	87.1	0.063	91.0
抽出残渣	0.001	8.8	0.002	51.0	0.002	12.9	0.006	9.0

表 2.4-1: 十壌処理区の稲における放射性物質濃度の分布

表 2.4-2: 茎葉処理区の稲における放射性物質濃度の分布

0.008

TRR

农 2.1 2 · 至来产生已,而已经历史成为 15											
	[pyc- ¹⁴ C]テトラニリプロール										
	茎葉 (1回目処理13日後)		玄米 (2回目処理56日後)		もみ殻 (2回目処理56日後)		稲わら (2回目処理56日後)				
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR			
常温抽出画分	1.28	98.3	0.037	93.7	2.46	97.6	4.25	98.5			
マイクロ波抽出画分	NA	_	NA	_	0.047	1.8	0.050	1.2			
抽出残渣	0.022	1.7	0.002	6.3	0.015	0.6	0.016	0.4			
TRR	1.31	_	0.040	_	2.52	_	4.32	_			

0.018

0.069

0.004

[phc- ¹⁴ C]テトラニリプロール										
			玄米 (2回目処理56日後)		もみ殻 (2回目処理56日後)		稲わら (2回目処理 560 日後)			
			mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
常温抽出画分	2.56	99.2	0.022	92.7	1.99	94.2	4.45	97.5		
マイクロ波抽出画分	NA	_	NA	_	0.106	5.0	0.094	2.1		
抽出残渣	0.022	0.8	0.002	7.3	0.016	0.7	0.019	0.4		
TRR	2.58	_	0.024	_	2.11		4.57			

NA: 実施せず -: 算出せず

稲におけるテトラニリプロール及び代謝物の定量結果を表 2.4-3 及び表 2.4-4 に示す。

土壌処理区の稲における主要な残留成分はテトラニリプロール及び代謝物 M22 であり、玄米でそれぞれ 22~48 %TRR 及び 6.2~9.9 %TRR、もみ殻で 78~83 %TRR 及び 0~3.9 %TRR、稲わらで 77 %TRR 及び 11~14 %TRR、茎葉で 79~81 %TRR 及び 5.2~12 %TRR であった。

茎葉処理区の稲における主要な残留成分はテトラニリプロールであり、玄米で $91\sim$ 92% TRR、もみ殻で $93\sim$ 96% TRR、稲わらで $94\sim$ 95% TRR、茎葉で $97\sim$ 98% TRR であった。その他に代謝物 M22が検出されたが、 $0\sim$ 3.7% TRR であった。

表 2.4-3: 土壌処理区の稲におけるテトラニリプロール及び代謝物の定量結果

3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1										
[pyc- ¹⁴ C]テトラニリプロール										
		葉		玄米 (処理150日後)		もみ殻 (処理150日後)		稲わら		
	(処理6	4日後)	(処理1:					50日後)		
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
テトラニリプロール	0.009	81.0	0.001	48.4	0.020	77.9	0.075	76.9		
代謝物M22	0.001	5.2	0.000	9.9	ND	-	0.014	13.9		
未同定代謝物	ND	_	0.001	17.41)	0.002	6.9	ND	_		
		[ph	c- ¹⁴ C]テトラ	ラニリプロー	ール					
	茎	葉	玄	**	ŧ,7	分殻	稲才	っら		
	(処理6	4日後)	(処理1:	(処理150日後)		50日後)	(処理1:	50日後)		
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
テトラニリプロール	0.007	78.9	0.001	21.8	0.015	83.2	0.054	77.3		
代謝物M22	0.001	12.3	0.000	6.2	0.001	3.9	0.007	10.8		
未同定代謝物	ND	_	0.001	21.01)	ND	_	0.002	2.9		

ND:検出限界未満 -: 算出せず 1): TLC 原点に認められた未同定代謝物

表 2.4-4: 茎葉処理区の稲におけるテトラニリプロール及び代謝物の定量結果

[pyc- ¹⁴ C]テトラニリプロール										
	茎葉 (1回処理13日後)		玄米 (2回処理56日後)		もみ殻 (2回処理56日後)		稲わら (2回処理56日後)			
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
テトラニリプロール	1.27	97.1	0.037	92.2	2.42	95.9	4.11	95.3		
代謝物M22	0.014	1.1	0.001	1.5	0.052	2.1	0.112	2.6		
未同定代謝物	ND	_	ND	_	0.032	1.3	0.077	1.8		

[phc- ¹⁴ C]テトラニリプロール										
	茎葉 (1回目処理13日後)		玄米 (2回目処理56日後)		もみ殻 (2回目処理56日後)		稲わら (2回目処理56日後)			
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
テトラニリプロール	2.54	98.4	0.022	90.9	1.95	92.6	4.31	94.4		
代謝物M22	0.018	0.7	0.000	1.8	0.078	3.7	0.151	3.3		
未同定代謝物	ND	_	ND	_	0.062	2.9	0.081	1.8		

ND: 検出限界未満 -: 算出せず

(2) ばれいしょ

ばれいしょにおける植物代謝試験は茎葉処理及び種いも処理の 2 種類の処理区を設けて実施した。供試作物(品種: Cilena (茎葉処理区)、Agria Bio (種いも処理区))は、茎葉処理区では砂壌土 (pH 6.8 (CaCl₂)、OC 1.4 %)を充填した容器 (1 m^2) を用いて温室内で、種いも処理区では砂壌土 $(pH 7.09 \text{ (CaCl}_2) \text{ 、OC } 1.41 \text{ %})$ の屋外ほ場 (1 m^2) で栽培した。

茎葉処理区においては、 $[pyc^{-14}C]$ テトラニリプロール及び $[phc^{-14}C]$ テトラニリプロールを それぞれフロアブル剤に調製し、茎葉伸長期(BBCH 38)及び 1 回目処理 49 日後(BBCH 97-99: 枯凋期~収穫期)に 96 g ai/ha の用量で合計 2 回茎葉散布した。 2 回目処理 14 日後(BBCH 99)に塊茎を採取した。

塊茎は液体窒素中で均質化後、アセトニトリル/水/ギ酸(8/2/0.1(v/v/v))で抽出し、酢酸エチルで分配し、LSCで放射能を測定した。有機溶媒画分は固相抽出(SPE)で精製後、TLCで放射性物質を定量及び同定した。抽出残渣は燃焼後、LSCで放射能を測定した。

種いも処理区においては、 [pyc-¹⁴C]テトラニリプロールを水和剤に調製し、植付時に 200 g ai/ha の用量で植え溝内の種いもに散布し、覆土した。処理 151 日後(BBCH 99)に塊茎を採取した。

塊茎は液体窒素中で均質化し、燃焼後、LSCで放射能を測定した。

茎葉処理区のばれいしょの塊茎中の放射性物質濃度の分布を表 2.4-5 に示す。

塊茎中の TRR は 0.001 mg/kg であり、アセトニトリル/水/ギ酸により $75\sim79 \text{ %TRR}$ が抽出された。

種いも処理区の塊茎中の TRR は 0.001 mg/kg であり、茎葉処理区と同等の残留濃度であった。

表 2.4-5: 茎葉処理区のばれいしょの塊茎中の放射性物質濃度の分布

	[pyc- ¹⁴ C]テトラ	ラニリプロール	[phc- ¹⁴ C]テトラニリプロール		
	mg/kg	%TRR	mg/kg	%TRR	
抽出画分	0.001	79.3	0.001	74.6	
有機溶媒画分	0.001	59.0	0.001	64.6	
水画分	0.000	20.3	0.000	10.1	
抽出残渣	0.000	20.7	0.000	25.4	
TRR	0.001	_	0.001	_	

茎葉処理区のばれいしょの塊茎中のテトラニリプロール及び代謝物の定量結果を表 2.4-6 に示す。

塊茎中の主要な残留成分はテトラニリプロール及び代謝物 M22 であり、それぞれ 29~42 %TRR 及び 9.0~13 %TRR であった。

	[pyc- ¹⁴ C]テトラ	ラニリプロール	[phc- ¹⁴ C]テトラニリプロール		
	mg/kg	%TRR	mg/kg	%TRR	
テトラニリプロール	0.000	29.4	0.000	42.3	
代謝物M22	0.000	9.0	0.000	13.0	
未同定代謝物	0.000	20.61)	0.000	9.3	

表 2.4-6: 茎葉処理区のばれいしょの塊茎中のテトラニリプロール及び代謝物の定量結果

(3) レタス

レタス (品種: Reine de Mai) における植物代謝試験は砂壌土 (pH 7.09 (CaCl₂)、OC 1.41 %) を充填した容器 (0.24 m^2) を用いて温室内で実施した。

[pyc-¹⁴C]テトラニリプロール及び[phc-¹⁴C]テトラニリプロールをそれぞれフロアブル剤に調製し、葉球肥大期(BBCH 44-45)及び 1 回目処理 7 日後に $60 \, \mathrm{g}$ ai/ha の用量で合計 2 回茎葉散布した。2 回目処理 7 日後(BBCH 49: 収穫期)に葉球を採取した。

葉球は液体窒素中で均質化後、アセトニトリル/水/ギ酸(8/2/0.1(v/v/v))で抽出し、LSC で放射能を測定した。抽出画分は HPLC で放射性物質を定量し、HPLC 及び TLC で同定した。抽出残渣は燃焼後、LSC で放射能を測定した。

レタスの葉球中のTRR は4.1 mg/kg であり、アセトニトリル/水/ギ酸により $99\sim100\%$ TRR が抽出された。残留成分はテトラニリプロールのみであり、 $99\sim100\%$ TRR であった。

(4) りんご

りんご (品種: James Grieve) における植物代謝試験は砂壌土 (pH 6.8 (CaCl₂)、OC 1.2 %)を充填した容器 (0.5 m²) を用いて温室内で実施した。

[pyc-¹⁴C]テトラニリプロール及び[phc-¹⁴C]テトラニリプロールをそれぞれフロアブル剤に調製し、果実肥大初期(BBCH71)及び1回目処理33日後(BBCH73:早期落果期)に60g ai/haの用量で合計2回散布した。2回目処理64日後(BBCH89:収穫期)に果実を、66日後に葉を採取した。

果実はジクロロメタンで表面洗浄した。葉及び洗浄後の果実は液体窒素中で均質化後、アセトニトリル/水/ギ酸(8/2/0.1(v/v/v))で抽出した。表面洗浄画分及び抽出画分は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS 及び LC-MS-MS で同定した。抽出残渣は燃焼後、LSC で放射能を測定した。

りんごの果実中の TRR は 0.18~0.25 mg/kg であり、表面洗浄により 92~97 % TRR、アセ

^{1): 4} 種類の未同定代謝物の合計(個々の成分は 12 %TRR 以下)

トニトリル/水/ギ酸抽出により $3.0\sim7.5$ %TRR が回収された。葉中の TRR は 99.4 mg/kg であり、アセトニトリル/水/ギ酸により 100 %TRR が抽出された。

果実及び葉中の残留成分はテトラニリプロールであり、いずれも99%TRRであった。

(5) トマト

トマト (品種: Philona) における植物代謝試験は容器 $(0.145\,\mathrm{m}^2、30\,\mathrm{L})$ を用いて温室内で実施した。

[pyc-¹⁴C]テトラニリプロール及び[phc-¹⁴C]テトラニリプロールをそれぞれフロアブル剤に調製し、 $4\sim6$ 葉期(BBCH 14-16)に 150 g ai/ha の用量で土壌に灌注した。処理 83~99日後(BBCH 81-89:成熟期)に果実を、99日後に葉を採取した。

果実は均質化後、葉は液体窒素中で均質化後、アセトニトリル/水/ギ酸(8/2/0.1(v/v/v))で抽出し、ジクロロメタンで分配し、LSCで放射能を測定した。有機溶媒画分は SPE で精製後、TLC 及び HPLCで放射性物質を定量及び同定した。抽出残渣は燃焼後、LSCで放射能を測定した。

トマトにおける放射性物質濃度の分布を表 2.4-7 に示す。

果実中の TRR は 0.001 mg/kg 未満であり、アセトニトリル/水/ギ酸により $87\sim91 \text{ %TRR}$ が抽出された。葉中の TRR は $0.005\sim0.006 \text{ mg/kg}$ であり、アセトニトリル/水/ギ酸により 94 %TRR が抽出された。

<u> </u>	衣 2.4-7. 下下における放射性物具張及の力相										
	[py	[pyc- ¹⁴ C]テトラニリプロール				[phc- ¹⁴ C]テトラニリプロール					
	果	果実		葉		果実		葉			
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR			
抽出画分	< 0.001	90.7	0.005	93.9	< 0.001	86.5	0.005	94.4			
有機溶媒画分	< 0.001	67.8	0.004	75.7	< 0.001	55.5	0.004	77.9			
水画分	< 0.001	22.9	0.001	18.3	< 0.001	31.0	0.001	16.6			
抽出残渣	< 0.001	9.3	< 0.001	6.1	< 0.001	13.5	< 0.001	5.6			
TRR	< 0.001	_	0.005	_	< 0.001	_	0.006	_			

表 24-7・トマトにおける放射性物質濃度の分布

トマトにおけるテトラニリプロール及び代謝物の定量結果を表 2.4-8 に示す。

トマトにおける主要な残留成分はテトラニリプロール及び代謝物 M22 であり、果実中でそれぞれ 22~34 % TRR 及び 11~20 % TRR、葉中でそれぞれ 25~27 % TRR 及び 34~37 % TRR であった。

		1 1/2 - /C II							
	[py	[pyc- ¹⁴ C]テトラニリプロール				[phc- ¹⁴ C]テトラニリプロール			
	果	果実		葉		果実		葉	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	
テトラニリプロール	< 0.001	22.4	0.001	24.5	< 0.001	34.0	0.002	27.1	
代謝物M22	< 0.001	10.7	0.002	33.7	< 0.001	20.0	0.002	37.2	
未同定代謝物	< 0.001	30.01)	0.001	17.5 ²⁾	ND	_	0.001	13.53)	

表 2.4-8: トマトにおけるテトラニリプロール及び代謝物の定量結果

ND: 検出限界未満 -: 算出せず

1): 2 種類の未同定代謝物の合計 (個々の成分は 15.5 % TRR 以下) 2): 6 種類の未同定代謝物の合計 (個々の成分は 4.4% TRR 以下)

3):5種類の未同定代謝物の合計(個々の成分は4.1%TRR以下)

(6) とうもろこし

とうもろこし(品種: Mezdi) における植物代謝試験は砂壌土 (pH 7.09 (CaCl₂)、OC 1.41 %) の屋外ほ場 (2 m^2) で実施した。

[pyc-¹⁴C]テトラニリプロールを水和剤に調製し、土壌表面の種子に 150 g ai/ha の用量で処理し、覆土した。処理 98 日後 (BBCH 79-83: 糊熟期) に地上部を、145 日後 (BBCH 89: 完熟期) に子実及び茎葉 (穂軸、茎及び葉) を採取した。

地上部、子実及び茎葉は液体窒素中で均質化し、燃焼後、LSC で放射能を測定した。茎葉はアセトニトリル/水/ギ酸(8/2/0.1(v/v/v))で抽出し、酢酸エチル/水(3/1(v/v))で分配し、LSC で放射能を測定した。有機溶媒画分は TLC で放射性物質を定量及び同定した。抽出残渣は燃焼後、LSC で放射能を測定した。

子実中の TRR は 0.001 mg/kg 未満であり、地上部の TRR は 0.006 mg/kg であった。 とうもろこしの茎葉中の放射性物質濃度の分布を表 2.4-9 に示す。

茎葉中の TRR は 0.008 mg/kg であり、アセトニトリル/水/ギ酸により 76 % TRR が抽出された。

表 2.4-9: とうもろこしの茎葉中の放射性物質濃度の分布

	mg/kg	%TRR
抽出画分	0.006	75.8
有機溶媒画分	0.005	70.1
水画分	0.000	5.7
抽出残渣	0.002	24.2
TRR	0.008	_

とうもろこしの茎葉中のテトラニリプロール及び代謝物の定量結果を表 2.4-10 に示す。 茎葉中の主要な残留成分はテトラニリプロール及び代謝物 M22 であり、それぞれ 26 %TRR 及び 17 %TRR であった。

2(20.20.2)		> > C = 14911 1/4 > / C = 1/H >
	mg/kg	%TRR
テトラニリプロール	0.002	26.1
代謝物M22	0.001	17.4
未同定代謝物	0.002	26.51)

表 2.4-10: とうもろこしの茎葉中のテトラニリプロール及び代謝物の定量結果

1):5種類の未同定代謝物の合計(個々の成分は15.4%TRR以下)

(7) 植物代謝のまとめ

水稲、ばれいしょ、レタス、りんご、トマト及びとうもろこしを用いた植物代謝試験の結果、主要な残留成分はテトラニリプロール及び代謝物 M22 であった。

テトラニリプロールの植物中における主要な代謝経路は、ピリミジノン環の形成による 代謝物 M22 の生成と考えられた。

2.4.1.2 家畜代謝

[pyc-¹⁴C]テトラニリプロール、ピリジン環の第2位の炭素を ¹⁴C で均一に標識したテトラニリプロール (以下「[pyr-2-¹⁴C]テトラニリプロール」という。)及びテトラゾリル基の炭素を ¹⁴C で均一に標識したテトラニリプロール (以下「[tet-¹⁴C]テトラニリプロール」という。)を用いて実施した産卵鶏及び泌乳山羊における家畜代謝試験の報告書を受領した。

放射性物質濃度及び代謝物濃度は、特に断りがない場合はテトラニリプロール換算で表示した。

$$[pyr-2^{-14}C] \ \, \overline{r} \ \, \overline{r} = \mathbb{I} \ \, \overline{r} = \mathbb$$

*:14C 標識の位置

(1) 産卵鶏

各群 6 羽の産卵鶏(約 5-6 ヶ月齢(体重 1.86 (投与開始時)-1.87 (と殺時) kg)、約 5-6 ヶ月齢(体重 1.83 (投与開始時)-1.89 (と殺時) kg)及び 24 週齢(体重 1.76 (投与開始時)-1.78 (と殺時) kg))に飼料中濃度として 18.6 mg/kg に相当する[pyc-¹⁴C]テトラニリプロール、17.9 mg/kg に相当する[pyr-2-¹⁴C]テトラニリプロール又は 18.7 mg/kg に相当する [tet-¹⁴C]テトラニリプロールを、シリンジを用いて 14 日間連続強制経口投与した。卵及び排泄物は 1 日 1 回採取した。最終投与の約 6 時間後にと殺し、肝臓、腎臓、筋肉(腿部及び胸部)、脂肪(皮下)、皮膚(皮下脂肪を除く)及び卵巣/卵管内の卵を採取した。

液体試料は直接、固体試料は燃焼後、LSCで放射能を測定した。

卵(初回投与 6 日後~と殺時の混合試料)、肝臓及び筋肉(各部位の混合試料)はアセトニトリル/水/ギ酸(8/2/0.1(v/v/v))及びアセトニトリル/水(8/2(v/v))で常温抽出し、アセトニトリル/水(5/5(v/v))及びアセトニトリル/水/ギ酸(5/5/0.1(v/v/v))でマイクロ波抽出(5 分間加熱後、120 \mathbb{C} 、20 分間)した。

[pyc-¹⁴C]テトラニリプロール及び[tet-¹⁴C]テトラニリプロール投与区の脂肪はアセトニトリル/水/n-ヘプタン/ギ酸(8/2/10/0.1(v/v/v/v))及びアセトニトリル/水/n-ヘプタン(8/2/10 (v/v/v))し、抽出画分と n-ヘプタン画分に分画した。

[pyr-2-¹⁴C]テトラニリプロール投与区の脂肪はメタノール/ギ酸(10/0.1(v/v))及びメタノールで抽出した。抽出画分は HPLC で放射性物質を定量し、HPLC、TLC、 LC-MS 及び LC-MS-MS で同定した。

臓器、組織及び排泄物中における放射性物質濃度の分布を表 2.4-11 に示す。

と殺時点において、総投与放射性物質 (TAR) に対して $91\sim93\%$ が排泄物中に排泄され、 $0.16\sim0.19\%$ が卵中に排泄された。放射性物質は肝臓中に $0.49\sim0.77$ mg/kg、腎臓中に $0.098\sim0.33$ mg/kg、筋肉中に $0.017\sim0.031$ mg/kg、脂肪中に $0.028\sim0.095$ mg/kg が残留していた。

	$(pyc-^{14}C)$ $(p$									
		[pyc-14C]アトラ	ラニリプロール	[pyr-2-14C]アト	フニリプロール	[tet- ¹⁴ C]テトラニリプロール				
		mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR			
	肝臓	0.485	0.08	0.734	0.13	0.766	0.12			
	腎臓	0.098	< 0.01	0.332	0.01	0.172	0.01			
	腿部	0.020	_	0.030	_	0.035	_			
筋肉	胸部	0.014	_	0.020	_	0.026	_			
	総筋肉1)	0.017	0.05	0.025	0.07	0.031	0.09			
脂肪	(皮下)2)	0.046	0.04	0.028	0.02	0.095	0.08			
卵巣/卵	71管内の卵	0.218	0.03	0.236	0.03	0.245	0.05			
Б	皮膚 ³⁾	0.035	0.01	0.047	0.01	0.078	0.02			
戼	(合計)		0.18	_	0.19		0.16			
担	 		92.5	_	92.3		91.3			
E	可収率	_	92.9	_	92.8	_	91.8			

表 2.4-11:組織、臓器及び排泄物中の放射性物質濃度の分布

- 1): 残留濃度は2種類の筋肉の加重平均、%TAR は筋肉が総体重の40%を占めると仮定して算出。
- 2): %TAR は脂肪が総体重の12%を占めると仮定して算出。
- 3): %TAR は皮膚が総体重の4%を占めると仮定して算出。

卵中の放射性物質濃度の推移を表 2.4-12 に示す。

卵中の放射性物質濃度は初回投与 9 日後までに定常状態に達し、それ以降は[pyc- 14 C]テトラニリプロールで $0.084 \sim 0.091$ mg/kg、[pyr- $2-^{14}$ C]テトラニリプロールで $0.081 \sim 0.11$ mg/kg 、[tet- 14 C]テトラニリプロールで $0.088 \sim 0.10$ mg/kg で推移した。

^{- :} 箟出せず

表 2.4-12: 9	『中の放射性物質濃度の推移
•	44

初回投与後	[pyc- ¹⁴ C]テトラ	ラニリプロール	[pyr-2- ¹⁴ C]テト	ラニリプロール	[tet- ¹⁴ C]テトラニリプロール		
日数	mg/kg	%TAR(累積)	mg/kg	%TAR(累積)	mg/kg	%TAR(累積)	
1	0.005	< 0.01	0.006	< 0.01	0.011	< 0.01	
2	0.015	< 0.01	0.022	0.01	NA	< 0.01	
3	0.025	0.01	0.038	0.01	0.022	0.01	
4	0.038	0.02	0.047	0.02	0.033	0.01	
5	0.053	0.03	0.062	0.03	0.046	0.02	
6	0.067	0.04	0.073	0.05	0.059	0.03	
7	0.078	0.06	0.079	0.07	0.073	0.05	
8	0.079	0.07	0.081	0.08	0.082	0.06	
9	0.089	0.09	0.083	0.11	0.090	0.08	
10	0.089	0.11	0.081	0.12	0.091	0.09	
11	0.088	0.12	0.089	0.13	0.090	0.10	
12	0.088	0.14	0.087	0.15	0.088	0.12	
13	0.084	0.16	0.082	0.17	0.092	0.14	
13(と殺時)	0.091	0.18	0.105	0.19	0.100	0.16	

NA: 実施せず -: 算出せず

卵、肝臓、筋肉及び脂肪中の放射性物質濃度の分布を表 2.4-13 に示す。

卵、肝臓及び筋肉中の放射性物質は常温抽出及びマイクロ波抽出によりそれぞれ 90~ $100\,\%$ TRR、 $100\,\%$ TRR 及び $89\sim100\,\%$ TRR が抽出された。

[pyc- 14 C]テトラニリプロール及び[tet- 14 C]テトラニリプロール投与区の脂肪中の放射性物質は常温抽出及びマイクロ波抽出により 100 %TRR が抽出され、n-ヘプタン画分に放射性物質は定量されなかった。

[pyr-2- 14 C]テトラニリプロール投与区の脂肪中の放射性物質はメタノール抽出により 86 % TRR が抽出された。

表 2.4-13: 卵、肝臓、筋肉及び脂肪中の放射性物質濃度の分布

		[pyc- ¹⁴ C]テトラニリプロール							
	卵(6 日-	卵(6 日-と殺時)		肝臓		筋肉		脂肪	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	
TRR	0.084	_	0.485	_	0.017	_	0.046	_	
常温抽出画分	0.074	88.1	0.285	58.7	0.015	88.6	0.046	99.7	
マイクロ波抽出画分	0.010	11.9	0.200	41.3	NA	_	NA	_	
抽出残渣	ND	_	ND	_	0.002	11.4	< 0.001	0.3	

	[pyr-2- ¹⁴ C]テトラニリプロール								
	卵(6 日-と殺時)		肝臓		筋肉		脂肪		
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	
TRR	0.084	_	0.734	_	0.025	_	0.028	_	
常温抽出画分	0.046	54.3	0.248	33.8	0.011	43.9	NA	_	
マイクロ波抽出画分	0.038	45.7	0.486	66.2	0.014	56.1	NA	_	
メタノール抽出画分	NA	_	NA	_	NA	_	0.024	85.5	
脂肪マトリックス 1)	NA	_	NA	_	NA	_	0.004	14.5	
抽出残渣	ND	_	ND	_	ND	_	ND	_	
			[tet	- ¹⁴ C]テトラ	ニリプロー	-ル			
	卵(6 日-と殺時)		肝臓		筋	筋肉		脂肪	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	
TRR	0.086	_	0.766	_	0.031	_	0.095	_	
常温抽出画分	0.078	90.3	0.414	54.0	0.029	94.1	0.095	99.7	
マイクロ波抽出画分	NA	_	0.352	46.0	NA	_	NA	_	
抽出残渣	0.008	9.7	ND	_	0.002	5.9	< 0.001	0.3	

NA: 実施せず ND: 検出限界未満 -: 算出せず

1):メタノール抽出後の液状層

卵、肝臓、筋肉及び脂肪中のテトラニリプロール及び代謝物の定量結果を表 2.4-14 に示 す。

卵中の主要な残留成分はテトラニリプロール、代謝物 M34 及び代謝物 M44 抱合体であ り、それぞれ 4.2~14 %TRR、27~36 %TRR 及び 7.3~15 %TRR であった。

肝臓中のテトラニリプロールは 1.6~4.8 %TRR であった。主要な残留成分は代謝物 M34 であり、8.5~12 %TRR であった。

筋肉中の主要な残留成分はテトラニリプロール及び代謝物 M40、代謝物 M41 及び代謝物 M44 抱合体であり、それぞれ 3.7~10 %TRR、9.7~13 %TRR、18~40 %TRR 及び 13~ 16 %TRR であった。

脂肪中の主要な残留成分はテトラニリプロール及び代謝物 M8 及び代謝物 M34 であり、 それぞれ 9.4~55 %TRR、15 %TRR 及び 62~63 %TRR であった。

その他に代謝物 M1、代謝物 M3、代謝物 M22、代謝物 M31、代謝物 M33 及び代謝物 35 等が認められたが、いずれも 10 %TRR 未満であった。

表 2.4-14: 卵、肝臓、筋肉及び脂肪中のテトラニリプロール及び代謝物の定量結果

2、4-14 . タ戸、 月 順	域、筋肉及び脂肪中のアトフニリプロール及び代謝物の定量結果 [pyc-14C]テトラニリプロール							
	卵(6 日-	卵(6 日-と殺時) 肝臓			筋		脂肪	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
テトラニリプロール	0.008	10.1	0.023	4.8	0.002	10.0	0.012	25.7
代謝物 M1	0.001	0.8	0.024	5.0	ND	_	ND	_
代謝物 M3	0.002	2.3	0.019	3.8	ND	_	ND	_
一 代謝物 M8	0.002	1.8	0.007	1.4	< 0.001	2.2	ND	_
代謝物 M22	0.005	6.3	ND	_	ND	_	ND	_
代謝物 M31	0.002	2.0	0.042	8.6	0.002	9.1	0.001	3.0
代謝物 M33 及び M35	0.002	2.2	0.045	9.3	ND	_	< 0.001	1.1
代謝物 M34	0.030	35.8	0.060	12.3	0.001	8.6	0.029	63.3
代謝物 M40	0.002	2.9	0.005	1.0	0.002	12.9	ND	_
代謝物 M41	0.005	5.5	0.022	4.6	0.007	40.4	0.002	4.5
未同定代謝物	0.010	11.82)	0.125	25.73)	ND	_	< 0.001	1.1
			[pyr-	-2- ¹⁴ C]テト	ラニリプロ	ール		
	卵(6 日-	と殺時)	肝	臓	筋	肉	脂肪	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
テトラニリプロール	0.012	13.8	0.012	1.6	0.001	3.7	0.015	54.6
代謝物 M1	0.001	1.5	0.024	3.3	0.001	2.4	ND	_
代謝物 M3	0.003	3.6	0.013	1.7	< 0.001	1.6	ND	_
代謝物 M8	0.003	3.2	ND	_	< 0.001	1.5	0.004	14.9
代謝物 M22	0.006	7.4	ND	_	ND	_	ND	_
未同定代謝物	0.058	68.9 ⁴⁾	0.605	82.45)	0.008	32.76)	0.003	12.07)
			[tet	:- ¹⁴ C]テトラ	ニリプロー	ール		
	卵(6 日-	と殺時)	肝	臓	筋	肉	脂肪	
	mg/kg	%TRR	mg/kg	%TRR	mg/kg %TRR		mg/kg	%TRR
テトラニリプロール	0.004	4.2	0.032	4.2	0.003	9.4	0.025	25.9
代謝物 M1	< 0.001	0.5	0.062	8.1	ND	_	ND	_
代謝物 M3	0.001	1.5	0.030	3.9	< 0.001	1.3	ND	_
代謝物 M8	0.001	1.7	0.009	1.1	< 0.001	1.4	ND	_
代謝物 M22	0.003	3.1	ND	_	ND	_	ND	_
代謝物 M31	0.003	3.4	0.074	9.6	0.001	3.0	0.002	1.9
代謝物 M33 及び M35	0.001	1.5	0.069	9.0	ND	_	ND	_
代謝物 M34	0.023	26.7	0.065	8.5	0.002	6.8	0.059	62.5
代謝物 M40	0.002	2.7	0.027	3.5	0.003	9.7	0.002	2.5
代謝物 M41	0.005	6.0	0.044	5.8	0.005	17.6	ND	_
代謝物 M44	ND	_	ND	_	ND	_	0.002	2.4
代謝物 M44 抱合体 1 ¹⁾	0.006	7.3	ND	_	0.005	15.7	0.002	2.3
代謝物 M44 抱合体 2 ¹⁾	0.013	15.4	0.007	1.0	0.004	13.2	0.001	0.8
代謝物 M44 抱合体 3 ¹⁾	ND	_	0.018	2.3	ND	_	ND	_
未同定代謝物	0.010	$10.9^{8)}$	0.220	28.79)	0.005	15.9 ¹⁰⁾	ND	_

テトラニリプロール - II. 審査報告 - 2. 審査結果

ND:検出限界未満 -:算出せず

- 1): エンドコンは同定されなかった
- 2):9種類の未同定代謝物の合計(個々の成分は2.0%TRR以下)
- 3):17 種類の未同定代謝物の合計(個々の成分は5.1%TRR以下)
- 4): 15 種類の未同定代謝物の合計(個々の成分は 12.4 %TRR 以下)
- 5): 30 種類の未同定代謝物の合計(個々の成分は 6.9 % TRR 以下)
- 6):5種類の未同定代謝物の合計(個々の成分は19.9%TRR以下)
- 7):3種類の未同定代謝物の合計(個々の成分は4.8%TRR以下)
- 8):9種類の未同定代謝物の合計(個々の成分は2.2%TRR以下)
- 9):13 種類の未同定代謝物の合計(個々の成分は4.8 %TRR以下)
- 10): 2種類の未同定代謝物の合計(個々の成分は13.4%TRR以下)

(2) 泌乳山羊

各群1頭の泌乳山羊(27ヶ月齢(体重 56-59 kg (投与開始時-と殺時))、14ヶ月齢(体重 39-41 kg) 及び 39ヶ月齢(体重 63-64 kg))に、飼料中濃度として 27.0 mg/kg に相当する [pyc-¹⁴C]テトラニリプロール、20.7 mg/kg に相当する [pyr-2-¹⁴C]テトラニリプロール又は 37.7 mg/kg に相当する [tet-¹⁴C]テトラニリプロールを、ゼラチンカプセルを用いて 5 日間連続強制経口投与した。尿及び糞は 1 日 1 回採取した。乳は 1 日 2 回採取し、初回投与 32-101/102 時間後の乳の一部は混合し、n-ヘプタンでクリームと脱脂肪乳に分離した。最終投与の約 6 時間後にと殺し、肝臓、腎臓、筋肉(腿部及び腰部)及び脂肪(大網及び腎周囲)を採取した。

液体試料は直接、固体試料は燃焼後、LSCで放射能を測定した。

乳(初回投与 32-101/102 時間後の混合試料)、肝臓、腎臓及び筋肉(各部位の混合試料)はアセトニトリル/水/ギ酸(8/2/0.1(v/v/v))及びアセトニトリル/水(8/2(v/v))で常温抽出し、肝臓の抽出残渣はアセトニトリル/水(5/5 (v/v))及びアセトニトリル/水/ギ酸(5/5/0.1 (v/v/v))でマイクロ波抽出(5 分間加熱後、120 $^{\circ}$ C、20 分間)した。

脂肪(各部位の混合試料) はアセトニトリル/水/n-ヘプタン/ギ酸(8/2/10/0.1 (v/v/v/v) 又は 8/2/15/0.1 (v/v/v/v)) 及びアセトニトリル/水/n-ヘプタン(8/2/10 (v/v/v) 又は 8/2/15 (v/v/v)) で抽出し、抽出画分と n-ヘプタン画分に分画した。抽出画分は HPLC で放射性物質を定量し、HPLC、 LC-MS、LC-MS-MS 及び核磁気共鳴 (NMR) で同定した。

臓器、組織及び排泄物中の放射性物質濃度の分布を表 2.4-15 に示す。

と殺時点において、 $2.0\sim3.3\%$ TAR が尿中に、 $61\sim69\%$ TAR が糞中に排泄され、乳中への排泄は $1.1\sim1.3\%$ TAR であった。放射性物質は肝臓中に $0.88\sim1.2$ mg/kg、腎臓中に $0.24\sim0.33$ mg/kg、筋肉中に $0.09\sim0.12$ mg/kg、脂肪中に $0.39\sim0.60$ mg/kg が残留していた。

		[pyc- ¹⁴ C]テトラニリプロール		[pyr-2- ¹⁴ C]テト	ラニリプロール	[tet- ¹⁴ C]テトラニリプロール	
		mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR
肝臓		0.998	0.42	0.878	0.44	1.21	0.57
	腎臓	0.253	0.01	0.243	0.02	0.331	0.02
	腿部	0.099	_	0.085	_	0.123	1
筋肉	腰部	0.099	_	0.091	_	0.121	
	総筋肉1)	0.099	0.56	0.086	0.49	0.123	0.72
	大網	0.638	_	0.394	_	0.485	1
脂肪	腎周囲	0.522	_	0.379	_	0.450	1
	総脂肪 2)	0.598	1.36	0.387	0.89	0.473	1.11
乳	(合計)	_	1.24	_	1.32		1.10
尿		_	2.13	_	2.03	_	3.25
糞		_	67.3	_	69.0		60.9
回収率		_	73.0	_	74.2	_	67.6

表 2.4-15:組織、臓器及び排泄物中の放射性物質濃度の分布

- : 算出せず

1): 残留濃度は2種類の筋肉の加重平均、%TAR は筋肉が総体重の30%を占めると仮定して算出。

2): 残留濃度は2種類の脂肪の加重平均、%TAR は脂肪が総体重の12%を占めると仮定して算出。

乳中の放射性物質濃度の推移並びにクリーム及び脱脂肪乳への分布を表 2.4-16 及び表 2.4-17 に示す。

乳中の放射性物質濃度は初回投与 80 時間後までに定常状態に達し、それ以降は [pyc-¹⁴C] テトラニリプロールで $0.41 \sim 0.51$ mg/kg、[pyr-2-¹⁴C] テトラニリプロールで $0.24 \sim 0.33$ mg/kg 、[tet-¹⁴C] テトラニリプロールで $0.43 \sim 0.46$ mg/kg で推移した。乳中の放射性物質は脱脂肪乳画分に $94 \sim 98$ % TRR、クリーム画分に $2.1 \sim 5.8$ % TRR が分布しており、テトラニリプロールに脂溶性はないと考えられた。

表 2 4-16:	到中の特	为射性物質	濃度の推移
1X 4.4-10 .	41111071	X 7 I I T 10.1 E	1位/マップ 1 H //タ

初回投与後	[pyc- ¹⁴ C]テトラニリプロール		[pyr-2- ¹⁴ C]テト	ラニリプロール	[tet- ¹⁴ C]テトラニリプロール		
時間	mg/kg	%TAR(累積)	mg/kg	%TAR(累積)	mg/kg	%TAR(累積)	
8	0.196	0.06	0.190	0.10	0.123	0.04	
24	0.165	0.18	0.139	0.22	0.259	0.15	
32	0.327	0.28	0.290	0.39	0.374	0.25	
48	0.316	0.46	0.168	0.54	0.352	0.41	
56	0.454	0.59	0.318	0.71	0.410	0.51	
72	0.330	0.78	0.173	0.86	0.486	0.72	
80	0.406	0.91	0.328	1.03	0.459	0.82	
96	0.428	1.13	0.244	1.23	0.436	1.02	
101/102	0.506	1.24	0.280	1.32	0.433	1.10	

- : 算出せず

	[pyc- ¹⁴ C]テトラ	ラニリプロール	[pyr-2- ¹⁴ C]テト	ラニリプロール	[tet- ¹⁴ C]テトラニリプロール		
	mg/kg	mg/kg %TAR		%TAR	mg/kg	%TAR	
TRR	0.506		0.243	_	0.421	_	
クリーム画分	0.010	2.1	0.014	5.8	0.024	5.6	
脱脂肪乳画分	0.496	97.9	0.229	94.2	0.397	94.4	

表 2.4-17: 乳中の放射性物質のクリーム及び脱脂肪乳への分布

乳、肝臓、腎臓、筋肉及び脂肪中の放射性物質濃度の分布を表 2.4-18 に示す。

乳、腎臓及び筋肉中の放射性物質は常温抽出によりそれぞれ 99~100 %TRR、99 %TRR 及び 99~100 %TRR が抽出された。

肝臓中の放射性物質は常温抽出により $89\sim91~\%$ TRR、マイクロ波抽出により $8.8\sim11~\%$ TRR が抽出された。

脂肪中の放射性物質は常温抽出により 100 %TRR が抽出され、n-ヘプタン画分に放射性物質は定量されなかった。

表 2.4-18: 乳、肝臓、腎臓、筋肉及び脂肪中の放射性物質濃度の分布

			[pyc-1	⁴C]テトラ	ラニリプロ	ュール					
乳(32-10	01 時間)	肝	臓	腎	臓	筋肉		脂	肪		
mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
0.380	_	0.998	l	0.253	_	0.099	l	0.598	_		
0.378	99.5	0.901	90.3	0.251	99.3	0.099	99.7	0.598	100		
NA	_	0.097	9.7	NA	_	NA	1	NA	_		
0.002	0.5	ND	ı	0.002	0.7	< 0.001	0.3	< 0.001	< 0.1		
			[pyr-2-	· ¹⁴ C]テト	ラニリプ	ロール					
乳(32-10	02 時間)	肝	臓	腎臓		筋肉		脂	肪		
mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
0.243	_	0.878	-	0.243	_	0.086	-	0.387	_		
0.241	99.3	0.801	91.2	0.240	99.0	0.085	99.2	0.387	99.9		
NA	_	0.077	8.8	NA	_	NA	-	NA	_		
0.002	0.7	ND	_	0.002	1.0	0.001	0.8	< 0.001	0.1		
			[tet-14	¹ ℃]テトラ	ニリプロ	ール					
乳(32-10	02 時間)	肝	臓	腎	臓	筋	肉	脂	肪		
mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR		
0.421	_	1.21	ı	0.331	_	0.123	-	0.473	_		
0.419	99.6	1.08	89.4	0.328	99.0	0.121	99.1	0.473	100		
NA	_	0.128	10.6	NA	_	NA	_	NA	_		
0.002	0.4	ND		0.003	1.0	0.001	0.9	< 0.001	< 0.1		
	mg/kg 0.380 0.378 NA 0.002 乳(32-10 mg/kg 0.243 0.241 NA 0.002 乳(32-10 mg/kg 0.421 0.419	0.380	mg/kg %TRR mg/kg 0.380 一 0.998 0.378 99.5 0.901 NA 一 0.097 0.002 0.5 ND	乳(32-101 時間) 肝臓 mg/kg %TRR mg/kg %TRR mg/kg %TRR 0.380 - 0.998 - 0.378 99.5 0.901 90.3 NA - 0.097 9.7 0.002 0.5 ND - [pyr-2-乳(32-102 時間) 肝臓 mg/kg %TRR mg/kg %TRR 0.243 - 0.878 - 0.241 99.3 0.801 91.2 NA - 0.077 8.8 0.002 0.7 ND - [tet-14 乳(32-102 時間) 肝臓 mg/kg %TRR 0.421 - 1.21 - 0.419 99.6 1.08 89.4 NA - 0.128 10.6	乳(32-101 時間) 肝臓 腎 mg/kg %TRR mg/kg %TRR mg/kg 0.380 一 0.998 一 0.253 0.378 99.5 0.901 90.3 0.251 NA 一 0.0097 9.7 NA 0.002 0.5 ND 一 0.002 [pyr-2-14C]テト・乳(32-102 時間) 肝臓 腎 mg/kg %TRR mg/kg %TRR mg/kg %TRR mg/kg 0.243 一 0.878 一 0.243 0.241 99.3 0.801 91.2 0.240 NA 一 0.077 8.8 NA 0.002 0.7 ND 一 0.002 [tet-14C]テトラ 乳(32-102 時間) 肝臓 腎 mg/kg %TRR mg/kg 0.421 一 0.331 0.419 99.6 1.08 89.4 0.328 NA — 0.128 10.6 NA	乳(32-101 時間) 肝臓 腎臓	mg/kg %TRR mg/kg %TRR mg/kg 0.380 一 0.998 一 0.253 一 0.099 0.378 99.5 0.901 90.3 0.251 99.3 0.099 NA 一 0.097 9.7 NA 一 NA 0.002 0.5 ND 一 0.002 0.7 <0.001 [pyr-2-14C]テトラニリプロール 乳(32-102 時間) 肝臓 腎臓 筋 筋 mg/kg %TRR mg/kg %TRR mg/kg %TRR mg/kg 0.243 一 0.878 一 0.243 一 0.086 0.241 99.3 0.801 91.2 0.240 99.0 0.085 NA 一 0.077 8.8 NA — NA 0.002 0.7 ND 一 0.002 1.0 0.001 [tet-14C]テトラニリプロール 乳(32-102 時間) 肝臓 腎臓 筋 所 所 所 所 所 所 所 所 所	野臓 筋肉 一の.380 一の.998 一の.253 一の.099 一の.378 99.5 0.901 90.3 0.251 99.3 0.099 99.7 NA 一 NA 一の.002 0.5 ND 一の.002 0.7 <0.001 0.3 1.0	野臓 野臓 筋肉 脂酸 野臓 筋肉 脂胞 大田 大田 大田 大田 大田 大田 大田 大		

NA: 実施せず ND: 検出限界未満 -: 算出せず

乳、肝臓、腎臓、筋肉及び脂肪中のテトラニリプロール及び代謝物の定量結果を表 2.4-19 に示す。

乳中の主要な残留成分はテトラニリプロール、代謝物 M1 及び代謝物 M22 であり、それ

ぞれ 55~70 %TRR、9.0~11 %TRR 及び 1.9~13 %TRR であった。

肝臓中の主要な残留成分はテトラニリプロールであり、53~62 %TRR であった。

腎臓、筋肉及び脂肪中の主要な残留成分はテトラニリプロール及び代謝物 M22 であり、それぞれ $59\sim71\,\%$ TRR 及び $5.0\sim14\,\%$ TRR、 $65\sim68\,\%$ TRR 及び $23\sim28\,\%$ TRR、 $24\sim30\,\%$ TRR 及び $62\sim72\,\%$ TRR であった。

その他に代謝物 M3、代謝物 M6 及び代謝物 M12 等が認められたが、いずれも 10 % TRR 未満であった。

表 2.4-19:乳、肝臓、腎臓、筋肉及び脂肪中のテトラニリプロール及び代謝物の定量結果

衣 2.4-19:乳、用		川岭、 刀刀	NX O I			<u>ーファ</u> ラニリプロ		X O VIII):	1100 V)	里 加 <i></i>
	乳(32-10	01 時間)	肝	臓	腎	臓	筋	肉	脂	肪
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
テトラニリプロール	0.266	70.0	0.549	55.0	0.179	70.8	0.064	64.7	0.165	27.6
代謝物 M1	0.042	11.1	0.084	8.4	0.016	6.2	0.002	1.9	0.002	0.4
代謝物 M3	0.019	5.0	0.088	8.9	0.009	3.7	0.001	0.9	ND	ı
代謝物 M6	0.004	1.1	0.067	6.7	0.015	6.1	0.001	1.3	0.020	3.3
代謝物 M12	0.008	2.1	0.021	2.1	0.006	2.3	0.002	1.6	0.002	0.3
代謝物 M22	0.007	1.9	0.022	2.2	0.013	5.0	0.028	27.9	0.399	66.8
				[pyr-2-	· ¹⁴ C]テト	ラニリプ	ロール			
	乳(32-10	02 時間)	肝	臓	腎	臓	筋	肉	脂	肪
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
テトラニリプロール	0.156	64.3	0.541	61.6	0.167	68.8	0.057	66.4	0.094	24.2
代謝物 M1	0.022	9.0	0.060	6.9	0.009	3.6	0.001	0.7	0.002	0.5
代謝物 M3	0.008	3.5	0.061	6.9	0.007	3.0	0.001	0.9	ND	l
代謝物 M6	0.005	2.2	0.030	3.4	0.009	3.6	0.001	0.8	0.007	1.8
代謝物 M12	0.008	3.5	0.067	7.7	0.006	2.6	0.001	0.8	0.001	0.2
代謝物 M22	0.026	10.8	0.036	4.2	0.033	13.5	0.024	28.1	0.279	72.1
				[tet-1	℃]テトラ	ニリプロ	ール			
	乳(32-10	02 時間)	肝	臓	腎	臓	筋肉		脂	肪
	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR
テトラニリプロール	0.233	55.4	0.641	52.9	0.197	59.4	0.083	67.9	0.140	29.6
代謝物 M1	0.045	10.7	0.108	8.9	0.020	6.0	0.002	1.8	0.006	1.2
代謝物 M3	0.016	3.7	0.078	6.4	0.007	2.3	0.002	1.3	ND	
代謝物 M6	0.013	3.1	0.052	4.3	0.019	5.7	0.002	1.8	0.031	6.6
代謝物 M12	0.013	3.1	0.055	4.5	0.013	3.9	0.002	1.8	0.002	0.5
代謝物 M22	0.056	13.4	0.067	5.6	0.044	13.4	0.029	23.3	0.291	61.6

ND: 検出限界未満 -: 算出せず

(3) 家畜代謝のまとめ

産卵鶏及び泌乳山羊を用いた代謝試験の結果、共通する主要な残留成分はテトラニリプロールであった。

産卵鶏においては、代謝物 M34 が卵、肝臓及び脂肪で、代謝物 M8 が脂肪で、代謝物 M40

及び代謝物 M41 が筋肉で、代謝物 M44 抱合体が卵及び筋肉で主要な残留成分であり、泌乳山羊における代謝に比べて産卵鶏における代謝の方が広範囲に及んでいた。

泌乳山羊においては、代謝物 M22 が乳、腎臓、筋肉及び脂肪で、代謝物 M1 が乳で主要な残留成分であった。

テトラニリプロールの家畜中における主要な代謝経路は、ピリミジノン環の形成による 代謝物 M22 及び脱ピリジル化による代謝物 M34 の生成と考えられた。その他に水酸化に より代謝物 M1 及び代謝物 M8、脱フェニル化により代謝物 M40 及び代謝物 M41、テトラ ゾール環の脱離及び抱合化により代謝物 M44 抱合体等が生成すると考えられた。

2.4.1.3 規制対象化合物

リスク評価の対象化合物

食品安全委員会による評価(URL:

http://www.fsc.go.jp/fsciis/evaluationDocument/show/kya20170927102) においては、農産物、畜産物及び魚介類中の暴露評価対象物質をテトラニリプロール (親化合物のみ) と設定している。

作物残留の規制対象化合物

薬事・食品衛生審議会食品衛生分科会において了承された規制対象化合物を下記に転記する。(本項末まで)

(参考:薬事・食品衛生審議会食品衛生分科会農薬・動物医薬品部会報告(URL:

https://www.mhlw.go.jp/content/11130500/000491005.pdf)

残留の規制対象

テトラニリプロールとする。

作物残留試験において、代謝物 M22 の分析が行われているが、定量限界未満又はテトラニリプロールと比較して十分に低い残留濃度であることから、残留の規制対象には代謝物 M22 を含めないこととする。

2.4.2 消費者の安全に関わる残留

2.4.2.1 作物

登録された使用方法(GAP)の一覧を表 2.4-20 及び表 2.4-21 に示す。

表 2.4-20: テトラニリプロールの GAP 一覧①

2 2	/ / /				
作物名	剤型	使用方法	使用量 ¹⁾ (g ai/箱)	使用回数 (回)	使用時期
稲	1.5 %粒剤	育苗箱床土・ 覆土混和	0.75-1.12	1	は種前
(箱育苗)		育苗箱散布	0.75-1.12	1	は種時(覆土前)~移植当日

^{1):}有効成分量

表 2.4-21: テトラニリプロールの GAP 一覧②

衣 2.4-21:プ	トフニリフロー	・ノレひ	GAP一覧	<u>(a)</u>				
作物名	剤型	使用 方法	希釈倍数 (倍)	使用濃度 ¹⁾ (kg ai/hL)	使用液量 ²⁾ (L/10 a)		回数 回)	使用時期 又は PHI(日)
未成熟 とうもろこし	18.2 %フロアブル	散布	5,000	0.0036	100-300		3	1
だいず	18.2%フロアブル	散布	5,000	0.0036	100-300		2	7
さといも	18.2%フロアブル	散布	5,000	0.0036	100-300	2	2	1
はくさい	18.2 %フロアブル	灌注	200	0.0910	0.5 L/⊞	1	合計	育苗期後半~ 定植当日
		散布	散布 2,500-5000 0.0036-0.0073 100-3		100-300	3 4		1
キャベツ	18.2 %フロアブル	灌注	200	0.0910	0.5 L/∰	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
非結球あぶらな科 葉菜類	18.2 %フロアブル	散布	5,000	0.0036	100-300	2	2	1
ブロッコリー	18.2 %フロアブル	灌注	200	0.0910	0.5 L/∰	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
レタス	18.2 %フロアブル	灌注	200	0.0910	0.5 L/∰	1	合計	育苗期後半~ 定植当日
非結球レタス		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
ねぎ	18.2 %フロアブル	灌注	200	0.0910	0.5 L/∰	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	3
トマト	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
ミニトマト		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
ピーマン	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
なす	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
きゅうり	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	3	4	1
すいか	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	2	3	1
メロン	18.2 %フロアブル	灌注	200	0.0910	25 mL/株	1	合計	育苗期後半~ 定植当日
		散布	2,500-5000	0.0036-0.0073	100-300	2	3	1
えだまめ	18.2 %フロアブル		5,000	0.0036	100-300	:	3	1
りんご	18.2 %フロアブル	散布	5,000-1,0000	0.0018-0.0036	200-700	2		1
なし	18.2%フロアブル		5,000-1,0000	0.0018-0.0036	200-700	2	2	1
& &	18.2%フロアブル		5,000-1,0000	0.0018-0.0036	200-700		2	1
小粒核果類	18.2 %フロアブル	散布	5,000	0.0036	200-700		2	1

おうとう	18.2 %フロアブル	散布	5,000	0.0036	200-700	2	1
いちご	18.2 %フロアブル	散布	2,500-5,000	0.0036-0.0073	100-300	2	1
ぶどう	18.2 %フロアブル	散布	5,000-1,0000	0.0018-0.0036	200-700	2	7
かき	18.2 %フロアブル	散布	5,000-1,0000	0.0018-0.0036	200-700	2	1
茶	18.2 %フロアブル	散布	2,500-5000	0.0036-0.0073	200-400	1	7

^{1):}有効成分濃度

水稲、未成熟とうもろこし、だいず、さといも、はくさい、キャベツ、こまつな、みずな、 チンゲンサイ、ブロッコリー、レタス、リーフレタス、サラダ菜、ねぎ、ミニトマト、ピーマ ン、なす、きゅうり、すいか、メロン、えだまめ、りんご、日本なし、もも、すもも、うめ、 おうとう、いちご、ぶどう、かき及び茶について、テトラニリプロール及び代謝物 M22 を分 析対象として実施した作物残留試験成績を受領した。

これらの結果を表 2.4-22 から表 2.4-47 に示す。

分析法は 2.2.3.1 に示した作物残留分析法を用いた。残留濃度は同一試料を 2 回分析した値の平均値を示した。代謝物の残留濃度はテトラニリプロール等量に換算して示した。 GAP に従った使用によるテトラニリプロールのそれぞれの試験における最大残留濃度には、<u>下線</u>を付した。

(1) 水稲

水稲の玄米、稲わら及びもみ米を分析試料とした作物残留試験の結果を表 2.4-22 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (1.5%粒剤、育苗箱散布、1.12 g ai/箱、1 回、移植当日) に適合する試験は2 試験であった。

表 2.4-22: 水稲の作物残留試験結果

Mad ha	試験			試験条件					残留濃度(mg/kg) ²⁾³⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	使用量 ¹⁾ (g ai/箱)	使用 回数 (回)	使用時期	分析 部位	DAT (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度が 最大となる GAP		1.5% 粒剤	育苗箱 散布	1.12	1	移植 当日				
水稲	41-14		- 			74 k+	玄米		<u><0.01</u>	< 0.01
(コシヒカリ)	茨城 H26 年	1.5 % 粒剤	育苗箱 散布	1.12	1	移植 当日	稲わら	124	<u><0.01</u>	< 0.01
(露地)	1120	122/13	120 114			7 1	もみ米		<u><0.01</u>	< 0.01
水稲	 /-					761 l-b	玄米		<u><0.01</u>	< 0.01
(コシヒカリ)	高知 H26 年	1.5 % 粒剤	育苗箱 散布	1.12	1	移植当日	稲わら	108	<0.01	< 0.01
(露地)	1120	1-4-7-11	HV.111				もみ米		<0.01	< 0.01

^{1):} 有効成分量 2): テトラニリプロール等量換算

²⁾: 散布においては作物から滴る程度、満遍なく散布することと指導しており、農薬のラベルに記載されている使用液量は農薬の使用時の目安として示しているものである。

^{3):} 稲わらのクロマトグラムにわずかなピークが認められたが、検出限界相当であり、本試験条件において水稲に 0.01 mg/kg を超えて残留が認められるおそれはないと判断した。

水稲の玄米におけるテトラニリプロールの残留濃度は<0.01 mg/kg(2)であった。 水稲の玄米におけるテトラニリプロールの最大残留濃度は 0.01 mg/kg と推定した。 稲わら及びもみ米におけるテトラニリプロールの残留濃度は、それぞれ<0.01 mg/kg(2) 及び<0.01 mg/kg(2)であった。

(2) 未成熟とうもろこし

未成熟とうもろこしの種子を分析試料とした作物残留試験の結果を表 2.4-23 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、3 回、収穫前日) に適合する試験は3 試験であった。

衣 2.4-23:7	大风烈	とりも	うつこし	0ノイドギのタ	支留 武聯	村未					
<i>U.d.</i> 6	試験		·	試	験条件	·				残留濃度	$(mg/kg)^{2)}$
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる C		18.2% フロアフ゛ル	散布	5,000	0.0036		3		1		
未成熟 とうもろこし (おひさまコン7) (露地)	福井 H26 年	18.2% 7¤77` ม	散布	5,000	0.0036	189-190 189-190 189-190	3	種子	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
未成熟 とうもろこし (ゴールドラッシュ) (露地)	千葉 H26 年	18.2% วะรว ั <i>พ</i>	散布	5,000	0.0036	185 185 185	3	種子	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
未成熟 とうもろこし (ピーターコーン)	長野 H27 年	18.2% 7¤77` N	散布	5,000	0.0036	190 190 190	3	種子	1	<0.01	<0.01

表 2.4-23: 未成熟とうもろこしの作物残留試験結果

1): 有効成分濃度 2): テトラニリプロール等量換算

未成熟とうもろこしの種子におけるテトラニリプロールの残留濃度は<0.01 mg/kg(3)であった。

未成熟とうもろこしの種子におけるテトラニリプロールの最大残留濃度は 0.05 mg/kg と推定した。

(3) だいず

だいずの乾燥子実を分析試料とした作物残留試験の結果を表 2.4-24 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2%フロアブル、散布、5,000 倍、2 回、収穫 7 日前) に適合する試験は 6 試験であった。

12.4-24.7	試験		/X H P(1)							残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)		使用 回数 (回)	分析部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度が 最大となる GAP		18.2% 7๒77` ม	散布	5,000	0.0036		2		7		
だいず (里のほほえみ) (露地)	福井 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	167 167	2	乾燥 子実	1 3 7 14	0.02 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
だいず (フクユタカ) (露地)	三重 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	180 180	2	乾燥 子実	1 3 7 14	0.05 0.03 <u>0.07</u> 0.01	<0.01 <0.01 <0.01 <0.01
だいず (リュウホウ) (露地)	岩手 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	195 195	2	乾燥 子実	1 3 7 14	0.06 0.07 <u>0.06</u> 0.03	<0.01 <0.01 <0.01 <0.01
だいず (エンレイ) (露地)	新潟 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	200 200	2	乾燥 子実	1 3 7 14	0.05 0.01 <u>0.01</u> <0.01	<0.01 <0.01 <0.01 <0.01
だいず (里のほほえみ) (露地)	福井 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	167 167	2	乾燥 子実	1 3 7 14	0.01 0.01 <u>0.01</u> <0.01	<0.01 <0.01 <0.01 <0.01
だいず (フクユタカ) (露地)	·	18.2% 7¤77` N	散布	5,000	0.0036	178 178	2	乾燥 子実	1 3 7 14	<0.01 0.01 <u><0.01</u> <0.01	<0.01 <0.01 <0.01 <0.01

表 2.4-24: だいずの作物残留試験結果

1): 有効成分濃度 2): テトラニリプロール等量換算

だいずの乾燥子実におけるテトラニリプロールの残留濃度は<0.01 (2)、0.01 (2)、0.06 及び 0.07 mg/kg であった。

だいずの乾燥子実におけるテトラニリプロールの最大残留濃度は0.2 mg/kg と推定した。また、テトラニリプロールのSTMR*は0.01 mg/kg であった。

*:作物残留試験で得られた残留濃度の中央値

(4) さといも

さといもの塊茎を分析試料とした作物残留試験の結果を表 2.4-25 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代 謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は 3 試験であった。

// .d/ /=	試験	H- 4/0/C/IC								残留濃度	(mg/kg) 2)
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)		使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度が 最大となる GAP		18.2% วย7ว ั <i>ม</i>	散布	5,000	0.0036		2		1		
さといも (土垂れ) (露地)	茨城 H26 年	18.2% 7¤77`N	散布	5,000	0.0036	178 178	2	塊茎	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
さといも (石川早生) (露地)	宮崎 H26 年	18.2% 7¤77` N	散布	5,000	0.0036	175 175	2	塊茎	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

表 2.4-25: さといもの作物残留試験結果

茨城 18.2%

H27 年 フロアフ゛ル

さといも

(土垂れ)

(露地)

散布

5,000

さといもの塊茎におけるテトラニリプロールの残留濃度は<0.01 mg/kg (3) であった。 さといもの塊茎におけるテトラニリプロールの最大残留濃度は 0.05 mg/kg と推定した。

0.0036

176

176

塊茎

1

< 0.01

< 0.01

2

(5) はくさい

はくさいの葉球を分析試料とした作物残留試験の結果を表 2.4-26 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代 謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP(「18.2%フロアブル、灌注、200 倍、0.5 L/冊、1 回、定植当日」及び「18.2%フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合する試験は 6 試験であった。

<u> </u>	, , ,		17777		11-21-								
作物名	試験				試験条件	#					残留濃度(mg/kg) ²⁾		
(品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回 (回)	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22	
作物残留濃度が	18.2%		灌注	200	0.0910	0.5 L/∰	1	合計		定植 当日			
最大となる GAP		フロアフ゛ル	散布	2,500	0.0073		3	4		1			
はくさい	石川	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	0.44	<0.01	
(大福 75) (露地)		18.2% フロアフ゛ル	散布	2,500	0.0073	227 227 227	3	百 4	葉球	3 7 14	0.42 0.36 0.11	<0.01 <0.01 <0.01	

^{1):}有効成分濃度 2):

^{2):} テトラニリプロール等量換算

はくさい (みねぶき 505) (露地)	長野 H26 年	18.2% フロアフ゛ル	灌注	200	0.0910	0.5 L/冊 295 295	1 定植当日 3	·合計 4	葉球	1 3 7 14	0.39 0.24 0.17 0.08	<0.01 <0.01 <0.01 <0.01
はくさい	主 木	10.20/	灌注	200	0.0910	295 0.5 L/∰	1 定植当日	∧ ∌1.		1	0.36	<0.01
(TH071) (露地)	青森 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	286 286 286	3	·合計 4	葉球	3 7	0.36 <u>0.43</u>	<0.01 <0.01
はくさい	中	19.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	1.56	< 0.01
(無双) (露地)	岩手 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	208 208 208	3	4	葉球	3 7	1.82 1.12	<0.01 <0.01
はくさい	群馬	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	1.88	< 0.01
(極意) (露地)		18.2% フロアフ゛ル	散布	2,500	0.0073	250 250 250	3	4	葉球	3 7	1.84 0.91	<0.01 <0.01
はくさい	二舌	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	0.14	< 0.01
(きらぼ) 800	三重 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	171 171 171	3	4	葉球	3 7	0.15 <u>0.32</u>	<0.01 <0.01

1): 有効成分濃度 2): テトラニリプロール等量換算

はくさいの葉球におけるテトラニリプロールの残留濃度は0.32、0.39、0.43、0.44、1.8 及び1.9 mg/kg であった。

はくさいの葉球におけるテトラニリプロールの最大残留濃度は3 mg/kgと推定した。

(6) キャベツ

キャベツの葉球を分析試料とした作物残留試験の結果を表 2.4-27 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代 謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP(「18.2% フロアブル、灌注、200 倍、0.5 L/冊、1 回、定植当日」及び「18.2% フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合する試験は 6 試験であった。

表 2.4-27: キャベツの作物残留試験結果

衣 2.4-27:4	試験	/ V/IF	100/201		試験条件	‡					残留濃度((mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回	数	分析部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度が		18.2%	灌注	200	0.0910	0.5 L/∰	1	合計		定植 当日		
最大となる GAP		フロアフ゛ル	散布	2,500	0.0073		3	4		1		
キャベツ	茨城	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	0.22	<0.01
(金系 201 号) (露地)		78.2% 7¤アブル	散布	2,500	0.0073	206 233 233	3	4	葉球	3 7 14	0.36 0.17 0.12	<0.01 <0.01 <0.01
キャベツ	高知	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.16	<0.01 <0.01
(秋海 CD) 目 ^{局为}		78.2% 7¤アブル	散布	2,500	0.0073	281 281 281	3	4	葉球	3 7 14	0.17 0.14 0.12	<0.01 <0.01 <0.01
キャベツ	新潟	19 204	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.19 0.07	<0.01 <0.01
(やひこ) (露地)		新潟 18.2% 127 年 フロアフ゛ル	散布	2,500	0.0073	300 300 300	3	4	葉球	3 7 14	0.07 0.05 0.03	<0.01 <0.01 <0.01
キャベツ	群馬	10.20/	灌注	200	0.0910	0.5L/∰	1 定植当日	合計		1	0.74 0.43	<0.01 <0.01
(彩音) (露地)		18.2% フロアフ゛ル	散布	2,500	0.0073	250 250 250	3	4	葉球	3 7 14	0.45 0.28	<0.01 <0.01 <0.01
キャベツ	長野	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.18 0.16	<0.01 <0.01
(YRSE) (露地)	1	7¤77` N	散布	2,500	0.0073	300 300 300	3	4	葉球	3 7 14	0.16 0.08 0.09	<0.01 <0.01 <0.01
(人文 四年)	三重	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.10 0.07	<0.01 <0.01
		18.2% 7¤アブル	散布	2,500	0.0073	171 171 171	3	4	葉球	3 7 14	0.07 0.15 0.08	<0.01 <0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

キャベツの葉球におけるテトラニリプロールの残留濃度は 0.15、0.17、0.18、0.19、0.36及び 0.74 mg/kg であった。

キャベツの葉球におけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(7) 非結球あぶらな科葉菜類

こまつな、みずな及びチンゲンサイの茎葉を分析試料とした作物残留試験の結果を表 2.4-28 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2%フロアブル、散布、5,000 倍、2 回、収穫前日) に

適合する試験はこまつな3試験、みずな2試験、チンゲンサイ3試験であった。

表 2.4-28: 非結球あぶらな科葉菜類の作物残留試験結果

衣 2.4-28. 升			·5/11/A/			ローマックスカロン	<u> </u>			-15	
作物名	試験 場所			試制	条件	1				残留濃度	(mg/kg) ²⁾
(品種) (栽培形態)	実施年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)		使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度が 最大となる GAP		18.2% 7๒アブル	散布	5,000	0.0036		2		1		
こまつな (楽天) (施設)	高知 H26	18.2% フロアフ゛ル	散布	5,000	0.0036	180 180	2	茎葉	1 3 7 14	7.92 6.56 4.62 2.80	0.04 0.03 0.02 0.01
こまつな (菜々美) (施設)	宮崎 H26	18.2% フロアフ゛ル	散布	5,000	0.0036	170 170	2	茎葉	1 3 7 14	4.92 4.24 3.27 2.67	0.02 0.02 0.01 0.01
こまつな (あまうま耐病) (施設)	福島 H27	18.2% 7¤77`N	散布	5,000	0.0036	190 190	2	茎葉	1 3 7	0.94 0.84 0.80	<0.01 <0.01 <0.01
みずな (京みぞれ) (施設)	高知 H26	18.2% フロアフ゛ル	散布	5,000	0.0036	179 179	2	茎葉	1 3 7 14	4.38 3.96 3.21 2.43	0.03 0.03 0.02 0.01
みずな (京みぞれ) (施設)	宮崎 H26	18.2% 7¤77`N	散布	5,000	0.0036	167 189	2	茎葉	1 3 7 14	3.34 3.00 2.24 1.38	0.02 0.01 0.01 <0.01
チンゲンサイ (青帝) (施設)	高知 H26	18.2% フロアフ゛ル	散布	5,000	0.0036	181 181	2	茎葉	1 3 7 14	2.74 2.31 2.12 1.82	0.01 0.01 0.01 <0.01
チンゲンサイ (青帝) (施設)	宮崎 H26	18.2% フロアフ゛ル	散布	5,000	0.0036	167 167	2	茎葉	1 3 7 14	2.32 2.00 1.35 1.08	0.01 0.01 <0.01 <0.01
チンゲンサイ (青帝) (施設)	宮崎 H27	18.2% フロアフ゛ル	散布	5,000	0.0036	173 173	2	茎葉	1 3 7	1.74 1.52 0.78	<0.01 <0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

こまつなの茎葉におけるテトラニリプロールの残留濃度は 0.94、4.9 及び 7.9 mg/kg であった。

みずなの茎葉におけるテトラニリプロールの残留濃度は 3.3 及び 4.4 mg/kg であった。 チンゲンサイの茎葉におけるテトラニリプロールの残留濃度は 1.7、2.3 及び 2.7 mg/kg であった。

こまつな、みずな及びチンゲンサイの作物残留試験成績が得られていることから、非結 球あぶらな科葉菜類の最大残留濃度を推定することが可能であると判断した。

こまつなの茎葉におけるテトラニリプロールの最大残留濃度は 15 mg/kg と推定した。 みずなの茎葉におけるテトラニリプロールの最大残留濃度は 10 mg/kg と推定した。 チンゲンサイの茎葉におけるテトラニリプロールの最大残留濃度は5mg/kgと推定した。 ケール及びその他の非結球あぶらな科葉菜類の茎葉におけるテトラニリプロールの最大 残留濃度は、非結球あぶらな科葉菜類のうち最大残留濃度を示したこまつなの結果を用い て 15 mg/kg と推定した。

(8) ブロッコリー

ブロッコリーの花蕾を分析試料とした作物残留試験の結果を表 2.4-29 に示す。なお、未 処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、 代謝物 M22:0.01 mg/kg) 未満であった。

作物残留濃度が最大となる GAP (「18.2%フロアブル、灌注、200 倍、0.5 L/冊、1 回、定 植当日 | 及び「18.2%フロアブル、散布、2.500倍、3回、収穫前日 | の計4回)に適合す る試験は3試験であった。

表 2.4-29:フ	ブロッ	コリーの作物残留試験結果
West for	試験	試験条件
作物名	場所	

Madd to	試験				試験条件	#					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	0.5 L/∰	1	合計		定植 当日		
最大となる G	AP	フロアフ゛ル	散布	2,500	0.0073		3	4		1		
ブロッコリー	装 批	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	·合計		1 3	<u>1.76</u>	0.01
ブロッコリー (ハイツ SP) (露地)	茨城 H26 年	18.2% フロアフ゛ル	散布	2,500	0.0073	271 271 271	3	4	花蕾	3 7 14	0.93 0.90 0.50	<0.01 <0.01 <0.01
ブロッコリー	和歌山 H26 年	19.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	·合計		1 3	2.84	0.01 0.01
		7¤アブル	散布	2,500	0.0073	250 250 250	3	4	花蕾	7 14	2.98 2.19 1.70	<0.01 <0.01 <0.01
(自続 (3 号)		10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	·合計		1	3.47 2.77	0.02
		18.2% フロアフ゛ル	散布	2,500	0.0073	250 250 250	3	4	花蕾	3 7 14	2.77 2.25 2.08	0.01 0.01 0.01

^{1):} 有効成分濃度 2): テトラニリプロール等量換算

ブロッコリーの花蕾におけるテトラニリプロールの残留濃度は 1.8、3.0 及び 3.5 mg/kg で あった。

ブロッコリーの花蕾におけるテトラニリプロールの最大残留濃度は 10 mg/kg と推定し た。

(9) その他のあぶらな科野菜

その他のあぶらな科野菜に該当する作物は非結球あぶらな科葉菜類のみであり、テトラニリプロールの最大残留濃度の推定結果は15 mg/kg であった。

(10) レタス、非結球レタス

レタスの葉球及び非結球レタス(リーフレタス、サラダ菜)の茎葉を分析試料とした作物残留試験の結果を表 2.4-30 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP(「18.2%フロアブル、灌注、200 倍、0.5 L/冊、1 回、定植当日」及び「18.2%フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合する試験はレタス 6 試験、リーフレタス 2 試験、サラダ菜 2 試験であった。

表 2.4-30: レタス、非結球レタスの作物残留試験結果

4X 2.4-30 . V	試験				試験条件						残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回 (回)	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	0.5 L/∰	1	合計		定植 当日		
最大となる G	AP	フロアフ゛ル	散布	2,500	0.0073		3	4		1		
レタス	装 批	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	1.36	0.01 0.01
(施設)		18.2% 7¤アブル	散布	2,500	0.0073	182 194 235	3	4	葉球	3 7 14	1.65 0.86 0.48	<0.01 <0.01 <0.01
レタス	和歌山 H26 年	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	1.23	<0.01
		18.2% 7¤アブル	散布	2,500	0.0073	258 295 295	3	4	葉球	3 7 14	0.73 0.72 0.15	<0.01 <0.01 <0.01
レタス	青森	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	0.96	0.02
(シーカー) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	288 288 288	3	4	葉球	3 7 14	1.02 0.43 0.18	0.02 <0.01 <0.01
レタス	まま は まま	10.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1	1.06	<0.01
(シスコ)	群馬 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	214 214 214	3	4	葉球	3 7 14	1.65 1.38 1.08	<0.01 0.04 0.03
レタス	長野	19 20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.48	<0.01
(シナノサマー)		18.2% フロアフ゛ル	散布	2,500	0.0073	300 300 300	3	4	葉球	7 14	0.11 0.09 0.04	<0.01 <0.01 <0.01

レタス (マリーナ) (施設)	和歌山 H27 年	18.2% フロアフ゛ル	灌注	200	0.0910	0.5 L/∰ 237 237	1 定植当日	·合計 4	葉球	1 3 7	1.12 0.75 0.48	<0.01 <0.01 <0.01
リーフレタス	高知	10.20/	灌注	200	0.0910	237 0.5 L/⊞	1 定植当日	·合計		14	0.52 15.0	0.08
(レット`ファイヤー) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	181 181 181	3	合 4	茎葉	3 7 14	14.2 11.6 10.2	0.07 0.05 0.05
リーフレタス	大分	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	12.9 12.7	0.08 0.07
(グリーンウェーブ) (施設)	大分 H26 年	フロアフ゛ル	散布	2,500	0.0073	183 183 183	3	4	茎葉	7 14	10.8 7.60	0.05 0.04
サラダ菜	福島	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	6.94 5.70	0.04 0.03
(サラダ菜) (施設)		70.2% 7p77`N	散布	2,500	0.0073	187.5 187.5 187.5	3	4	茎葉	7 14	5.48 3.83	0.03 0.03 0.02
	十分	19.20/	灌注	200	0.0910	0.5 L/∰	1 定植当日	·合計		1	15.2	0.09
	大分 H26 年	18.2% フロアフ゛ル	散布	2,500	0.0073	183 183 183	3	4	茎葉	3 7 14	14.0 10.4 9.73	0.08 0.06 0.05

1): 有効成分濃度 2): テトラニリプロール等量換算

切成万辰及 ・ . / トノーリノロール寺里揆昇

レタスの葉球におけるテトラニリプロールの残留濃度は 0.48、1.0、1.1、1.2 及び 1.6 mg/kg (2) であった。

非結球レタスの茎葉におけるテトラニリプロールの残留濃度は 6.9、13 及び $15 \, \text{mg/kg}$ (2) であった。

レタス (レタス (葉球) 及び非結球レタス (茎葉)) におけるテトラニリプロールの最大 残留濃度は、非結球レタスの結果を用いて、20 mg/kg と推定した。

(11) ねぎ

ねぎの茎葉を分析試料とした作物残留試験の結果を表 2.4-31 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 M22: $0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP(「18.2% フロアブル、灌注、200 倍、0.5 L/冊、1 回、定植当日」及び「18.2% フロアブル、散布、2,500 倍、3 回、収穫 3 日前」の計 4 回)に適合する試験は 6 試験であった。

表 2.4-31: ねぎの作物残留試験結果

校 2.4-31:43さり 試験 作物名 場所			H 12/1		試験条件	‡					残留濃度((mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回 (回)	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2% フロアフ゛ル	灌注	200	0.0910	0.5 L/∰	1	合計		定植 当日		
最大となる G	AP	/ L) / / / / / / / / / / / / / / / / /	散布	2,500	0.0073		3	4		3		
根深ねぎ	石川	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.29 0.24	<0.01 <0.01
(赤ワイトスター) (露地)		7¤77 N	散布	2,500	0.0073	188 188 188	3	4	茎葉	7 14	0.16 0.08	<0.01 <0.01 <0.01
葉ねぎ	大分	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.38 0.30	<0.01 <0.01
(九条太) (施設)		7¤77 N	散布	2,500	0.0073	173 173 173	3	4	茎葉	7 14	0.14 0.18	<0.01 <0.01 <0.01
根深ねぎ	新润	新潟 18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	1.29 <u>0.70</u>	<0.01 <0.01
(元蔵) (露地)		7¤77 N	散布	2,500	0.0073	200 200 200	3	4	茎葉	7 14	0.66 0.26	<0.01 <0.01 <0.01
根深ねぎ	茨城	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	1.30	<0.01 <0.01
(秀逸) (露地)		70.2% 7p77 N	散布	2,500	0.0073	178 178 178	3	4	茎葉	7 14	1.03 0.72 0.34	<0.01 <0.01 <0.01
葉ねぎ	三重	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.62 0.72	<0.01 <0.01
(九条太) (施設)		70.2% 7077 N	散布	2,500	0.0073	167 167 167	3	4	茎葉	3 7 14	0.72 0.26 0.08	<0.01 <0.01 <0.01
葉ねぎ	宮崎	18.2%	灌注	200	0.0910	0.5 L/∰	1 定植当日	合計		1 3	0.26 <u>0.17</u>	<0.01 <0.01
(九冬十)	H27 年	7ロアブル テトラニ	散布	2,500	0.0073	167 167 167	3	4	茎葉	3 7 14	0.17 0.16 0.12	<0.01 <0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

ねぎの茎葉におけるテトラニリプロールの残留濃度は0.17、0.24、0.30、0.70、0.72 及び1.0 mg/kg であった。

ねぎの茎葉におけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(12) トマト、ミニトマト

ミニトマトの果実を分析試料とした作物残留試験の結果を表 2.4-32 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01~mg/kg、代謝物 M22:0.01~mg/kg)未満であった。

作物残留濃度が最大となる GAP (「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、

定植当日」及び「18.2%フロアブル、散布、2,500倍、3回、収穫前日」の計4回)に適合 する試験は6試験であった。

表 2.4-32: ミニトマトの作物残留試験結果

Hall b	試験		11 177		試験条件	‡					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回(回)	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	25 mL/ 株	1	合計		定植 当日		
最大となる G	iAP	フロアフ゛ル	散布	2,500	0.0073		3	4		1		
ミニトマト	茨城	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	0.30 0.24	<0.01 <0.01
(ペペ) (施設)		70.2% 7077`N	散布	2,500	0.0073	219 250 273	3	4	果実	3 7 14	0.24 0.20 0.17	<0.01 <0.01 <0.01
ミニトマト	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	0.28 0.23	<0.01 <0.01
(千果) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	264 264 264	3	4	果実	3 7 14	0.23 <u>0.38</u> 0.37	<0.01 <0.01 <0.01
ミニトマト	岩手 H27 年	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1 3	0.38 0.34	<0.01 <0.01
(ミニルック) (施設)		フロアフ゛ル	散布	2,500	0.0073	247 247 247	3	4	果実	7 14	0.49 0.44	<0.01 <0.01 <0.01
ミニトマト	福島	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1 3	0.25 0.24	<0.01 <0.01
(千果) (施設)		70.2% 7077 N	散布	2,500	0.0073	250 250 250	3	4	果実	7 14	0.24 0.18 0.16	<0.01 <0.01 <0.01
ミニトマト	群馬	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1	0.72	<0.01 <0.01
(ミーキャロル)		18.2% フロアフ゛ル	散布	2,500	0.0073	270 270 270	3	4	果実	3 7 14	0.69 <u>0.74</u> 0.66	<0.01 <0.01 <0.01
(十里)	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	0.40 0.26	<0.01 <0.01
		7077 N	散布	2,500	0.0073	231 231 231	3	4	果実	3 7 14	0.26 0.29 0.17	<0.01 <0.01 <0.01

1): 有効成分濃度 2): テトラニリプロール等量換算

ミニトマトの果実におけるテトラニリプロールの残留濃度は0.25、0.30、0.38、0.40、0.49 及び 0.74 mg/kg であった。

トマト及びミニトマトの果実におけるテトラニリプロールの最大残留濃度は 2 mg/kg と 推定した。

(13) ピーマン

ピーマンの果実を分析試料とした作物残留試験の結果を表 2.4-33 に示す。なお、未処理

区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、 定植当日」及び「18.2 %フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合 する試験は 3 試験であった。

表 2.4-33: ピーマンの作物残留試験結果

I had the	試験			<u> Д</u> н ч	試験条件	‡					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回(回)	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	25 mL/ 株	1	合計		定植 当日		
最大となる G	iAP	フロアフ゛ル	散布	2,500	0.0073		3	4		1		
ピーマン	直知	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	1.04 0.83	<0.01 <0.01
(トサレメ R)	高知 H26 年		散布	2,500	0.0073	218 218 218	3	4	果実	7 14	0.83 0.50 0.28	<0.01 <0.01 <0.01
ピーマン	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	0.88	<0.01
(京鈴) (施設)	日間 H26 年		散布	2,500	0.0073	222 222 222	3	4	果実	3 7 14	0.65 0.29 0.16	<0.01 <0.01 <0.01
(942)	茨城	19.20/	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.32	< 0.01
	八城 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	216 231 231	3	4	果実	3 7	0.16 0.10	<0.01 <0.01

^{1):}有効成分濃度 2):テトラニリプロール等量換算

ピーマンの果実におけるテトラニリプロールの残留濃度は0.32、0.88 及び $1.0 \, \text{mg/kg}$ であった。

ピーマンの果実におけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(14) なす

なすの果実を分析試料とした作物残留試験の結果を表 2.4-34 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22: 0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、 定植当日」及び「18.2 %フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合 する試験は 6 試験であった。

表 2.4-34: なすの作物残留試験結果

表 2.4-34:7。	試験	11 17772	⊞ h 4%	レヘルロント	試験条件	‡					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回	数	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2% フロアフ゛ル	灌注	200	0.0910	25 mL/ 株	1	合計		定植 当日		
最大となる G	AP	/ I / / //	散布	2,500	0.0073		3	4		1		
なす	高知	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.18	<0.01
(竜馬) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	242 242 242	3	4	果実	3 7 14	0.10 0.03 <0.01	<0.01 <0.01 <0.01
なす	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1 3	0.16 0.09	<0.01 <0.01
(築陽) (施設)		26年 フロアフ・ル	散布	2,500	0.0073	233 233 233	3	4	果実	3 7 14	0.09 0.06 0.01	<0.01 <0.01 <0.01
なす	群馬	19 204	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1	0.17	<0.01
(千両 2 号) (施設)			散布	2,500	0.0073	270 270 270	3	4	果実	3 7	0.09 0.02	<0.01 <0.01
なす	長野	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1	0.08	< 0.01
(千両 2 号) (施設)		7¤77` <i>I</i> I	散布	2,500	0.0073	300 300 300	3	4	果実	3 7	0.06 0.02	<0.01 <0.01
なす	茨城	10.20/	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1	0.45	< 0.01
(帝匡)	,,	18.2% フロアフ゛ル	散布	2,500	0.0073	210 210 230	3	4	果実	3 7	0.38 0.20	<0.01 <0.01
(労臣)	高知	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.29	<0.01
		7¤77` N	散布	2,500	0.0073	253 251 278	3	4	果実	3 7	0.23 0.09	<0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

なすの果実におけるテトラニリプロールの残留濃度は 0.08、0.16、0.17、0.18、0.29 及び 0.45 mg/kg であった。

なすの果実におけるテトラニリプロールの最大残留濃度は0.7 mg/kgと推定した。

(15) きゅうり

きゅうりの果実を分析試料とした作物残留試験の結果を表 2.4-35 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, mg/kg$ 、代 謝物 $M22:0.01 \, mg/kg$)未満であった。

作物残留濃度が最大となる GAP (「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、

定植当日」及び「18.2 %フロアブル、散布、2,500 倍、3 回、収穫前日」の計 4 回)に適合する試験は 6 試験であった。

表 2.4-35:きゅうりの作物残留試験結果

衣 2.4-33 . 含	試験	7 42 11	1/2/2/1	五 h. 小小	試験条件	‡					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回	—— 数	分析 部位	PHI (日)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	25 mL/ 株	1	合計		定植 当日		
最大となる G	AP	フロアフ゛ル	散布	2,500	0.00723		3	4		1		
きゅうり	茨城	19.20/	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.16	<0.01
(大将 2) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	236 236 262	3	4	果実	3 7 14	0.12 0.06 0.03	<0.01 <0.01 <0.01
きゅうり	高知 H26 年	10.20/	灌注	200	0.0910	25 mL/ 株	1 定植当日	·合計		1	0.21	<0.01
(ズバリ 163)		18.2% フロアフ゛ル	散布	2,500	0.0073	280 280 280	3	4	果実	3 7 14	0.10 0.04 0.01	<0.01 <0.01 <0.01
きゅうり	茨城	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	. 4		1	0.18	<0.01 <0.01
(大将 2) (施設)		18.2% 7¤アブル	散布	2,500	0.0073	217 217 270	3	合計 4	果実	3 7	0.07 0.02	<0.01 <0.01 <0.01
きゅうり	奈良	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.07	<0.01 <0.01
(VR 夏すずみ) (施設)		70.2% 7077 N	散布	2,500	0.0073	278 278 278	3	4	果実	3 7	0.04 0.01	<0.01 <0.01 <0.01
きゅうり	高知	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.18	<0.01 <0.01
(ズバリ 163) (施設)		18.2% フロアフ゛ル	散布	2,500	0.0073	209 278 278	3	4	果実	3 7	0.08 0.02	<0.01 <0.01 <0.01
· ·	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計		1	0.18	<0.01 <0.01
	1	7¤77` N	散布	2,500	0.0073	250 250 250	3	4	果実	3 7	0.06 <0.01	<0.01 <0.01 <0.01

1): 有効成分濃度 2): テトラニリプロール等量換算

きゅうりの果実におけるテトラニリプロールの残留濃度は 0.07、0.16、0.18 (3) 及び 0.21 mg/kg であった。

きゅうりの果実におけるテトラニリプロールの最大残留濃度は 0.5 mg/kg と推定した。

(16) すいか

すいかの果肉及び果実を分析試料とした作物残留試験の結果を表 2.4-36 に示す。なお、 未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、 代謝物 M22:0.01 mg/kg) 未満であった。

作物残留濃度が最大となる GAP (「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、 定植当日」及び「18.2 %フロアブル、散布、2,500 倍、2 回、収穫前日」の計 3 回)に適合 する試験は 6 試験であった。

表 2.4-36: すいかの作物残留試験結果

衣 2.4-30: 9	試験	0.77 F 49)	/ 人田 I	1-100/1/PH	試験条件						残留濃度	(mg/kg) ²⁾	
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)		回数 []])	分析 部位	PHI (日)	テトラニ リフ゜ロール	代謝物 M22	
作物残留濃度	が	18.2%	灌注	200	0.0910	25 mL/株	1	合計		定植当日			
最大となる G	AP	フロアフ゛ル	散布	2,500	0.0073		2	3		1			
すいか	茨城	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.11 0.10 0.08 0.08	<0.01 <0.01 <0.01 <0.01	
(ひとりじめ 7) (施設)	H26 年	フロアフ゛ル	散布	2,500	0.0073	240 240	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	
すいか (夜空)	高知	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.15 0.12 0.11 0.13	<0.01 <0.01 <0.01 <0.01	
(施設)		フロアフ゛ル	散布	2,500	0.0073	278 278	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	
すいか	茨城	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.12 0.13 <u>0.14</u> 0.10	<0.01 <0.01 <0.01 <0.01	
(ひとりじめ 7) (施設)	H27 年	フロアフ゛ル	散布	2,500	0.0073	252 270	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	
すいか	高知	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.15 <u>0.16</u> 0.12 0.11	<0.01 <0.01 <0.01 <0.01	
(豪夏) (施設)	H27 年	フロアフ゛ル	散布	2,500	0.0073	281 281	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	
すいか	宮崎	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.08 <u>0.11</u> 0.10 0.07	<0.01 <0.01 <0.01 <0.01	
(なしりじみ山へ) 呂		宮崎 H27 年		散布	2,500	0.0073	280 280	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

すいか (豪夏)	高知	18.2%	灌注	200	0.0910	25 mL/株	1 定植 当日	合計	果実	1 3 7 14	0.14 0.12 0.10 0.09	<0.01 <0.01 <0.01 <0.01
(施設)	H28 年	フロアフ゛ル	散布	2,500	0.0073	282 282	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

1):有効成分濃度 2):テトラニリプロール等量換算

すいかの果実におけるテトラニリプロールの残留濃度は 0.11 (2)、0.14 (2)、0.15 及び 0.16 mg/kg であった。

すいかの果実におけるテトラニリプロールの最大残留濃度は 0.3 mg/kg と推定した。

(17) メロン

メロンの果肉及び果実を分析試料とした作物残留試験の結果を表 2.4-37 に示す。なお、未処理区試料は定量限界 (テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP(「18.2 %フロアブル、灌注、200 倍、25 mL/株、1 回、定植当日」及び「18.2 %フロアブル、散布、2,500 倍、2 回、収穫前日」の計 3 回)に適合する試験は 3 試験であった。

表 2.4-37: メロンの作物残留試験結果

12 2.4-37 .	試験				試験条件	‡					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用回 (回)	数	分析 部位	PHI (日)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度		18.2%	灌注	200	0.0910	25 mL/ 株	1	合計		定植 当日		
最大となる G	AP	フロアフ゛ル	散布	2,500	0.0073		2	3		1		
メロン	高知	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計	果実	1 3 7 14	0.14 <u>0.15</u> 0.15 0.14	<0.01 <0.01 <0.01 <0.01
(班秋久 /12)	H26 年	フロアフ゛ル	散布	2,500	0.0073	277 277	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
メロン (アールス	宮崎	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計	果実	1 3 7 14	0.14 0.13 <u>0.16</u> 0.10	<0.01 <0.01 <0.01 <0.01
	H26 年	18.2% 7¤77` <i>i</i> v	散布	2,500	0.0073	247 247	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

メロン (クインシー)	茨城	18.2%	灌注	200	0.0910	25 mL/ 株	1 定植当日	合計	果実	1 3 7 14	0.10 <u>0.12</u> 0.12 0.12	<0.01 <0.01 <0.01 <0.01
(施設)	H27 年	フロアフ゛ル	散布	2,500	0.0073	250 250	2	3	果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

メロンの果実におけるテトラニリプロールの残留濃度は 0.12、0.15 及び 0.16 mg/kg であった。

メロンの果実におけるテトラニリプロールの最大残留濃度は 0.5 mg/kg と推定した。

(18) えだまめ

えだまめのさやを分析試料とした作物残留試験の結果を表 2.4-38 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代 謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、3 回、収穫前日) に適合する試験は 3 試験であった。

表 2.4-38: えだまめの作物残留試験結果

//t/ /m	試験			試験	食条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% วะรว ั <i>ม</i>	散布	5,000	0.0036		3		1		
えだまめ (夏の調べ) (露地)	千葉 H26 年	18.2% 7¤77* N	散布	5,000	0.0036	185 185 185	3	さや	1 3 7 14	0.28 0.25 0.19 0.05	<0.01 <0.01 <0.01 <0.01
えだまめ (奥原早生) (露地)	宮崎 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	167 167 167	3	さや	1 3 7 11	0.02 0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01
えだまめ (玉すだれ 2 号) (露地)	福島 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	170 170 170	3	さや	1 3 7	0.79 0.49 0.30	0.04 0.03 0.03

1): 有効成分濃度 2): テトラニリプロール等量換算

えだまめのさやにおけるテトラニリプロールの残留濃度は0.02、0.28 及び0.79 mg/kg であった。

えだまめのさやにおけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(19) りんご

りんごの果実を分析試料とした作物残留試験の結果を表 2.4-39 に示す。なお、未処理区 試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝 物 M22:0.01 mg/kg) 未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は 6 試験であった。

表 2.4-39: りんごの作物残留試験結果

衣 2.4-39: 9	770 _ 1	77 P101	2人田 时间	火州 不							
	試験			試験	条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブ <i>ル</i>	散布	5,000	0.0036		2		1		
りんご (ふじ) (露地)	青森 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	450 450	2	果実	1 3 7 14	0.36 0.35 0.34 0.36	<0.01 <0.01 <0.01 <0.01
りんご (ふじ) (露地)	岩手 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	450 450	2	果実	1 3 7 14	0.28 0.28 0.25 0.28	<0.01 <0.01 <0.01 <0.01
りんご (ふじ) (露地)	青森 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	450 450	2	果実	1 3 7 14	0.36 0.35 <u>0.39</u> 0.30	<0.01 <0.01 <0.01 <0.01
りんご (ふじ) (露地)	岩手 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	450 450	2	果実	1 3 7 14	0.22 0.17 0.18 0.13	<0.01 <0.01 <0.01 <0.01
								果実	1 3 7 14	0.54 0.48 <u>0.55</u> 0.52	<0.01 <0.01 <0.01 <0.01
りんご (ふじ) (露地)	福島 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	417 417	2	可食部 3)	1 3 7 14	0.52 0.47 0.60 0.46	<0.01 <0.01 <0.01 <0.01
								非可食部	1 3 7 14	0.62 0.63 0.50 0.72	<0.01 <0.01 <0.01 <0.01
								果実	1 3 7 14	0.26 0.26 0.25 0.27	<0.01 <0.01 <0.01 <0.01
りんご (秋映) (露地)	長野 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	444 444	2	可食部 3)	1 3 7 14	0.28 0.28 0.30 0.28	<0.01 <0.01 <0.01 <0.01
(露地)								非可食部	1 3 7 14	0.20 0.16 0.15 0.10	<0.01 <0.01 <0.01 <0.01

^{1):} 有効成分濃度 ²⁾: テトラニリプロール等量換算

^{3):} 非可食部 (花おち、芯及び果梗の基部) を除去したもの

りんごの果実におけるテトラニリプロールの残留濃度は 0.22、0.27、0.28、0.36、0.39 及び 0.55 mg/kg であった。

りんごの果実におけるテトラニリプロールの最大残留濃度は1 mg/kg と推定した。

(20) なし

なしの果実を分析試料とした作物残留試験の結果を表 2.4-40 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22: 0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は 6 試験であった。

表 2.4-40: なしの作物残留試験結果

衣 2.4-40:/。	r 000'	下物效	笛武峽和	行 未							
11.41.6	試験			試験	条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7¤77` ม	散布	5,000	0.0036		2		1		
日本なし (豊水) (露地)	福島 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	450 450	2	果実	1 3 7 14	0.13 0.13 0.12 0.10	<0.01 <0.01 <0.01 <0.01
日本なし (南水) (露地)	長野 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	500 500	2	果実	1 3 7 14	0.16 0.16 0.12 0.08	<0.01 <0.01 <0.01 <0.01
日本なし (南水) (露地)	長野 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	500 500	2	果実	1 3 7	0.24 0.20 0.18	<0.01 <0.01 <0.01
日本なし (福水) (露地)	三重 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	431 431	2	果実	1 3 7	0.08 0.08 0.04	<0.01 <0.01 <0.01
								果実	1 3 7	0.17 0.16 0.11	<0.01 <0.01 <0.01
日本なし (幸水) (露地)	石川 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	500 500	2	可食部 3)	1 3 7	0.16 0.14 0.09	<0.01 <0.01 <0.01
								非可食部	1 3 7	0.26 0.27 0.20	<0.01 <0.01 <0.01

日本なし								果実	1 3 7	0.23 0.12 0.16 0.24	<0.01 <0.01 <0.01 <0.01
日本なし (幸水) (露地)	福井 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	400 400	2	可食部 3)	3	0.12 0.16	<0.01 <0.01 <0.01
								非可食部	1 3	0.20 0.09	<0.01 <0.01
									7	0.18	< 0.01

^{1):}有効成分濃度 2):テトラニリプロール等量換算

なしの果実におけるテトラニリプロールの残留濃度は 0.08、0.13、0.16、0.17、0.23 及び 0.24 mg/kg であった。

なしの果実におけるテトラニリプロールの最大残留濃度は0.5 mg/kgと推定した。

(21) \$ \$

ももの果実及び果肉を分析試料とした作物残留試験の結果を表 2.4-41 に示す。なお、未処理区試料は定量限界 (テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は3 試験であった。

表 2.4-41: ももの作物残留試験結果

1X 2.4-41 . t		11 1/4/24	田門水川	H / I *							
Hadi ba	試験			試験	条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所実施年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニリ フ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブ <i>ル</i>	散布	5,000	0.0036		2		1		
								果実 全体 ³⁾	1 3 7 14	0.16 0.13 0.13 0.10	<0.01 <0.01 <0.01 <0.01
もも (川中島白桃) (露地)	長野 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	400 400	2	果実 4)	1 3 7 14	0.17 0.14 0.14 0.10	<0.01 <0.01 <0.01 <0.01
								果肉	1 3 7 14	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01

^{3):} 非可食部 (花おち、芯及び果梗の基部) を除去したもの

								果実 全体 ³⁾	1 3 7 14	0.41 0.34 0.23 0.11	<0.01 <0.01 <0.01 <0.01
		18.2% フロアフ゛ル	散布	5,000	0.0036	333 333	2	果実 4)	1 3 7	0.45 0.38 0.25	<0.01 <0.01 <0.01
()									14	0.18	< 0.01
									1	< 0.01	< 0.01
								果肉	3	< 0.01	< 0.01
									7	< 0.01	< 0.01
									14	< 0.01	< 0.01
								果実	1	0.16	< 0.01
								全体 3)	3	0.17	< 0.01
									7	0.13	< 0.01
t t	山梨	18.2%				333			1	0.17	< 0.01
(白鳳)		フロアフ゛ル	散布	5,000	0.0036	333	2	果実 4)	3	0.18	< 0.01
(露地)	112/	7.77				333			7	0.14	< 0.01
									1	< 0.01	< 0.01
								果肉	3	< 0.01	< 0.01
									7	< 0.01	< 0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算

3): 果実全体 (種子を含む) は以下の計算式により算出

(計算例:長野試料(H26年)、PHI1日、テトラニリプロールの残留濃度)

$$= \frac{\{0.17(\text{mg/kg}) \times (230(\text{g}) - 15.2(\text{g}))\}}{230(\text{g})} = 0.16 \text{ mg/kg}$$

4): 種子を除去したもの

ももの果実全体におけるテトラニリプロールの残留濃度は 0.16、 0.17 及び 0.41 mg/kg であった。

ももの果実全体におけるテトラニリプロールの最大残留濃度は1mg/kgと推定した。

(22) 小粒核果類

すもも及びうめの果実を分析試料とした作物残留試験の結果を表 2.4-42 に示す。なお、未処理区試料は定量限界 (テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝物 M22:0.01 mg/kg)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は、すもも 2 試験、うめ 3 試験であった。

表 2 4-42	小粒核果類の作物残留試験結果
1X 2,4-42	/ L'A'!, 1/3、 A、 天見 V Z L'12/17 X H1 DEV 2015 小口 A、

衣 2.4-42:月	試験		1 P1007X E							ᇎᅜᆔᇪᄥᇠ	(//) 2)
作物名	場所		1	試験	余件	T	ı			残留濃度	(mg/kg) ²⁾
(品種) (栽培形態)	実施年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブ <i>ル</i>	散布	5,000	0.0036		2		1		
すもも (大石早生)	山梨 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	333 333	2	果実 3)	1 3 7 14	<0.01 <u>0.01</u> <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01
(露地)	1120 +	7 = 7 7 7				333		果実 全体 ⁴⁾	3 7 14	0.01 <0.01 <0.01	<0.01 <0.01 <0.01
	和歌山		散布	5,000	0.0036	360	2	果実 3)	1 3 7 14	0.02 0.02 0.01 0.01	<0.01 <0.01 <0.01 <0.01
	H26 年	フロアフ゛ル	13/ 113	5,000	0.0036	360	2	果実 全体 ⁴⁾	1 3 7 14	0.02 0.02 0.01 0.01	<0.01 <0.01 <0.01 <0.01
うめ (白加賀)	山梨	18.2%	散布	5,000	0.0036	300	2	果実 3)	1 3 7 14	0.36 0.29 0.24 0.12	<0.01 <0.01 <0.01 <0.01
(露地)	H26 年	フロアフ゛ル	HX.111	3,000	0.0030	300	2	果実 全体 ⁴⁾	1 3 7 14	0.31 0.25 0.21 0.11	<0.01 <0.01 <0.01 <0.01
うめ (豊後)	長野	18.2%	散布	5 000	0.0036	361	2	果実 3)	1 3 7 14	0.34 0.24 0.10 0.04	<0.01 <0.01 <0.01 <0.01
(藍地)	H26 年	フロアフ゛ル	日又刊	5,000	0.0036	361	2	果実 全体 ⁴⁾	1 3 7 14	0.28 0.20 0.09 0.03	<0.01 <0.01 <0.01 <0.01
うめ (白加賀)	福島	18.2%	散布	5,000	0.0036	333	2	果実 3)	1 3 7	0.50 0.45 0.32	<0.01 <0.01 <0.01
(露地)	H27年	フロアフ゛ル	- 11 →° ¬	3		333		果実全体4)	1 3 7	0.40 0.37 0.27	<0.01 <0.01 <0.01

1): 有効成分濃度 ²⁾: テトラニリプロール等量換算 ³⁾: 種子を除去したもの

(計算例:うめ、山梨試料 (H26年)、PHI1日、テトラニリプロールの残留濃度)

果実全体 ⁴⁾残留濃度(mg/kg)=
$$\frac{(果実^3)$$
残留濃度×果実³⁾重量)
 $(果実^3)$ 重量+種子重量)
= $\frac{0.36 \text{ (mg/kg)} \times 13.3 \text{ (g)}}{(13.3 \text{ (g)} + 2.23 \text{ (g)})} = 0.31 \text{ mg/kg}$

^{4):} 果実全体(種子を含む) は以下の計算式により算出

すももの果実におけるテトラニリプロールの残留濃度は 0.01 及び 0.02 mg/kg であった。 うめの果実におけるテトラニリプロールの残留濃度は 0.34、0.36 及び 0.50 mg/kg であった。

すもも及びうめの作物残留試験成績が得られていることから、小粒核果類の最大残留濃度を推定することが可能であると判断した。

すももの果実におけるテトラニリプロールの最大残留濃度は 0.1 mg/kg と推定した。 うめの果実におけるテトラニリプロールの最大残留濃度は 1 mg/kg と推定した。

あんずの果実におけるテトラニリプロールの最大残留濃度は、小粒核果類のうち最大残 濃度を示したうめの結果を用いて 1 mg/kg と推定した。

(23) おうとう

おうとうの果実を分析試料とした作物残留試験の結果を表 2.4-43 に示す。なお、未処理 区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代 謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は2 試験あった。

表 2.4-43: おうとうの作物残留試験結果

<u>1</u> X 2.4-43 . 4	試験	7 * 2 11	17/2 H							44 5万油 中	(/1) 2)
作物名	場所		ī	試験	衆件 ┏───		1			残留濃度	mg/kg) ²
(品種) (栽培形態)	実施年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブル	散布	5,000	0.0036		2		1		
									1	0.40	< 0.01
								果実 3)	3	0.22	< 0.01
おうとう								水 天	7	0.25	< 0.01
(壮藤廹)	福島	18.2%	散布	5,000	0.0036	444 444	2		14	0.20	< 0.01
(施設)	H26年	フロアフ゛ル							1	0.36	< 0.01
(ALISA)								果実	3	0.20	< 0.01
								全体 4)	7	0.23	< 0.01
									14	0.19	< 0.01
									1	0.32	< 0.01
								果実 3)	3	0.18	< 0.01
おうとう								71474	7	0.04	< 0.01
(工业组)	長野	18.2%	散布	5,000	0.0036	450	2		14	0.06	< 0.01
(施設) H	H26 年	フロアフ゛ル	14/5 / 15	3,000	0.0050	450	_		1	0.27	< 0.01
								果実	3	0.15	< 0.01
								全体 4)	7	0.04	< 0.01
									14	0.06	< 0.01

^{1):} 有効成分濃度 ²⁾: テトラニリプロール等量換算

^{3):} 種子を除去したもの

^{4):} 果実全体(種子を含む) は以下の計算式により算出

テトラニリプロール - II. 審査報告 - 2. 審査結果

(計算例:福島試料 (H26年)、PHI1日、テトラニリプロールの残留濃度)

果実全体 ⁴⁾残留濃度(mg/kg)=
$$\frac{(果実^3)$$
残留濃度×果実³⁾重量)
 $(果実^3)$ 重量+種子重量)
 = $\frac{0.40 \text{ (mg/kg)} \times 6.41 \text{ (g)}}{(6.41 \text{ (g)} + 0.625 \text{ (g)})} = 0.36 \text{ mg/kg}$

おうとうの果実におけるテトラニリプロールの残留濃度は 0.32 及び 0.40 mg/kg であった。

おうとうの果実におけるテトラニリプロールの最大残留濃度は1 mg/kgと推定した。

(24) いちご

いちごの果実を分析試料とした作物残留試験の結果を表 2.4-44 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、2,500 倍、2 回、収穫前日) に適合する試験は3 試験あった。

表 2	4-44		いち	ごの	作物残	留試験結果
-----	------	--	----	----	-----	-------

₹ 2. 4-44 . V	試験	17 17 175			^ ⁄2 /d.					로본 CT 2曲 급분	(// \) (1)
[h→ h-h-n - b+				武	条件					残留濃度(mg/kg) ²⁾	
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブ <i>ル</i>	散布	2,500	0.0073		2		1		
いちご (とちおとめ) (施設)	茨城 H26 年	18.2% 7¤77 N	散布	2,500	0.0073	179 179	2	果実	1 3 7 14	0.69 0.64 0.54 0.32	<0.01 <0.01 <0.01 <0.01
いちご (さがほのか) (施設)	宮崎 H26 年	18.2% 7¤77* N	散布	2,500	0.0073	175 175	2	果実	1 3 7 14	0.26 0.20 0.22 0.08	<0.01 <0.01 <0.01 <0.01
いちご (とちおとめ) (施設)	茨城 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	179 179	2	果実	1 3 7 14	0.86 0.78 0.69 0.50	<0.01 <0.01 <0.01 <0.01

^{1):}有効成分濃度 2):テトラニリプロール等量換算

いちごの果実におけるテトラニリプロールの残留濃度は 0.26、0.69 及び 0.86 mg/kg であった。

いちごの果実におけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(25) ぶどう

ぶどうの果実を分析試料とした作物残留試験の結果を表 2.4-45 に示す。なお、未処理区 試料は定量限界(テトラニリプロール等量として、テトラニリプロール: 0.01 mg/kg、代謝 物 M22:0.01 mg/kg) 未満であった。

作物残留濃度が最大となる GAP (18.2%フロアブル、散布、5,000 倍、2 回、収穫 7 日前) に適合する試験は4 試験あった。

表 2.4-45: ぶどうの作物残留試験結果

<u> </u>		· / · ///.	/A H F VI	ハルロント				ı		1	
Made to	試験			試懸	6条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7๒アブ <i>ル</i>	散布	5,000	0.0036		2		7		
ぶどう (紅伊豆) (施設)	岩手 H26 年	18.2% 7¤77 N	散布	5,000	0.0036	333 333	2	果実	1 3 7 14	0.12 0.16 <u>0.23</u> 0.17	<0.01 <0.01 <0.01 <0.01
ぶどう (デラウェア) (施設)	山梨 H26 年	18.2% 7¤77`N	散布	5,000	0.0036	313 313	2	果実	1 3 7 14	0.43 0.40 <u>0.44</u> 0.41	<0.01 <0.01 <0.01 <0.01
ぶどう (デラウェア) (施設)	茨城 H27 年	18.2% 7¤77 N	散布	5,000	0.0036	350 369	2	果実	1 3 7 14	0.42 0.74 0.73 <u>0.78</u>	<0.01 <0.01 <0.01 <0.01
ぶどう (デラウェア) (施設)	山梨 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	358 358	2	果実	1 3 7 14	0.33 0.36 0.28 0.34	<0.01 <0.01 <0.01 <0.01

^{1):} 有効成分濃度 2): テトラニリプロール等量換算

ぶどうの果実におけるテトラニリプロールの残留濃度は 0.23、0.34、0.44 及び 0.78 mg/kg であった。

ぶどうの果実におけるテトラニリプロールの最大残留濃度は2mg/kgと推定した。

(26) かき

かきの果実を分析試料とした作物残留試験の結果を表 2.4-46 に示す。なお、未処理区試料は定量限界(テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2 %フロアブル、散布、5,000 倍、2 回、収穫前日) に適合する試験は6 試験あった。

表 2.4-46:7	いさの	作物残	留試駛和	冶米							
11 all 6	試験			試驗	6条件					残留濃度	(mg/kg) ²⁾
作物名 (品種) (栽培形態)	場所 実施 年度	剤型	使用方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10 a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% 7¤アブル	散布	5,000	0.0036		2		1		
かき (松本早生富有) (露地)	茨城 H26 年	18.2% 7¤77* N	散布	5,000	0.0036	413 413	2	果実	1 3 7 14	0.15 0.06 0.08 0.06	<0.01 <0.01 <0.01 <0.01
かき (松本早生富有) (露地)	山梨 H26 年	18.2% フロアフ゛ル	散布	5,000	0.0036	455 455	2	果実	1 3 7 14	0.12 0.12 0.04 0.04	<0.01 <0.01 <0.01 <0.01
かき (松本早生富有) (露地)	福井 H27 年	18.2% フロアフ゛ル	散布	5,000	0.0036	400 400	2	果実	1 3 7	0.10 0.09 0.08	<0.01 <0.01 <0.01
かき (富有) (露地)	山梨 H27 年	18.2% 7¤77`N	散布	5,000	0.0036	450 450	2	果実	1 3 7	0.14 0.10 0.07	<0.01 <0.01 <0.01
かき (平核無) (露地)	奈良 H27 年	18.2% 7¤77`N	散布	5,000	0.0036	426 426	2	果実	1 3 7	0.13 <u>0.16</u> 0.16	<0.01 <0.01 <0.01
かき (富有)		18.2% フロアフ゛ル	散布	5,000	0.0036	400 400	2	果実	1 3	0.22 0.18	<0.01

表 2.4-46: かきの作物残留試験結果

1):有効成分濃度

かきの果実におけるテトラニリプロールの残留濃度は 0.10、0.12、0.14、0.15、0.16 及び 0.22 mg/kg であった。

かきの果実におけるテトラニリプロールの最大残留濃度は 0.5 mg/kg と推定した。

(27) 茶

茶の荒茶及び浸出液を分析試料とした作物残留試験の結果を表 2.4-47 に示す。なお、未処理区試料は定量限界 (テトラニリプロール等量として、テトラニリプロール: $0.01 \, \text{mg/kg}$ 、代謝物 $M22:0.01 \, \text{mg/kg}$)未満であった。

作物残留濃度が最大となる GAP (18.2%フロアブル、散布、2,500 倍、1 回、摘採 7 日前) に適合する試験は 6 試験であった。

^{2):} テトラニリプロール等量換算

表 2.4-47: 茶の作物残留試験結果

衣 2.4-47 . 分	試験	М/Д Ш	H VIONNIH Z				残留濃度(mg/kg) ²⁾				
作物名 作物名	場所			武 歌	条件		1	4		7次笛張及	(mg/kg) ²⁾
(品種) (栽培形態)	実施年度	剤型	使用 方法	希釈 倍数 (倍)	散布 濃度 ¹⁾ (kg ai/hL)	使用 液量 (L/10a)	使用 回数 (回)	分析 部位	PHI (目)	テトラニ リフ゜ロール	代謝物 M22
作物残留濃度 最大となる G		18.2% フロアフ゛ル	散布	2,500	0.0073		1		7		
茶 (やぶきた) (露地)	茨城 H27 年	18.2% フロアフ゛ル	散布	2,500	0.0073	307 307	1	荒茶	1 3 7 14 1 3	67.7 49.6 22.3 5.62 43.2 33.0	0.97 0.74 0.46 0.09 0.84 0.55
								3)	7 14	14.6 3.68	0.34 0.07
茶	宮崎	18.2%	lle e			333		荒茶	1 3 7 14	35.4 82.6 28.0 10.6	0.30 0.32 0.19 0.12
(やぶきた) (露地)	(やぶきた) 山27年	ZuPZ N	散布	2,500	0.0073	333	1	浸出液 ³⁾	1 3 7 14	23.0 58.8 19.6 8.35	0.27 0.55 0.21 0.09
茶 (やぶきた) (露地)	千葉 H27 年	18.2% 7¤77`N	散布	2,500	0.0073	385 385	1	荒茶	1 3 7 14	58.0 50.4 <u>24.2</u> 3.71	0.57 0.31 0.16 0.06
茶 (やぶきた) (露地)	高知 H27 年	18.2% 7¤77` <i>N</i>	散布	2,500	0.0073	378 378	1	荒茶	1 3 7 14	58.6 46.8 41.7 4.23	2.08 1.03 0.92 0.19
茶 (やぶきた) (露地)	茨城 H28 年	18.2% 7¤77` N	散布	2,500	0.0073	311 311	1	荒茶	1 3 7 14	85.2 47.4 25.2 4.36	0.68 0.41 0.30 0.07
茶 (やぶきた) (露地)	宮崎 H28 年	18.2% 7¤アブル	散布	2,500	0.0073	333 333	1	荒茶	1 3 7 14	28.4 0.42 <u>1.82</u> 0.26	0.67 0.03 0.11 0.04

1): 有効成分濃度 2): テトラニリプロール等量換算 3): 残留濃度は荒茶中の残留濃度に換算した値

荒茶におけるテトラニリプロールの残留濃度は 1.8、22、24、25、28 及び 42 mg/kg であった。

荒茶におけるテトラニリプロールの最大残留濃度は50 mg/kgと推定した。

(28) その他のハーブ

その他のハーブに該当する作物は非結球あぶらな科葉菜類のみであり、テトラニリプロールの最大残留濃度の推定結果は 15 mg/kg であった。

2.4.2.2 家畜

巡乳牛について、テトラニリプロール、代謝物 M1 及び代謝物 M22 を分析対象とした家

畜残留試験の報告書を受領した。

家きんについては、家畜代謝試験(2.4.1.2)における投与量(飼料中濃度として 17.9~18.7 mg/kg)及び主要な残留成分であるテトラニリプロール及び代謝物 M34 の畜産物中の残留濃度(それぞれ最大 0.032 mg/kg 及び 0.065 mg/kg)、並びに作物残留試験(2.4.2.1)で得られた残留濃度に基づく予想飼料最大負荷量(0.007~0.008 mg/kg、(2)参照)から推定される家きん由来の畜産物中の残留濃度は<0.001mg/kg であるため、試験実施は不要であると判断した。

(1) 泌乳牛

ホルスタイン系泌乳牛(3~5 年齢、体重 363.5-666.0 kg(投与開始時))に、テトラニリプロールをそれぞれ飼料中濃度として 0.9 mg/kg(低投与量群)、9.0 mg/kg(中投与量群)、27.0 mg/kg(高投与量群)又は 90.0 mg/kg(最高投与量群)に相当する投与量で、ゼラチンカプセルを用いて 29 日間連続反復経口投与した。各群の動物数は対照群 3 頭、低投与量群 3 頭、中投与量群 3 頭、高投与量群 3 頭及び最高投与量群 6 頭であった。

乳は1日2回採取し、投与開始前、投与開始2、4、7、10、14、17、21、25、28、31、35、38、42及び49日後の試料を採取日及び個体ごとに混合した。最高投与量群の25日後試料の一部をクリーム及び脱脂肪乳に加工した。

投与開始 28 日後(最終投与後約 8 時間以内)に対照群 2 頭、投与量群各 3 頭を、36 日後 (最終投与 7 日後)及び 43 日後(最終投与 14 日後)に最高投与量群 1 頭を、50 日後(最 終投与 21 日後)に対照群 1 頭及び最高投与量群 1 頭をと殺し、肝臓、腎臓、脂肪(大網脂 肪、腎周囲脂肪及び皮下脂肪)、筋肉(脇腹筋、円回内筋及び腰筋)を採取した。筋肉は各 部位を等量採取し混合した。

分析法は2.2.4.1に示した家畜分析法を用いた。

乳中の残留濃度推移を表 2.4-48 に、組織及び臓器中の残留濃度を表 2.4-49 にそれぞれ示す。なお、対照群試料及び乳の低投与量群試料は定量限界(テトラニリプロール等量として、テトラニリプロール、代謝物 M1、代謝物 M22 いずれも 0.010 mg/kg)未満であった。

表 2.4-48: 乳中の残留濃度推移

1, 2.		量群 9.0 mg/		高投与量	上群 27.0 mg	/kg 飼料	最高投与	最高投与量群 90.0 mg/kg 飼料		
初回			<i>C</i>		留濃度(mg/k				<u> </u>	
投与後 日数 ¹⁾	テトラニ リプ゜ロール (親)	代謝物M1	代謝物 M22	テトラニ リプロール (親)	代謝物M1	代謝物 M22	テトラニ リプロール (親)	代謝物M1	代謝物 M22	
2	0.040	0.019	0.015	0.058	0.038	0.024	0.167	0.061	0.052	
4	0.048	0.023	0.026	0.080	0.043	0.046	0.175	0.067	0.079	
7	0.051	0.022	0.032	0.087	0.045	0.063	0.189	0.071	0.097	
10	0.056	0.024	0.038	0.112	0.047	0.077	0.192	0.071	0.112	
14	0.045	0.025	0.030	0.101	0.046	0.075	0.190	0.071	0.109	
17	0.041	0.025	0.029	0.114	0.048	0.080	0.190	0.071	0.111	
21	0.040	0.023	0.029	0.105	0.044	0.077	0.180	0.068	0.118	
	0.046	0.026	0.029	0.104	0.052	0.076	0.174	0.064	0.104	
253)							0.361	0.060	0.433	
							0.118	0.056	< 0.010	
28	0.047	0.028	0.022	0.098	0.053	0.063	0.169	0.067	0.086	
31 (3)							0.039	0.023	0.061	
35 (7)		_			_		< 0.010	< 0.010	0.020	
38 (10)							< 0.010	< 0.010	0.012	
42 (14)							< 0.010	< 0.010	< 0.010	
49 (21)							< 0.010	< 0.010	< 0.010	

表 2.4-49:組織及び臓器中の残留濃度

最終投与後日数		0 ⊨	後		7日後	14日後	21日後				
投与量(mg/kg 飼料)	0.9	9.0	27.0	90.0							
分析対象			残	留濃度(mg/kg	g)*						
テトラニリプロール	<0.010 <0.010	0.023 0.021	0.060 0.046	0.090 0.079	< 0.010	< 0.010	< 0.010				
代謝物M1	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	< 0.010	< 0.010	< 0.010				
代謝物M22	<0.010 <0.010	<0.010 <0.010	0.024 0.019	0.071 0.049	< 0.010	< 0.010	< 0.010				
			大網脂肪								
テトラニリプロール	<0.010 <0.010	0.052 0.039	0.117 0.082	0.198 0.162	< 0.010	< 0.010	< 0.010				
代謝物M1	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	< 0.010	< 0.010	< 0.010				
代謝物M22	0.031 0.023	0.221 0.154	0.639 0.448	1.01 0.574	0.250	< 0.010	< 0.010				

^{1):()} 内は最終投与後日数 2) テトラニリプロール等量換算、全個体の平均値。

^{3):} 上段:乳汁、中段:クリーム、下段:脱脂肪乳

腎周囲脂肪											
テトラニリプロール	< 0.010	0.063	0.116	0.223	< 0.010	٠٥.010	< 0.010				
ノドノニッノロール	< 0.010	0.043	0.083	0.149	<0.010	< 0.010	<0.010				
代謝物M1	< 0.010	< 0.010	< 0.010	< 0.010	رم ما م ما ما م	<0.010	< 0.010				
【	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010				
代謝物M22	0.033	0.222	0.704	0.938	0.260	< 0.010	0.012				
(図) 12/1V122	0.025	0.140	0.452	0.608	0.200	<0.010	0.012				
皮下脂肪											
テトラニリプロール	< 0.010	0.033	0.094	0.196	رم مارم درم مارم	٠٥.010	رم مارم درم مارم				
/ ドノニッノロー/V	< 0.010	0.031	0.062	0.146	< 0.010	< 0.010	< 0.010				
代謝物M1	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010				
1人的4のIVII	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010				
代謝物M22	0.026	0.181	0.452	0.891	0.164	<0.010	0.015				
	0.020	0.091	0.335	0.472	0.164	<0.010	0.013				
			肝臓								
テトラニリプロール	0.037	0.372	0.875	1.54	-0.010	.0.010	-0.010				
/ ドノーサノロ・ <i>ル</i>	0.031	0.327	0.629	1.22	< 0.010	< 0.010	< 0.010				
代謝物M1	< 0.010	0.027	0.060	0.126	< 0.010	< 0.010	< 0.010				
(図) 12/1VI I	< 0.010	0.025	0.051	0.093	<0.010	<0.010	<0.010				
代謝物M22	< 0.010	0.028	0.034	0.061	< 0.010	< 0.010	< 0.010				
[V[0]] [031V122	< 0.010	0.019	0.023	0.054	<0.010	<0.010	<0.010				
			腎臓								
テトラニリプロール	< 0.010	0.067	0.187	0.276	رم مارم درم مارم	٠٥.010	رم مارم درم مارم				
ノドノニッノロール	< 0.010	0.059	0.137	0.237	< 0.010	< 0.010	< 0.010				
代謝物M1	< 0.010	< 0.010	< 0.010	0.015	< 0.010	< 0.010	< 0.010				
VPX) 7以IVI I	< 0.010	< 0.010	< 0.010	0.013	<0.010	<0.010	<0.010				
代謝物M22	< 0.010	0.024	0.069	0.062	0.013	< 0.010	<0.010				
I ABOUTATATE	< 0.010	0.016	0.044	0.058	0.013	<0.010	< 0.010				

^{*:} テトラニリプロール等量換算。

上段:個体ごとの最大値、下段:全個体の平均値(ただし、最終投与7日後以降は1個体の値)

(2) 畜産物中の残留濃度の推定

残留の規制対象であるテトラニリプロールについて、国内において生産される飼料作物 中の残留に由来する畜産物中の残留濃度を推定した。

農薬登録申請された飼料作物におけるテトラニリプロールの残留濃度(最大残留濃度及び平均残留濃度)とわが国における家畜への飼料の最大給与割合から予想される飼料中の最大残留濃度(予想飼料最大負荷量)は、乳牛0.014 mg/kg、肉牛0.020 mg/kg、豚0.015 mg/kg、産卵鶏0.007 mg/kg 及び肉用鶏0.008 mg/kg であった。

巡乳牛を用いた家畜残留試験から推定した予想飼料最大負荷量に相当する陸棲ほ乳類由来の畜産物中のテトラニリプロールの残留濃度は、乳及び組織で<0.001 mg/kg であった(一律基準を超えない)。

				給与割合 (%)					在世 見 / // /				
飼料	残留	残留濃度 DM ²⁾			給-	与割台 ((%)		負荷量 (mg/kg)				
作物等1)	(mg/kg)		(%)	乳牛	肉牛	豚	剷鵤	肉用鶏	乳牛	肉牛	豚	剷隖	肉用鶏
大豆皮 (ソイハルペレット)	0.1	STMR-P ³⁾	90	1	5	l		1	l	0.006		1	_
大豆 油かす	0.02	STMR-P ³⁾	92	60	60	70	30	35	0.013	0.013	0.015	0.007	0.008
大豆 (全脂大豆)	0.01	STMR-P ³⁾	89	10	15	l		1	0.001	0.002		1	_
飼料中最大残留濃度 0.014									0.020	0.015	0.007	0.008	

表 2.4-50: テトラニリプロールの予想飼料最大負荷量

- -:該当せず
- 1):水稲(稲わら、もみ米、玄米)については、残留が認められないことから算定には用いなかった。
- 2): 乾物重量割合
- 3):加工係数(大豆皮(ソイハルペレット):10、大豆油かす:2、大豆(全脂大豆):1)を加味した中央値

表 2.4-51: 畜産物のテトラニリプロール+代謝物 M22 の推定残留濃度

	• • • • • • • • • • • • • • • • • • • •											
畜産物		畜産物中の推定最大残留濃度 (mg/kg)										
宙座初	筋肉	脂肪	肝臓	腎臓	乳							
乳牛	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001							
肉牛	< 0.001	< 0.001	< 0.001	< 0.001	_							
豚	< 0.001	< 0.001	< 0.001	< 0.001	_							

^{-:}該当せず

2.4.2.3 魚介類

残留の規制対象であるテトラニリプロールの魚介類中の残留濃度について、水産動植物被害予測濃度及び生物濃縮係数 (BCF) を用いて推定した。

テトラニリプロールを含有する製剤について、水田及び水田以外の使用が申請されているため、水田使用における第 2 段階水産動植物被害予測濃度(水産 PEC $_{tier2}$)及び水田以外使用における第 1 段階水産動植物被害予測濃度(水産 PEC $_{tier1}$)を算定した。水田使用におけるテトラニリプロールの水産 PEC $_{tier2}$ は 0.25 μ g/L であり、水田以外使用におけるテトラニリプロールの水産 PEC $_{tier1}$ は 0.0040 μ g/L であった(2.5.3.4 参照)。

テトラニリプロールのオクタノール/水分配係数($\log_{10}P_{ow}$)は 2.6 であり、魚類濃縮性試験は省略できる。そこで、推定 BCF をオクタノール/水分配係数から相関式($\log_{10}BCF = 0.80 \times \log_{10}P_{ow} - 0.52$)を用いて算定した結果、36 であった。

下記の計算式を用いてテトラニリプロールの魚介類中の推定残留濃度を算定した結果、0.046 mg/kg であった。

推定残留濃度=水産 PECtier2 × (BCF×補正値)

 $=0.25 \,\mu g/L \times (36 \times 5)$

 $=46 \, \mu g/kg$

=0.046 mg/kg

2.4.2.4 後作物

ほ場土壌残留試験 (2.5.2.2 参照)における総テトラニリプロール $^{1)}$ の 50 %消失期 (DT_{50}) は、水田では壌土で 9.3 日、シルト質壌土で 26 日、畑地では火山灰壌土で 43 日、沖積壌土で 49 日であり、100 日を超えないため、試験実施は不要であると判断した。

1) 土壌中の評価対象化合物であるテトラニリプロール及び代謝物 M22 の合量値(テトラニリプロール等量換算)

2.4.2.5 暴露評価

理論最大1日摂取量(TMDI)

薬事・食品衛生審議会食品衛生分科会における暴露評価を表 2.4-52 に示す。各食品について基準値案の上限までテトラニリプロールが残留していると仮定した場合、平成 17~19 年度の食品摂取頻度・摂取量に基づき試算されるテトラニリプロールの国民平均、幼小児(1~6歳)、妊婦及び高齢者(65歳以上)における TMDI の ADI に対する比(TMDI/ADI)はそれぞれ 2.2、2.7、1.7 及び 2.6% であり、今回申請された使用方法に従えば、消費者の健康に影響がないことを確認した。

表 2.4-52: テトラニリプロールの推定摂取量 (TMDI) (単位: μg/人/day)

(URL: https://www.mhlw.go.jp/content/11130500/000491005.pdf)

食品名	基準値案 (ppm)	国民平均 TMDI	幼小児 (1~6 歳) TMDI	妊婦 TMDI	高齢者 (65 歳以上) TMDI
米 (玄米をいう。) ¹⁾	0.01	1.6	0.9	1.1	1.8
とうもろこしり	0.05	0.2	0.3	0.3	0.2
大豆 1)	0.2	7.8	4.1	6.3	9.2
さといも類 (やつがしらを含む。) 1)	0.05	0.3	0.1	0.1	0.4
はくさい 1)	3	53.1	15.3	49.8	64.8
きゃべつ 1)	2	48.2	23.2	38.0	47.6
ケール 1)	15	3.0	1.5	1.5	3.0
こまつな ¹⁾	15	75.0	27.0	96.0	96.0
きょうな ¹⁾	10	22.0	4.0	14.0	27.0
チンゲンサイ ¹⁾	5	9.0	3.5	9.0	9.5
ブロッコリー1)	10	52.0	33.0	55.0	57.0
その他のあぶらな科野菜 1)	15	51.0	9.0	12.0	72.0
レタス(サラダ菜及びちしゃを含む。) 1)	20	192.0	88.0	228.0	184.0
ねぎ (リーキを含む。) 1)	2	18.8	7.4	13.6	21.4
├ マ ├ 1)	2	64.2	38.0	64.0	73.2
ピーマン 1)	2	9.6	4.4	15.2	9.8
なす1)	0.7	8.4	1.5	7.0	12.0
きゅうり (ガーキンを含む。) 1)	0.5	10.4	4.8	7.1	12.8
すいか (果皮を含む。) ¹⁾	0.3	2.3	1.7	4.3	3.4
メロン類果実(果皮を含む。)」	0.5	1.8	1.4	2.2	2.1
えだまめ ¹⁾	2	3.4	2.0	1.2	5.4

りんご ¹⁾	1	24.2	30.9	18.8	32.4
日本なし ¹⁾	0.5	3.2	1.7	4.6	3.9
西洋なし1)	0.5	0.3	0.1	0.1	0.3
もも(果皮及び種子を含む。)1)	1	3.4	3.7	5.3	4.4
あんず (アプリコットを含む。) 1)	1	0.2	0.1	0.1	0.4
すもも(プルーンを含む。)1)	0.1	0.1	0.1	0.1	0.1
うめ ¹⁾	1	1.4	0.3	0.6	1.8
おうとう(チェリーを含む。)1)	1	0.4	0.7	0.1	0.3
いちごり	2	10.8	15.6	10.4	11.8
ぶどう ¹⁾	2	17.4	16.4	40.4	18.0
かき 1)	0.5	5.0	0.9	2.0	9.1
茶 1)	50	330.0	50.0	185.0	470.0
その他のハーブ 1)	15	13.5	4.5	1.5	21.0
魚介類 ¹⁾	0.05	4.7	2.0	2.7	5.7
計		1048.5	397.8	897.1	1291.8
ADI 比(%)		2.2	2.7	1.7	2.6

TMDI 試算は、基準値案×各食品の平均摂取量の総和として計算している。

短期推定摂取量(ESTI)

テトラニリプロールについては、ARfD の設定の必要なし(2.3.2 参照)とされており、ESTI の評価は不要と判断した。

2.4.3 残留農薬基準値

薬事・食品衛生審議会食品衛生分科会において了承された基準値案を表 2.4-53 に示す。

表 2.4-53: テトラニリプロールの残留農薬基準値案

(URL: https://www.mhlw.go.jp/content/11130500/000491005.pdf))

食品名	残留基準値案 (ppm)	基準値現行 (ppm)	登録有無1)
米 (玄米をいう。)	0.01	_	申
とうもろこし	0.05	_	申
大豆	0.2	_	申
さといも類(やつがしらを含む。)	0.05	_	申
はくさい	3	_	申
きゃべつ	2	_	申
ケール	15	_	申
こまつな	15	_	申
きょうな	10	_	申
チンゲンサイ	5	_	申
ブロッコリー	10	_	申
その他のあぶらな科野菜	15	_	申
レタス(サラダ菜及びちしゃを含む。)	20	_	申

^{1):} 登録申請(平成29年4月27日付け)に伴い残留農薬基準値設定を要請した食品

テトラニリプロール - II. 審査報告 - 2. 審査結果

ねぎ(リーキを含む。)	2	_	申
トマト	2	_	申
ピーマン	2	_	申
なす	0.7	_	申
きゅうり (ガーキンを含む。)	0.5	_	申
すいか (果皮を含む。)	0.3	_	申
メロン類果実 (果皮を含む。)	0.5	_	申
えだまめ	2	_	申
りんご	1	_	申
日本なし	0.5	_	申
西洋なし	0.5	_	申
もも (果皮及び種子を含む。)	1	_	申
あんず (アプリコットを含む。)	1	_	申
すもも (プルーンを含む。)	0.1	_	申
うめ	1	_	申
おうとう (チェリーを含む。)	1	_	申
いちご	2	_	申
ぶどう	2	_	申
かき	0.5	_	申
茶	50	_	申
その他のハーブ	15	_	申
魚介類	0.05	_	申

^{1):}申:登録申請(平成29年4月27日付け)に伴い残留農薬基準値設定を要請した食品

2.5 環境動態

2.5.1 環境中動態の評価対象となる化合物

2.5.1.1 土壌中

テトラニリプロールの好気的湛水土壌中動態試験における主要分解物は代謝物 M22 であった。

テトラニリプロールの好気的土壌中動態試験における主要分解物は代謝物 M11、代謝物 M14、代謝物 M22 及び代謝物 M29 であった。

テトラニリプロールの嫌気的土壌中動態試験における主要分解物は代謝物 M22 及び代謝物 M29 であった。

テトラニリプロール及び代謝物 M22 並びに水中光分解動態試験における主要分解物である 代謝物 M20、代謝物 M21 及び代謝物 M43 を分析対象として実施された水田ほ場土壌残留試 験の結果、代謝物 M20、代謝物 M21 及び代謝物 M43 は試験期間をとおして定量限界未満で あったことから、水田土壌における評価対象化合物はテトラニリプロール及び代謝物 M22 と することが妥当であると判断した。

テトラニリプロール、代謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29 及び好気的土壌中動態試験において最大 6.5 %TAR 検出された代謝物 M30 を分析対象として実施された畑地は場土壌残留試験の結果、代謝物 M11、代謝物 M14、代謝物 M29 及び代謝物 M30 は、テトラニリプロールと比べて低い残留濃度であったことから、畑地ほ場の表層土における評価対象化合物はテトラニリプロール及び代謝物 M22 とすることが妥当であると判断した。

2.5.1.2 水中

テトラニリプロールの加水分解動態試験における主要分解物は代謝物 M22 であった。 テトラニリプロールの水中光分解動態試験における主要分解物は代謝物 M20、代謝物 M21、

代謝物 M22 及び代謝物 M43 であった。

テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 を分析対象として実施された水質汚濁性試験において、代謝物 M21 はテトラニリプロールと比べて低い残留濃度であり、代謝物 M20 及び代謝物 M43 は試験期間をとおして定量限界未満であったことから、水中における評価対象化合物はテトラニリプロール及び代謝物 M22 とすることが妥当であると判断した。

2.5.2 土壌中における動態

2.5.2.1 土壌中動態

ピラゾールカルボニル位の炭素を ¹⁴C で標識したテトラニリプロール (以下「[pyc-¹⁴C]テトラニリプロール」という。)を用いて実施した好気的湛水土壌中動態試験、好気的土壌中動態試験及び嫌気的土壌中動態試験の報告書を受領した。

$$[pyc^{-14}C] \vec{\mathcal{T}} \mid \vec{\mathcal{T}} = \mathcal{I} \mathcal{T} = -\mathcal{I} \mathcal{T}$$

$$O \qquad CH_3 \qquad H$$

$$O \qquad N \qquad CF_3$$

$$O \qquad N \qquad N \qquad N$$

*:14C 標識の位置

2.5.2.1.1 好気的湛水土壌

砂壌土 (イタリア、pH 5.3 (CaCl₂)、有機炭素含有量 (OC) 1.0%) に、[pyc-¹⁴C]テトラニリプロールを乾土あたり 0.6 mg/kg(施用量として 600 g ai/ha)となるように添加し、好気的湛水条件、 25 ± 2 °C、暗所でインキュベートした。揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。処理 0、3、7、14、30、62、100、140 及び 181 日後に試料を採取した。水は液体シンチレーションカウンター (LSC) で放射能を測定後、高速液体クロマトグラフィー (HPLC) で放射性物質を定量し、HPLC 及び薄層クロマトグラフィー (TLC) で同定した。

土壌はアセトニトリル/水(4/1(v/v))及びアセトニトリルで常温抽出後、アセトニトリル/水(4/1(v/v))及びアセトンでマイクロ波抽出(70 $^{\circ}$ C及び 50 $^{\circ}$ C)し、LSC で放射能を測定した。抽出画分は混合後、HPLC で放射性物質を定量し、HPLC、液体クロマトグラフィー質量分析(LC-MS)、液体クロマトグラフィータンデム型質量分析(LC-MS-MS)及び薄層クロマトグラフィー(TLC)で同定した。抽出残渣はサンプルオキシダイザーで燃焼後、LSC で放射能を測定した。

ソーダ石灰は 18 %塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で 放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。

水中及び土壌中の放射性物質濃度の分布を表 2.5-1 に示す。

水中の放射性物質は経時的に減少し、181 日後に 2.6% TAR であった。土壌中の放射性物質は経時的に増加し、181 日後に 98% TAR であった。CO2及び揮発性有機物質の生成は 0.2% TAR以下であった。土壌常温抽出画分中の放射性物質は経時的に増加後、減少し、140 日後に80% TAR、181 日後に73% TARであった。土壌マイクロ波抽出画分中の放射性物質は経時的に増加後、減少し、100 日後に16% TAR、181 日後に13% TARであった。土壌抽出残渣中の放射性物質は経時的に増加し、181 日後に12% TARであった。

% 7 \ F				土壌				揮発性	
経過 日数	水			抽出画分	•	抽出	CO_2	有機	合計
日奴				常温抽出*1	マイクロ波抽出*2	残渣		物質	
0	54.9	47.5	47.4	46.4	1.0	0.1		1	103
3	55.3	46.7	45.7	43.7	2.0	1.0	< 0.1	0.2	102
7	44.2	56.9	54.5	51.0	3.5	2.4	< 0.1	0.1	101
14	43.9	57.9	51.7	45.9	5.8	6.2	< 0.1	< 0.1	102
30	17.0	83.4	73.3	64.3	9.0	10.1	< 0.1	< 0.1	101
62	7.7	93.1	82.3	71.1	11.2	10.8	0.1	0.1	101
100	4.5	97.8	85.8	69.5	16.3	12.0	< 0.1	< 0.1	102
140	3.1	106	94.0	80.5	13.5	11.5	0.1	< 0.1	109
181	2.6	98.0	85.9	73.2	12.7	12.1	0.1	< 0.1	101

表 2.5-1: 水中及び土壌中の放射性物質濃度の分布 (%TAR)

- : 試料採取せず

*1:アセトニトリル/水 (4/1 (v/v)) 及びアセトニトリル

*2:アセトニトリル/水 (4/1 (v/v)) 及びアセトン (70 ℃及び 50 ℃)

水及び抽出画分中のテトラニリプロール及び分解物の定量結果を表 2.5-2 に示す。

テトラニリプロールは経時的に減少し、181 日後に 35 % TAR であった。主要分解物は代謝物 M22 であり、経時的に増加し、181 日後に 45 % TAR であった。

経過日数	テトラニリプロール	代謝物 M22	未同定分解物
0	101	ND	0.7
3	97.4	2.5	ND
7	90.6	7.6	ND
14	83.0	11.5	0.6
30	71.7	17.0	1.5
62	56.9	29.5	2.7
100	46.1	39.6	3.7
140	43.0	47.6	5.7
181	35.3	45.0	6.3

表 2.5-2: 水及び抽出画分中のテトラニリプロール及び分解物の定量結果 (%TAR)

ND: 検出限界未満

テトラニリプロールの DT₅₀ は FOMC モデル (First Order Multi Compartment Model) を用いて算出したところ、84 日であった。

好気的湛水条件下におけるテトラニリプロールの主要な分解経路はピリミジノン環の形成による代謝物 M22 の生成と考えられ、テトラニリプロール及びその分解物は土壌成分との結合性残留物となると考えられた。

2.5.2.1.2 好気的土壌

(1) ドイツ土壌

壊質砂土 (ドイツ、pH 6.2 (CaCl₂)、OC 1.8%)、壌土 (ドイツ、pH 7.3 (CaCl₂)、OC 5.1%)、

シルト質壌土①(ドイツ、pH 5.3(CaCl₂)、OC 2.7 %)及びシルト質壌土(ドイツ、pH 6.4 (CaCl₂)、OC 2.7 %)に、それぞれ[pyc-¹⁴C]テトラニリプロールを乾土あたり 0.5 mg/kg(施用量として 500 g ai/ha)となるように添加し、好気条件、 20 ± 2 $^{\circ}$ $^{\circ}$ で、暗所でインキュベートした。揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。処理 0、2、6、9、16、22、29、62、91 及び 119 日後に試料を採取した。

土壌は 0.01 M 塩化カルシウム($CaCl_2$)、アセトニトリル/水(4/1(v/v))及びアセトニトリルで常温抽出後、アセトニトリル/水(4/1 (v/v))及びアセトンでマイクロ波抽出(70 $^{\circ}$ 及び 50 $^{\circ}$ $^{\circ}$ し、LSC で放射能を測定した。 $CaCl_2$ 抽出画分は直接、その他の抽出画分は混合後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び TLC で同定した。抽出残渣は燃焼後、LSC で放射能を測定した。

ソーダ石灰は 18%塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。

土壌中の放射性物質濃度の分布を表 2.5-3 に示す。

土壌中の放射性物質は試験期間をとおして $94\sim101~\%$ TAR の範囲で推移した。 CO_2 の生成は 2.5~% TAR 以下であり、揮発性有機物質の生成は認められなかった。常温抽出画分中の放射性物質は経時的に減少し、119~% 日後に $80\sim89~\%$ TAR であった。マイクロ波抽出画分中の放射性物質は経時的に増加し、119~% 日後に $4.0\sim9.0~\%$ TAR であった。抽出残渣中の放射性物質は経時的に増加し、119~% 日後に $5.2\sim14~\%$ TAR であった。

表 2.5-3: 土壌中の放射性物質濃度の分布 (%TAR)

			[pyc- ¹⁴ C]テト	ラニリプロール						
	壤質砂土									
\$7 \ F			土壌							
経過 日数			抽出画分	抽出残渣	CO_2	合計				
日奴			常温抽出*1	マイクロ波抽出*2	抽口残准					
0	95.2	95.0	94.1	0.9	0.2		95.2			
2	94.2	93.9	92.3	1.5	0.3	< 0.1	94.2			
6	94.8	94.0	92.1	1.9	0.8	< 0.1	94.8			
9	97.2	96.2	94.2	2.1	1.0	< 0.1	97.2			
16	97.7	96.2	93.4	2.8	1.5	< 0.1	97.7			
22	98.3	96.6	93.6	2.9	1.7	0.1	98.4			
29	96.8	94.7	91.3	3.4	2.1	0.2	97.0			
62	98.2	94.7	90.0	4.7	3.5	0.5	98.8			
91	98.8	94.7	89.8	5.0	4.1	0.8	99.6			
119	99.6	94.4	88.6	5.8	5.2	1.0	101			

テトラニリプロール - II. 審査報告 - 2. 審査結果

				· ()				
(eg.) []			土壌					
経過 日数			抽出画分		hh 1117# 3/*	CO ₂	合計	
日奴			常温抽出*1	マイクロ波抽出*2	抽出残渣			
0	95.0	94.3	92.0	2.3	0.7	_	95.0	
2	97.0	95.5	92.1	3.4	1.5	< 0.1	96.9	
6	96.6	94.6	91.0	3.5	2.0	< 0.1	96.6	
9	97.6	94.6	90.9	3.8	3.0	< 0.1	97.7	
16	98.4	94.6	90.6	4.0	3.8	0.1	98.5	
22	101	96.5	92.8	3.7	4.7	0.2	101	
29	99.9	94.3	91.0	3.3	5.6	0.3	100	
62	99.6	90.2	85.9	4.4	9.4	1.2	101	
91	97.6	86.1	82.5	3.6	11.5	2.0	99.7	
119	98.2	84.3	80.3	4.0	13.9	2.5	101	
			シルト	質壌土①				
◊∀ \ □			土壌					
経過 日数			抽出画分		抽出残渣	CO_2	合計	
H XX			常温抽出*1	マイクロ波抽出*2	1田山/天徂			
0	94.4	94.1	92.5	1.6	0.3	_	94.5	
2	96.5	95.7	93.2	2.4	0.8	< 0.1	96.4	
6	97.6	96.5	93.2	3.4	1.1	< 0.1	97.7	
9	97.8	96.4	92.7	3.7	1.4	< 0.1	97.8	
16	98.2	96.2	91.5	4.6	2.0	< 0.1	98.2	
22	98.5	96.0	91.0	5.0	2.5	0.1	98.5	
29	97.8	94.8	89.2	5.6	3.0	0.1	97.9	
62	99.5	93.9	86.1	7.8	5.6	0.4	99.8	
91	98.3	92.6	84.0	8.6	5.7	0.5	98.8	
119	101	91.9	82.9	9.0	9.3	0.6	102	
			シルトケ	質壌土②				
☆▽ ∴屈			土壌					
経過 日数			抽出画分		抽出残渣	CO_2	合計	
H 350			常温抽出*1	マイクロ波抽出*2	1田口/久祖			
0	94.4	94.1	92.8	1.3	0.3	_	94.3	
2	97.8	97.2	95.4	1.8	0.6	< 0.1	97.8	
6	96.1	95.2	92.9	2.2	0.9	< 0.1	96.1	
9	97.2	96.1	93.9	2.3	1.1	< 0.1	97.2	
16	97.6	95.7	92.9	2.8	1.9	0.1	97.7	
22	100	97.6	94.7	2.9	2.4	0.2	100	
29	97.8	94.9	91.7	3.3	2.9	0.4	98.1	
62	98.2	92.7	88.8	3.9	5.5	1.2	99.4	
91	98.3	91.7	87.4	4.3	6.6	1.7	99.9	
119	98.7	90.6	85.4	5.3	8.1	2.2	101	

- : 試料採取せず

*1:0.01 M CaCl₂、アセトニトリル/水(4/1(v/v))及びアセトニトリル *2:アセトニトリル/水(4/1(v/v))及びアセトン(70 ℃及び 50 ℃)

抽出画分中のテトラニリプロール及び分解物の定量結果を表 2.5-4 に示す。

テトラニリプロールは経時的に減少し、119 日後に $4.9\sim56$ % TAR であった。主要代謝物は代謝物 M11、代謝物 M14、代謝物 M22 及び代謝物 M29 であり、それぞれ最大で $20\sim48$ % TAR、 $1.0\sim12$ % TAR、 $6.4\sim14$ % TAR 及び $0.4\sim11$ % TAR であった。その他に代謝物 M10 及び代謝物 M30 が検出されたが、それぞれ最大で 6.9 % TAR 及び 6.5 % TAR であった。

表 2.5-4:抽出画分中のテトラニリプロール及び分解物の定量結果 (%TAR)

<u> </u>	• 1四四四刀	「中のケト)	7 — 7 7 —	集質砂土	J 万千1/J V フ 入上 。	里 加入(//) IAK)	
経過	テトラニ	代謝物	代謝物	代謝物	代謝物	代謝物	代謝物	未同定
日数	リフ゜ロール	M10	M11	M14	M22	M29	M30	分解物
0	91.2	ND	ND	ND	2.9	ND	ND	0.3
2	88.9	1.8	ND	ND	2.3	ND	ND	0.3
6	83.7	2.9	2.1	ND	4.7	ND	ND	0.4
9	81.5	3.3	3.7	ND	7.2	ND	ND	0.4
16	75.1	3.9	7.5	0.6	8.4	ND	ND	0.5
22	70.4	3.8	10.1	0.8	10.1	ND	ND	0.9
29	64.8	3.4	13.2	1.3	10.8	ND	ND	0.9
62	50.9	2.6	21.5	2.9	13.4	0.8	ND	2.1
91	48.0	2.1	25.4	3.6	12.0	1.1	ND	2.3
119	41.9	1.2	29.1	4.3	13.6	1.4	ND	2.7
				壌土				
経過	テトラニ	代謝物	代謝物	代謝物	代謝物	代謝物	代謝物	未同定
日数	リフ゜ロール	M10	M11	M14	M22	M29	M30	分解物
0	87.7	2.6	0.9	ND	2.5	ND	ND	0.3
2	83.2	3.5	5.8	ND	2.3	ND	ND	0.4
6	69.9	3.2	16.0	ND	4.4	ND	ND	0.3
9	59.7	2.9	21.9	0.8	8.0	0.4	ND	0.8
16	48.8	2.7	32.2	2.5	6.7	0.7	0.4	0.4
22	39.2	2.5	40.2	4.2	7.3	1.0	0.5	1.6
29	32.4	1.9	42.4	5.4	8.3	1.9	0.6	1.3
62	13.8	0.7	47.8	9.1	8.2	4.9	2.6	3.1
91	7.2	0.4	45.0	10.0	7.3	7.8	4.0	4.4
119	4.9	ND	43.3	10.3	4.1	10.6	6.5	4.2
			દ	ノルト質壌土(D			
経過	テトラニ	代謝物	代謝物	代謝物	代謝物	代謝物	代謝物	未同定
日数	リフ° ロール	M10	M11	M14	M22	M29	M30	分解物
0	92.1	ND	ND	ND	1.1	ND	0.3	0.3
2	92.9	1.3	ND	ND	0.8	ND	0.4	0.3
6	91.0	2.6	0.4	ND	1.6	ND	0.5	0.4
9	89.2	3.4	0.9	ND	2.2	ND	ND	0.4
16	85.3	5.0	2.4	ND	2.6	ND	ND	0.5
22	82.8	5.6	3.4	ND	3.3	ND	ND	0.3
29	79.1	6.4	4.7	ND	3.3	ND	0.4	0.3
62	67.9	6.9	11.5	0.8	4.7	ND	0.3	1.3
91	61.8	6.2	16.3	1.0	5.0	ND	ND	2.3
119	55.9	6.0	20.0	1.0	6.4	0.4	ND	1.9

	シルト質壌土②								
経過	テトラニ	代謝物	代謝物	代謝物	代謝物	代謝物	代謝物	未同定	
日数	リフ゜ロール	M10	M11	M14	M22	M29	M30	分解物	
0	88.8	1.4	ND	ND	3.3	ND	0.3	0.3	
2	89.6	3.4	1.0	ND	2.4	ND	ND	0.4	
6	82.1	4.4	3.1	ND	4.9	ND	ND	0.4	
9	77.2	4.6	5.6	0.4	4.5	ND	0.4	3.2	
16	69.2	4.8	10.9	1.6	8.2	ND	ND	1.0	
22	63.8	5.2	14.6	2.5	9.5	0.4	ND	1.2	
29	56.0	4.4	17.1	3.9	11.1	0.7	ND	1.6	
62	34.6	3.3	27.3	8.1	13.9	1.7	0.5	3.2	
91	23.9	2.5	32.1	10.0	14.6	3.3	0.6	4.6	
119	17.1	1.9	34.7	12.0	14.2	4.6	1.0	5.1	

ND:検出限界未満

好気的土壌中におけるテトラニリプロールの 50%消失期(DT_{50})を表 2.5-5 に示す。 テトラニリプロールの DT_{50} は DFOP モデル(Double First Order in Parallel Model)を用いて算出したところ、 $18\sim212$ 日であった。

表 2.5-5: 好気的土壌中におけるテトラニリプロールの DT50

壤質砂土	壌土	シルト質壌土①	シルト質壌土②
94.5 日	18.4 目	212 日	43.6 日

(2) 米国土壌

シルト質壌土① (米国、pH 5.8 (CaCl₂)、OC 1.2%)、シルト質壌土② (米国、pH 6.5 (CaCl₂)、OC 1.8%)、砂壌土 (米国、pH 6.2 (CaCl₂)、OC 0.9%)、埴壌土① (米国、pH 6.4 (CaCl₂)、OC 6.0%)、壌質砂土 (米国、pH 7.1 (CaCl₂)、OC 0.4%)及び埴壌土② (米国、pH 7.3 (CaCl₂)、OC 3.7%) にそれぞれ[pyc-¹⁴C]テトラニリプロールを乾土あたり 0.6 mg/kg(施用量として 600 g ai/ha)となるように添加し、好気条件、 20 ± 2 °C、暗所でインキュベートした。揮発性物質は 2 M 水酸化カリウム(KOH)、エチレングリコール及び 1 M 硫酸で捕集した。処理 0、1、2、7、14(壌質砂土及び埴壌土②では 21)、28(壌質砂土及び埴壌土②では 30)、42、63、91 及び 120 日後に試料を採取した。

土壌は $0.01\,\mathrm{M\,CaCl_2}$ 、アセトニトリル/水($4/1\,\mathrm{(v/v)}$)及びアセトニトリルで常温抽出後、アセトニトリル/水($4/1\,\mathrm{(v/v)}$)及びアセトンでマイクロ波抽出($70\,\mathrm{^{\circ}C}$ 及び $50\,\mathrm{^{\circ}C}$)し、LSC で放射能を測定した。 $\mathrm{CaCl_2}$ 抽出画分は直接、その他の抽出画分は混合後、HPLC で放射性物質を定量し、HPLC 及び LC-MS で同定した。抽出残渣は燃焼後、LSC で放射能を測定した。揮発性物質の捕集液は LSC で放射能を測定した。

土壌中の放射性物質濃度の分布を表 2.5-6 に示す。

土壌中の放射性物質は、試験期間をとおして $91\sim100$ %TAR の範囲で推移した。 CO_2 及び揮発性有機物質の生成はそれぞれ 2.1 %TAR 以下及び 0.3 %TAR 以下であった。常温抽出画分中の放射性物質は経時的に減少し、120 日後に $70\sim88$ %TAR であった。マイクロ波

抽出画分中の放射性物質は経時的に増加し、120 日後に 2.1~8.1 %TAR であった。抽出残 渣中の放射性物質は経時的に増加し、120 日後に 3.2~19 %TAR であった。

表 2.5-6: 土壌中の放射性物質濃度の分布 (%TAR)

表	2.5-6: 土壌	中の放射性		分布(%TAR				
			[pyc- ¹⁴	C]テトラニリフ				
	T			シルト質壌土①)			
経過		土壌				CO	揮発性 有機	合計
日数			抽出画分 常温抽出	マイクロ波抽出	抽出残渣	CO_2	物質	白币
0	100	99.7	98.4	1.3	0.3	=	=	100
2	94.0	92.4	90.7	1.6	1.6	ND	ND	94.0
7	94.2	91.5	90.3	1.2	2.7	0.1	ND	94.3
14	94.7	90.5	87.8	2.7	4.2	0.1	ND	94.8
28	95.4	91.1	87.4	3.7	4.3	0.3	ND	95.8
42	94.7	88.8	85.9	2.9	5.9	0.5	ND	95.3
63	92.1	85.2	81.3	4.0	6.9	0.4	0.3	92.8
91	93.7	83.2	78.6	4.7	10.5	1.0	ND	94.7
120	92.2	81.8	75.3	6.5	10.4	1.3	ND	93.5
				シルト質壌土②)			
◊∀ \ □			土壌				揮発性	
経過 日数		抽出画分			抽出残渣	CO_2	有機	合計
日奴			常温抽出	マイクロ波抽出	抽山 ⁄太值		物質	
0	100	99.7	98.4	1.3	0.3	_	l	100
2	94.6	93.3	91.5	1.8	1.3	ND	ND	94.7
7	94.4	92.4	90.9	1.4	2.0	0.1	ND	94.5
14	94.2	91.0	88.6	2.4	3.2	0.1	ND	94.3
28	94.1	90.5	86.3	4.2	3.6	0.2	ND	94.3
42	89.6	84.6	81.5	3.1	5.0	0.5	ND	90.1
63	90.6	84.7	81.6	3.0	5.9	0.7	ND	91.3
91	91.3	82.5	78.3	4.3	8.8	1.0	ND	92.3
120	92.1	83.7	78.4	5.3	8.4	0.8	ND	92.8
				砂壌土				
経過			土壌				揮発性	
日数			抽出画分		抽出残渣	CO_2	有機	合計
F 3/			常温抽出	マイクロ波抽出	1四川/入住		物質	
0	100	99.7	99.4	0.3	0.3	=	_	100
2	95.2	94.5	93.7	0.8	0.7	ND	ND	95.2
7	95.7	94.8	94.2	0.7	0.9	ND	ND	95.7
14	94.7	93.5	92.0	1.4	1.2	0.1	ND	94.8
28	94.0	92.8	91.0	1.8	1.2	0.2	ND	94.1
42	101.7	99.9	98.1	1.8	1.8	0.3	ND	102
63	91.7	89.9	87.7	2.2	1.8	0.4	ND	92.2
91	94.9	92.1	89.2	2.9	2.8	0.6	ND	95.5
120	94.6	91.4	88.3	3.1	3.2	1.0	ND	95.6

				埴壌土①				
公 文 ∴ 屈			土壌				揮発性	
経過 日数			抽出画分		抽出残渣	CO_2	有機	合計
H 300			常温抽出	マイクロ波抽出	1田山7久祖		物質	
0	100	99.2	96.6	2.5	0.8	_	_	100
2	99.9	96.9	93.4	3.5	3.0	ND	ND	100
7	100.0	95.5	93.1	2.3	4.5	ND	ND	100
14	100.0	93.8	88.8	4.9	6.2	0.1	ND	100
28	99.2	92.4	86.9	5.4	6.8	0.1	ND	99.3
42	98.9	90.7	86.2	4.5	8.2	0.2	ND	99.2
63	96.1	87.2	81.1	6.1	8.9	0.3	ND	96.4
91	97.8	84.2	76.5	7.8	13.6	0.6	ND	98.4
120	96.7	84.4	76.3	8.1	12.3	0.7	ND	97.4
				壤質砂土				
経過			土壌				揮発性	
日数			抽出画分		抽出残渣	CO_2	有機	合計
F 3/			常温抽出	マイクロ波抽出	7四四/久祖		物質	
0	100	100	99.5	0.4	_	_	_	100
2	93.9	93.4	93.1	0.3	0.5	0.1	ND	94.0
7	93.5	92.5	91.9	0.6	1.0	0.1	ND	93.6
21	94.4	92.7	91.4	1.3	1.7	0.1	ND	94.5
30	93.9	92.2	90.6	1.5	1.7	0.1	ND	94.0
42	92.7	90.7	89.3	1.5	2.0	0.3	ND	93.1
63	93.8	91.1	89.2	1.9	2.7	0.4	ND	94.2
91	93.3	90.8	88.6	2.2	2.5	0.6	ND	94.0
120	92.6	89.1	87.0	2.1	3.5	0.8	ND	93.4
				埴壌土②				
経過			土壌				揮発性	
日数			抽出画分		抽出残渣	CO_2	有機	合計
H 300			常温抽出	マイクロ波抽出	1田山7久(山		物質	
0	100	99.7	99.0	0.7	0.3		_	100
2	95.3	93.4	91.6	1.8	1.9	0.1	ND	95.4
7	95.8	91.4	88.5	2.9	4.4	0.1	ND	95.9
21	93.8	86.8	82.1	4.8	7.0	0.2	ND	94.0
30	95.5	86.6	81.6	5.0	8.9	0.1	ND	95.6
42	93.2	82.3	76.9	5.4	10.9	0.3	ND	93.6
63	94.1	80.5	75.2	5.2	13.6	0.5	ND	94.6
91	93.5	77.2	72.2	4.9	16.3	0.8	ND	94.2
120	94.1	75.2	70.2	5.1	18.9	2.1	ND	96.1

-:試料採取せず ND:検出限界未満

抽出画分中のテトラニリプロール及び分解物の定量結果を表 2.5-7 に示す。

テトラニリプロールは経時的に減少し、120 日後に $24\sim51$ % TAR であった。主要代謝物は代謝物 M11 及び代謝物 M22 であり、経時的に増加し、120 日後にそれぞれ $9.6\sim35$ % TAR 及び $8.5\sim33$ % TAR であった。その他に代謝物 M10、代謝物 M14 及び代謝物 M29 が検出されたが、それぞれ最大で 4.9 % TAR、4.3 % TAR 及び 2.8 % TAR であった。

表 2.5-7: 抽出画分中のテトラニリプロール及び分解物の定量結果(%TAR)

表 2.5-7: 抽出画分中のアトフニリプロール及び分解物の定量結果 (%TAR)									
			シルト質	[壤土①	T	1			
経過 日数	テトラニリフ゜ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物		
0	98.7	ND	ND	ND	1.1	ND	ND		
2	89.5	0.5	0.5	ND	1.8	ND	ND		
7	85.9	1.5	1.0	ND	3.1	ND	ND		
14	80.5	2.5	3.0	ND	4.5	ND	ND		
28	74.5	2.8	5.4	0.4	7.7	ND	0.5		
42	66.1	2.8	9.2	1.8	8.9	ND	ND		
63	57.9	1.7	12.1	3.1	10.4	ND	ND		
91	50.1	2.2	15.5	3.2	11.8	0.3	ND		
120	42.8	1.6	18.7	4.3	13.9	0.5	ND		
			シルト質	[壤土②					
経過 日数	テトラニリフ゜ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物		
0	98.8	ND	ND	ND	0.9	ND	ND		
2	89.0	1.7	0.3	ND	2.3	ND	ND		
7	83.8	1.8	3.4	ND	3.3	ND	ND		
14	77.5	2.1	6.1	ND	5.3	ND	ND		
28	71.2	1.9	9.4	ND	8.0	ND	ND		
42	55.4	1.8	14.7	1.6	10.3	0.8	ND		
63	49.0	1.4	18.8	2.2	12.4	0.9	ND		
91	37.3	1.2	24.2	2.9	14.8	2.0	ND		
120	32.2	0.9	26.7	3.3	17.6	2.8	ND		
			砂均	襄土					
経過 日数	テトラニリフ゜ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物		
0	98.8	ND	0.4	ND	0.6	ND	ND		
2	91.7	ND	ND	ND	2.8	ND	ND		
7	87.6	1.8	ND	ND	5.4	ND	ND		
14	82.2	2.4	0.8	ND	8.1	ND	ND		
28	75.2	3.6	3.0	ND	11.0	ND	ND		
42	74.9	4.7	5.9	1.2	13.3	ND	ND		
63	63.6	4.1	8.4	0.3	13.6	ND	ND		
91	56.2	4.9	14.3	ND	15.7	ND	1.0		
120	50.7	4.2	16.8	0.5	18.7	0.4	ND		

			埴壌	土①			
経過 日数	テトラニリフ゜ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物
0	98.2	ND	ND	ND	1.0	ND	ND
2	93.6	ND	1.8	ND	1.6	ND	ND
7	88.2	2.4	1.0	ND	2.7	1.1	ND
14	82.5	2.8	5.0	ND	3.4	ND	ND
28	74.4	3.0	9.8	ND	5.2	ND	ND
42	67.7	3.2	13.2	ND	6.7	ND	ND
63	56.5	2.5	18.0	1.4	8.7	ND	ND
91	47.9	2.3	21.7	2.6	9.7	ND	ND
120	42.7	2.0	25.2	3.1	10.2	1.2	ND
			壌質	砂土			
経過 日数	テトラニリフ。ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物
0	98.1	ND	0.2	0.2	1.4	ND	ND
2	90.1	0.2	0.8	0.1	2.2	ND	ND
7	77.9	1.7	ND	ND	12.7	0.2	ND
21	72.9	2.6	1.8	ND	15.4	ND	ND
30	70.0	3.7	1.8	0.4	16.4	ND	ND
42	63.7	3.3	3.7	ND	20.0	ND	ND
63	56.6	4.1	8.0	ND	22.5	ND	ND
91	45.6	3.5	9.2	ND	30.5	ND	2.1
120	39.8	2.6	9.6	ND	33.4	0.3	3.3
			埴壌	土②			
経過 日数	テトラニリフ [°] ロール	代謝物 M10	代謝物 M11	代謝物 M14	代謝物 M22	代謝物 M29	未同定 分解物
0	98.7	ND	ND	ND	1.0	ND	ND
2	88.4	2.1	0.3	1.5	1.1	ND	ND
7	80.6	2.5	4.7	0.9	2.8	ND	ND
21	63.8	2.6	15.4	ND	5.0	ND	ND
30	59.0	2.7	20.7	ND	4.2	ND	ND
42	48.9	2.0	24.0	0.7	5.9	0.8	ND
63	39.9	2.1	30.2	2.3	6.0	ND	ND
91	30.2	0.8	33.5	2.8	7.6	2.2	ND
120 ND: 絵出限界	23.5	1.2	34.8	2.8	8.5	2.8	1.5

ND:検出限界未満

好気的土壌中におけるテトラニリプロールの 50%消失期 (DT_{50}) を表 2.5-8 に示す。 テトラニリプロールの DT_{50} は DFOP モデルを用いて算出したところ、 $46\sim122$ 日であった。

表 2.5-8: 好気的土壌中におけるテトラニリプロールの DT50

シルト質壌土①	シルト質壌土②	砂壌土	埴壌土①	壤質砂土	埴壌土②
102 日	64.0 日	122 日	92.6 日	83.9 日	45.7 日

(3) 好気的土壌中動態のまとめ

好気的条件下におけるテトラニリプロールの主要な分解経路はシアノ基の加水分解によ

る代謝物 M11 の生成、ピリミジノン環の形成による代謝物 M22 の生成、代謝物 M11 の脱メチル化による代謝物 M14 の生成並びに代謝物 M11 のピリミジノン環形成又は代謝物 M22 のシアノ基の加水分解による代謝物 M29 の生成と考えられた。その他にテトラニリプロールのシアノ基の加水分解過程で代謝物 M10 並びに代謝物 M14 及び代謝物 M29 のさらなる分解により代謝物 M30 が生成すると考えられた。テトラニリプロール及びその分解物は土壌成分との結合性残留物となり、一部は CO_2 まで無機化すると考えられた。

2.5.2.1.3 嫌気的土壌

砂壌土 (ドイツ、pH 6.3 (CaCl₂)、OC 1.6%)、シルト質壌土 (ドイツ、pH 6.1 (CaCl₂)、OC 1.8%) 及び壌土 (ドイツ、pH 7.1 (CaCl₂)、OC 4.9%) に、それぞれ[pyc-¹⁴C]テトラニリプロールを乾土あたり 0.5 mg/kg となるように添加し、好気条件、20±2 °C、暗所で 29 (壌土では 15) 日間インキュベートした後、湛水条件で 121 (壌土では 119) 日間インキュベートした。好気条件の揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。嫌気条件の揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。嫌気条件の揮発性物質はソーダ石灰及び燃焼装置に吸引して捕集した。砂壌土及びシルト質壌土では処理 0、29 (湛水前及び湛水後)、32、37、44、59、91、120 及び 150 日後に、壌土では処理 0、15 (湛水前及び湛水後)、18、22、29、45、73、105 及び 134 日後に試料を採取した。

水は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び TLC で同定した。

土壌はアセトニトリル/水(4/1(v/v))で常温抽出後、アセトニトリル/水(4/1(v/v))及びアセトンでマイクロ波抽出(70 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ し、LSC で放射能を測定した。抽出画分を混合後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び TLC で同定した。抽出残渣は燃焼後、LSC で放射能を測定した。

ソーダ石灰は 18%塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で 放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。燃焼装置から生じた CO_2 はシンチレーションカクテルで捕集して LSC で放射能を測定した。

水中及び土壌中の放射性物質濃度の分布を表 2.5-9 に示す。

砂壌土及びシルト質壌土においては、水中の放射性物質は湛水直後に 14~15 %TAR であり、緩やかに増加減少し、150 日後に 14 %TAR であった。土壌中の放射性物質は湛水直後に 85~86 %TAR であり、緩やかに減少増加し、150 日後に 86~87 %TAR であった。CO2 の湛水後の増加及び揮発性有機物質の生成は認められなかった。土壌常温抽出画分中の放射性物質は、湛水直後に 78~80 %TAR であり、緩やかに減少し、150 日後に 70~73 %TAR であった。土壌マイクロ波抽出画分中の放射性物質は緩やかに増加し、150 日後に 5.6~6.0 %TAR であった。土壌抽出残渣中の放射性物質は緩やかに増加し、150 日後に 7.8~10 %TAR であった。 集土においては、水中の放射性物質は湛水直後に 21 %TAR であり、緩やかに減少し、134 日後に 9.9 %TAR であった。土壌中の放射性物質は湛水直後に 82 %TAR であり、緩やかに増加し、134 日後に 93 %TAR であった。

られなかった。土壌常温抽出画分中の放射性物質は湛水後、74~78%TARの範囲で推移した。マイクロ波抽出画分中の放射性物質は緩やかに増加して134日後に7.4%TARであった。土壌抽出残渣中の放射性物質は緩やかに増加し、134日後に7.6%TARであった。

表 2.5-9: 水及び土壌中の放射性物質濃度の分布 (%TAR)

表 2.5-9	:水及び土	:壌中の放射	性物質濃度	度の分布(9	%TAR)				
				砂壌土					
∀ ∀ \ □				土壌					
経過 日数	水			抽出画分		抽山硅冰	CO_2	合計	
日奴				常温抽出	マイクロ波抽出	抽出残渣			
0	_	99.5	99.2	98.0	1.3	0.2	_	99.4	
29 (湛水前)	_	99.8	96.6	93.9	2.7	3.2	0.3	100	
29 (湛水後)	15.3	85.6	83.1	80.4	2.7	2.5	0.3	101	
32	18.3	80.2	77.7	74.9	2.8	2.5	0.3	98.8	
37	19.6	80.5	78.2	75.2	3.0	2.3	0.3	100	
44	19.3	78.5	75.8	72.3	3.4	2.8	0.3	98.1	
59	18.2	78.8	73.9	68.0	5.9	4.9	0.3	97.3	
91	16.3	82.6	76.5	70.2	6.3	6.1	0.3	99.2	
120	15.0	83.9	76.7	71.1	5.5	7.3	0.3	99.2	
150	13.8	86.5	78.8	73.1	5.6	7.8	0.3	101	
			રે	/ルト質壌土					
(ez.) E		土壌							
経過 日数	水	水		抽出画分			CO_2	合計	
日奴				常温抽出	マイクロ波抽出	抽出残渣			
0	_	102	102	100	1.5	0.3	_	102	
29 (湛水前)	_	97.9	93.2	89.5	3.7	4.7	0.4	98.3	
29 (湛水後)	14.2	84.6	81.2	78.1	3.1	3.4	0.4	99.2	
32	17.4	83.1	79.6	76.3	3.3	3.5	0.4	101	
37	17.0	79.4	76.5	73.1	3.4	2.9	0.4	96.8	
44	17.7	79.2	75.5	71.8	3.8	3.6	0.4	97.3	
59	17.9	81.5	76.3	69.6	6.7	5.2	0.4	99.8	
91	17.2	81.1	73.0	66.2	6.7	8.2	0.4	98.7	
120	15.4	85.1	75.3	68.8	6.5	9.8	0.4	101	
150	13.8	86.8	76.4	70.4	6.0	10.4	0.4	101	

	壤 土										
477 NB	水			土壌							
経過 日数				抽出画分		抽出残渣	CO_2	合計			
日奴				常温抽出	マイクロ波抽出	抽山 ⁄太值					
0	ı	102	101	98.4	2.9	0.9	_	102			
15 (湛水前)	-	99.3	93.8	90.0	3.8	5.5	0.1	99.4			
15 (湛水後)	20.6	82.1	79.0	76.4	2.7	3.0	0.1	103			
18	18.3	83.8	80.8	78.3	2.5	3.0	0.1	102			
22	18.4	81.4	77.7	74.6	3.1	3.7	0.1	100			
29	17.8	82.3	77.7	75.5	2.2	4.6	0.1	100			
45	16.6	85.9	78.7	75.6	3.1	7.2	0.1	103			
73	11.8	89.7	83.5	73.8	9.7	6.2	0.1	102			
105	9.7	91.8	84.8	77.5	7.2	7.1	0.1	102			
134	9.9	92.8	85.3	77.8	7.4	7.6	0.1	103			

- : 試料採取せず

抽出画分中のテトラニリプロール及び分解物の定量結果を表 2.5-10 に示す。

砂壌土及びシルト質壌土においては、テトラニリプロールは湛水直後に $60\sim62\,\%$ TAR であり、経時的に減少し、150 日後に $29\sim32\,\%$ TAR であった。代謝物 M11 は湛水直後に $15\sim16\,\%$ TAR であり、緩やかに増加減少し、91 日後に $20\sim21\,\%$ TAR、150 日後に $18\sim19\,\%$ TAR であった。代謝物 M22 は湛水直後に $11\sim12\,\%$ TAR であり、経時的に増加し、150 日後に $34\sim35\,\%$ TAR であった。代謝物 M29 は湛水後、緩やかに増加し、150 日後に $4.1\sim4.6\,\%$ TAR であった。

壌土においては、テトラニリプロールは湛水直後に 54 % TAR であり、経時的に減少し、134 日後に 23 % TAR であった。代謝物 M11 は湛水直後に 35 % TAR であり、緩やかに増加減少し、45 日後に 44 % TAR、134 日後に 38 % TAR であった。代謝物 M22 は湛水直後に 6.1 % TAR であり、経時的に増加し、134 日後に 18 % TAR であった。代謝物 M29 は経時的に増加し、134 日後に 11 % TAR であった。

表 2.5-10:抽出画分中のテトラニリプロール及び分解物の定量結果(%TAR)

	砂壤土									
経過日数	テトラニリプロール	代謝物 M11	代謝物 M22	代謝物 M29	未同定分解物					
0	99.2	ND	ND	ND	ND					
29(湛水前)	61.3	15.0	12.6	ND	7.7					
29(湛水後)	62.3	15.6	12.3	ND	6.7					
32	59.4	16.6	12.9	ND	5.8					
37	58.5	18.2	14.5	ND	4.5					
44	53.9	19.2	15.1	ND	4.9					
59	48.0	19.6	17.9	1.0	3.6					
91	41.5	20.0	24.5	2.2	2.6					
120	34.8	18.6	30.4	3.1	1.9					
150	31.7	18.4	34.7	4.1	2.3					

シルト質壌土										
経過日数	テトラニリプロール	代謝物 M11	代謝物 M22	代謝物 M29	未同定分解物					
0	102	ND	ND	ND	ND					
29(湛水前)	60.6	13.5	11.2	ND	7.9					
29(湛水後)	59.7	15.0	11.3	ND	8.1					
32	58.8	16.6	12.2	ND	7.9					
37	56.1	17.2	12.9	ND	6.4					
44	52.5	18.6	14.6	0.8	6.1					
59	47.4	19.8	19.5	1.4	5.1					
91	38.7	21.4	22.3	2.2	4.3					
120	34.4	20.1	27.4	3.2	3.0					
150	29.1	19.2	33.7	4.6	2.5					
		1	壌土							
経過日数	テトラニリプロール	代謝物 M11	代謝物 M22	代謝物 M29	未同定分解物					
0	101	ND	ND	ND	ND					
15(湛水前)	51.7	31.2	5.9	ND	4.3					
15(湛水後)	53.5	34.6	6.1	0.7	4.6					
18	48.3	38.6	6.6	1.0	4.4					
22	43.0	40.1	7.8	1.2	4.1					
29	38.3	43.5	7.7	1.5	4.5					
45	33.1	44.2	11.0	2.8	3.4					
73	28.8	43.8	14.0	5.8	2.5					
105	25.9	40.2	15.1	9.0	3.3					
134	22.6	38.2	17.6	11.2	4.5					

ND: 検出限界未満

嫌気的土壌中におけるテトラニリプロールの 50%消失期 (DT_{50}) を表 2.5-11 に示す。 テトラニリプロールの DT_{50} は FOMC モデルを用いて算出したところすると、 $72\sim127$ 日であった。

表 2.5-11: 嫌気的土壌中におけるテトラニリプロールの DT50*

砂壤土	シルト質壌土	壤土
127 日	117 日	71.8 日

^{*:} 湛水条件となった処理 29 (壌土では 15) 日後以降のデータを用いて算出した。

嫌気的条件下におけるテトラニリプロールの主要な分解経路はピリミジノン環の形成による代謝物 M22 の生成、シアノ基の加水分解による代謝物 M11 の生成並びに代謝物 M11 のピリミジノン環形成又は代謝物 M22 のシアノ基の加水分解による代謝物 M29 の生成と考えられた。テトラニリプロール及びその分解物は土壌成分との結合性残留物となると考えられた。

2.5.2.2 土壌残留

(1) 水田

テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 を分析対象として実施した水田ほ場土壌残留試験の報告書を受領した。

壊土 (茨城、pH 5.1 (KCl)、OC 3.6%) 及びシルト質壌土 (高知、pH 5.5 (KCl)、OC 1.4%)

の水田ほ場(裸地)に、テトラニリプロール 1.5%粒剤を 225 g ai/ha (1.5 kg/10 a、1 回) 湛水散布した。壌土では処理 0、1、3、7、14、30、60、90、120、180、270 及び 350 日後に、シルト質壌土では処理 0、1、3、7、14、30、63、91、120、178、269 及び 360 日後に土壌を採取した。分析法は 2.2.4.1 に示した水田土壌分析法を用いた。

試験結果の概要を表 2.5-12 に示す。

テトラニリプロールは経時的に減少し、壌土では 350 日後に 0.025 mg/kg、シルト質壌土では 360 日後に 0.016 mg/kg であった。代謝物 M22 は経時的に増加後、緩やかに減少し、壌土では 60 日後に 0.049 mg/kg、350 日後に 0.041 mg/kg、シルト質壌土では 30 日後に 0.071 mg/kg、360 日後に 0.064 mg/kg であった。代謝物 M20、代謝物 M21 及び代謝物 M43 は試験期間をとおして定量限界(0.005 mg/kg)未満であった。

水田土壌中における総テトラニリプロール*の DT_{50} は DFOP モデルを用いて算定したところ、壌土で 9.3 日、シルト質壌土で 26 日であった。

*水田土壌中の評価対象化合物であるテトラニリプロール及び代謝物 M22 の合量値

表 2.5-12: 水田ほ場における土壌残留試験結果概要 (mg/kg) *

試験土壌	経過日数	テトラニリフ゜ロール	代謝物 M22	で	代謝物 M20	代謝物 M21	代謝物 M43
	0	0.821	0.012	0.833	< 0.005	< 0.005	< 0.005
	1	0.876	0.016	0.892	< 0.005	< 0.005	< 0.005
	3	0.459	0.014	0.473	< 0.005	< 0.005	< 0.005
	7	0.612	0.037	0.649	< 0.005	< 0.005	< 0.005
	14	0.220	0.037	0.257	< 0.005	< 0.005	< 0.005
松工	30	0.096	0.044	0.140	< 0.005	< 0.005	< 0.005
壌土	60	0.077	0.049	0.126	< 0.005	< 0.005	< 0.005
	90	0.040	0.043	0.083	< 0.005	< 0.005	< 0.005
	120	0.026	0.039	0.065	< 0.005	< 0.005	< 0.005
	180	0.024	0.037	0.061	< 0.005	< 0.005	< 0.005
	270	0.026	0.045	0.071	< 0.005	< 0.005	< 0.005
	350	0.025	0.041	0.066	< 0.005	< 0.005	< 0.005
	0	0.316	0.006	0.322	< 0.005	< 0.005	< 0.005
	1	0.184	< 0.005	0.189	< 0.005	< 0.005	< 0.005
	3	0.266	0.008	0.274	< 0.005	< 0.005	< 0.005
	7	0.204	0.014	0.218	< 0.005	< 0.005	< 0.005
	14	0.138	0.041	0.179	< 0.005	< 0.005	< 0.005
シルト質	30	0.058	0.071	0.129	< 0.005	< 0.005	< 0.005
壌土	63	0.021	0.060	0.081	< 0.005	< 0.005	< 0.005
	91	0.018	0.058	0.076	< 0.005	< 0.005	< 0.005
	120	0.020	0.064	0.084	< 0.005	< 0.005	< 0.005
	178	0.016	0.047	0.063	< 0.005	< 0.005	< 0.005
	269	0.018	0.064	0.082	< 0.005	< 0.005	< 0.005
* . テトラー !! -	360	0.016	0.064	0.080	< 0.005	< 0.005	< 0.005

^{*:}テトラニリプロール等量換算

(2) 畑地

テトラニリプロール、代謝物 M11、代謝物 M14、代謝物 M22、代謝物 M29 及び代謝物 M30 を分析対象として実施した畑地ほ場土壌残留試験の報告書を受領した。

火山灰壌土 (茨城、pH 5.8 (CaCl₂)、OC 5.3%) 及び沖積壌土 (高知、pH 4.9 (KCl)、OC 1.9%) の畑地ほ場 (裸地) に、テトラニリプロール 18.2%水和剤を 655 g ai/ha (2,500 倍、300 L/10 a、6~8 日間隔 3 回) 土壌表面散布した。壌土では最終処理 0、3、7、14、30、60、90、180、270 及び 360 日後に、シルト質壌土では最終処理 0、3、7、14、29、58、90、181、272 及び 359 日後に土壌を採取した。分析法は 2.2.4.1 に示した畑地土壌分析法を用いた。試験結果の概要を表 2.5-13 に示す。

テトラニリプロールは経時的に減少し、火山灰壌土では 360 日後に 0.056 mg/kg、沖積壌土では 359 日後に 0.050 mg/kg であった。代謝物 M22 は火山灰壌土では経時的に増加し、360 日後に 0.24 mg/kg、沖積壌土では経時的に増加後、緩やかに減少し、58 日後に 0.072 mg/kg、359 日後に 0.043 mg/kg であった。代謝物 M11、代謝物 M14、代謝物 M29 及び代謝物 M30 はそれぞれ最大で 0.021 mg/kg、0.011 mg/kg、0.026 g/kg 及び 0.006 mg/kg であった。畑地土壌中における総テトラニリプロール*の DT50 は DFOP モデルを用いて算定したところ、火山灰壌土で 43 日、沖積壌土で 49 日であった。

*土壌中の評価対象化合物であるテトラニリプロール及び代謝物 M22 の合量値

表 2.5-13: 畑地ほ場における土壌残留試験結果概要 (mg/kg) *

				テトラニリフ。ロール				
試験土壌	経過日数	テトラニリフ゜ロール	代謝物 M22	+	代謝物 M11	代謝物 M14	代謝物 M29	代謝物 M30
				代謝物 M22				
	0	0.722	0.095	0.817	0.006	< 0.005	< 0.005	< 0.005
	3	0.668	0.128	0.796	0.011	< 0.005	< 0.005	< 0.005
	7	0.580	0.173	0.753	0.014	< 0.005	< 0.005	< 0.005
	14	0.459	0.194	0.653	0.015	< 0.005	< 0.005	< 0.005
火山灰	30	0.288	0.202	0.490	0.021	0.010	< 0.005	< 0.005
壌土	60	0.126	0.220	0.346	0.020	0.011	0.009	< 0.005
	90	0.092	0.216	0.308	0.006	0.006	0.014	0.005
	180	0.062	0.200	0.262	< 0.005	< 0.005	0.014	0.005
	270	0.051	0.210	0.261	< 0.005	< 0.005	0.016	0.005
	360	0.056	0.240	0.296	< 0.005	< 0.005	0.026	0.006
	0	0.502	0.021	0.523	< 0.005	< 0.005	< 0.005	< 0.005
	3	0.448	0.021	0.469	< 0.005	< 0.005	< 0.005	< 0.005
	7	0.463	0.033	0.496	0.005	< 0.005	< 0.005	< 0.005
	14	0.396	0.039	0.435	0.005	< 0.005	< 0.005	< 0.005
沖積	29	0.291	0.052	0.343	0.007	< 0.005	< 0.005	< 0.005
壤土	58	0.174	0.072	0.246	0.006	< 0.005	< 0.005	< 0.005
	90	0.097	0.049	0.146	< 0.005	< 0.005	< 0.005	< 0.005
	181	0.058	0.043	0.101	< 0.005	< 0.005	< 0.005	< 0.005
	272	0.064	0.046	0.110	< 0.005	< 0.005	< 0.005	< 0.005
	359	0.050	0.043	0.093	< 0.005	< 0.005	< 0.005	< 0.005

^{*:}テトラニリプロール等量換算

2.5.2.3 土壤吸着

[pyc-¹⁴C]テトラニリプロール及びフェニル-カルバモイル基位の炭素を ¹⁴C で標識したテトラニリプロール (以下「[phc-¹⁴C]テトラニリプロール」という。)を用いて実施した土壌吸着試験の報告書を受領した。

(1) ドイツ土壌

ドイツ 4 土壌について、 $[pyc^{-14}C]$ テトラニリプロールを用いて、 20 ± 1 $^{\circ}$ C、暗条件で土壌 吸着試験を実施し、Freundlich の吸着平衡定数を求めた。

試験土壌の特性を表 2.5-14 に、Freundlich の吸着平衡定数を表 2.5-15 に示す。

表 2.5-14: 試験土壌の特性

採取地	ドイツ国①	ドイツ国②	ドイツ国③	ドイツ国④							
土性 (USDA 法)	壤質砂土	シルト質壌土	シルト質壌土	砂壤土							
pH (CaCl ₂)	6.2	6.4	5.3	7.3							
有機炭素含有量 (OC%)	1.8	2.7	2.7	5.1							

表 2.5-15: 試験土壌における Freundlich の吸着平衡定数

採取地	ドイツ国①	ドイツ国②	ドイツ国③	ドイツ国④
吸着指数 (1/n)	0.897	0.908	0.912	0.898
K^{ads} F	3.80	6.81	5.27	10.2
決定係数 (r²)	0.998	1.00	1.00	0.999
K ^{ads} Foc	211	252	195	200

(2) 国内土壤

国内 2 土壌について、 $[pyc-^{14}C]$ テトラニリプロールを用いて、 20 ± 2 °C、暗条件で土壌吸着試験を実施し、Freundlich の吸着平衡定数を求めた。

試験土壌の特性を表 2.5-16 に、Freundlich の吸着平衡定数を表 2.5-17 に示す。

表 2.5-16: 試験土壌の特性

採取地	熊本*	北海道
土性 (USDA 法)	壤土	埴土
pH (CaCl ₂)	5.8	4.6
有機炭素含有量 (OC%)	5.7	2.9

^{*:}火山灰土壌

表 2.5-17: 試験土壌における Freundlich の吸着平衡定数

採取地	熊本	北海道
吸着指数 (1/n)	0.912	0.896
K^{ads}_F	4.80	3.27
決定係数 (r²)	0.999	0.999
K ^{ads} Foc	84.1	113

(3) 米国土壌

米国 3 土壌について、 $[phc^{-14}C]$ テトラニリプロールを用いて、 20 ± 2 $^{\circ}C$ 、暗条件で土壌吸着試験を実施し、Freundlich の吸着平衡定数を求めた。

試験土壌の特性を表 2.5-18 に、Freundlich の吸着平衡定数を表 2.5-19 に示す。

表 2.5-18: 試験土壌の特性

採取地	米国①	米国②	米国③*
土性 (USDA 法)	シルト質壌土	砂壤土	シルト質埴壌土
pH (CaCl ₂)	6.5	6.2	7.5
有機炭素含有量 (OC%)	1.8	0.90	0.34

^{*:}底質土壌

表 2.5-19: 試験土壌における Freundlich の吸着平衡定数

採取地	米国①	米国②	米国③
吸着指数 (1/n)	0.938	0.986	0.977
$\mathbf{K}^{\mathrm{ads}}$ F	7.4	1.2	6.5
決定係数 (r²)	0.999	0.994	0.998
K ^{ads} Foc	411	133	1,920

2.5.3 水中における動態

[pyc-¹⁴C]テトラニリプロール及びピリジン環の2位の炭素を¹⁴C で標識したテトラニリプロール (以下「[pyr-2-¹⁴C]テトラニリプロール」という。)を用いて実施した加水分解動態試験及び水中光分解動態試験の報告書を受領した。また、非標識の代謝物 M22 を用いて実施した水中光分解性に関する試験の報告書を受領した。

*: ¹⁴C 標識の位置

2.5.3.1 加水分解

pH 4(酢酸緩衝液)、pH 7(トリス緩衝液)及び pH 9(ホウ酸緩衝液)の各滅菌緩衝液を用い、[pyc-¹⁴C]テトラニリプロールの試験溶液(0.3 mg/L)を調製し、25 $^{\circ}$ C、30 日間、暗所でインキュベートした。処理 0、0.12(pH 9 のみ)、0.25(pH 9 のみ)、1、2.2、7、14、21 及び 30 日後に試料を採取した。

緩衝液は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び TLC で同定した。

加水分解によるテトラニリプロール及び分解物の定量結果を表 2.5-20 に示す。

25 °Cにおいて、テトラニリプロールは経時的に減少し、30 日後に pH4 で 90 % TAR、pH7 で 56 % TAR、pH9 で 1.8 % TAR であった。主要分解物は代謝物 M22 であり、経時的に増加して 30 日後に pH4 で 6.2 % TAR、pH7 で 38 % TAR、pH9 で 97 % TAR であった。

衣 2.3-2	表 2.3-20 . 加小力解によるノトノーサノロール及い力牌物の足重指未(% IAK)									
経過		pH 4			pH 7			рН 9		
日数	テトラニリ フ゜ロール	代謝物 M22	合計	テトラニリ フ゜ロール	代謝物 M22	合計	テトラニリ フ゜ロール	代謝物 M22	合計	
0	100	ND	100	100	ND	100	97.2	2.8	100	
0.12	_	_	_	_	_	_	87.5	12.3	99.8	
0.25	_	_	_	_	_	_	80.7	22.5	103	
1	92.7	ND	92.7	90.5	1.7	92.2	36.9	62.2	99.1	
2.25	94.2	ND	94.2	91.1	3.8	94.9	13.2	86.3	99.6	
7	94.0	1.4	95.4	84.9	10.6	95.6	2.7	97.4	100	
14	93.1	2.4	95.6	77.0	19.9	96.9	2.5	98.7	101	
21	90.8	4.6	95.4	64.3	28.3	92.6	2.2	96.5	98.7	
30	89.6	6.2	95.8	56.5	38.4	94.9	1.8	97.4	99.2	

表 2.5-20:加水分解によるテトラニリプロール及び分解物の定量結果(%TAR)

- : 試料採取せず ND: 検出限界未満

緩衝液中のテトラニリプロールの加水分解による DT50 を表 2.5-21 に示す。

テトラニリプロールの DT_{50} は SFO モデルにより算定したところ、pH4 では 288 日、pH7 では 39 日、pH9 では 18 時間であった。

表 2.5-21: 緩衝液中におけるテトラニリプロールの加水分解による DT50

pH 4	рН 7	рН 9
288 日	38.8 日	0.77 日

緩衝液中のテトラニリプロールは pH が高くなるほど不安定であり、ピリミジノン環の形成により代謝物 M22 が生成すると考えられ、代謝物 M22 はいずれの pH においても安定であると考えられた。

2.5.3.2 水中光分解

2.5.3.2.1 テトラニリプロールの水中光分解

(1)緩衝液

滅菌酢酸緩衝液(pH4)を用い、[pyc-¹⁴C]テトラニリプロールの試験溶液(0.5 mg/L)を 調製し、25 $^{\circ}$ Cで UV フィルター (<290 nm カット) 付きキセノンランプ (光強度: 694 W/m²、波長範囲: 300~800 nm) を 11 日間連続照射した。揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。照射開始 0、1、2、4、7、9 及び 11 日後に試料を採取した。

緩衝液は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び核磁気共鳴(NMR)で同定した。ソーダ石灰は 18%塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。

緩衝液中のテトラニリプロール及び分解物の定量結果を表 2.5-22 に示す。

テトラニリプロールは経時的に減少し、11 日後に 13% TAR であった。主要分解物は代謝物 M20 であり、経時的に増加し、11 日後に 73% TAR であった。 CO_2 の生成は 0.4% TAR 以下であった。揮発性有機物質の生成は認められなかった。

暗所区では、テトラニリプロールは 11 日後に 96 %TAR であり、顕著な分解は認められなかった。

表 2.5-22: 緩衝液中のテトラニリプロール及び分解物の定量結果 (%TAR)

経過		暗所区				
日数	テトラニリフ゜ロール	代謝物 M20	未同定分解物*	CO_2	合計	テトラニリフ゜ロール
0	99.6	< 0.1	< 0.1	_	100	99.6
1	81.8	18.1	< 0.1	< 0.1	99.9	102
2	66.2	30.2	2.4	< 0.1	98.9	101
4	42.6	53.4	4.6	0.1	101	102
7	23.6	64.2	9.1	0.3	97.1	101
9	15.7	68.0	13.1	0.3	97.1	98.1
11	13.2	72.7	12.5	0.4	98.8	96.3

- : 試料採取せず *:個々の成分は7.0%TAR以下

緩衝液中におけるテトラニリプロールの光照射による DT50 は SFO モデルにより算定し

たところ、3.4 (東京春換算 24) 日であった。

(2) 自然水 ([pyc-14C]テトラニリプロール)

滅菌自然水(ドイツ、河川水、pH 8.0)を用い、 $[pyc^{-14}C]$ テトラニリプロールの試験溶液 (0.5 mg/L) を調製し、 25 ± 1 $^{\circ}$ $^{\circ}$

自然水は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び NMR で同定した。 ソーダ石灰は 18 %塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。

自然水中のテトラニリプロール及び分解物の定量結果を表 2.5-23 に示す。

テトラニリプロールは経時的に減少し、10 日後に 1.2 %TAR であった。主要分解物は代謝物 M21、代謝物 M22 及び代謝物 M43 であり、それぞれ最大で 37 %TAR、34 %TAR 及び 18 %TAR であった。その他に代謝物 M34 が生成し、最大で 7.2 %TAR であった。 CO_2 は経時的に増加し、10 日後に 11 %TAR であった。揮発性有機物質の生成は認められなかった。暗所区では、テトラニリプロールは経時的に減少し、10 日後に 4.1 %TAR であった。主要分解物は代謝物 M22 であり、経時的に増加し、10 日後に 95 %TAR であった。代謝物 M21、代謝物 M34、代謝物 M43 及び CO_2 の生成は認められなかった。

表 2.5-23: 自然水中のテトラニリプロール及び分解物の定量結果 (%TAR)

	照射区								
経過 日数	テトラニリ フ゜ロール	代謝物 M21	代謝物 M22	代謝物 M34	代謝物 M43	未同定 分解物*	CO ₂	揮発性 有機物質	合計
0	97.2	< 0.1	2.5	< 0.1	< 0.1	< 0.1	_	_	99.7
0.25	55.7	1.8	34.5	0.8	< 0.1	3.3	< 0.1	< 0.1	96.1
1	38.1	17.6	28.6	3.7	< 0.1	7.0	0.1	< 0.1	95.2
2	15.0	37.2	20.1	7.2	1.9	15.6	0.7	< 0.1	98.0
4	1.9	18.0	1.5	6.9	11.4	50.7	5.3	< 0.1	95.9
7	1.4	4.6	< 0.1	5.8	17.9	56.3	8.9	< 0.1	94.9
10	1.2	1.3	< 0.1	6.1	18.0	51.4	10.9	< 0.1	89.2
				暗月	所区				
経過 日数	テトラニリ フ゜ロール	代謝物 M21	代謝物 M22	代謝物 M34	代謝物 M43	未同定 分解物**	CO ₂	揮発性 有機物質	合計
0	97.2	< 0.1	2.5	< 0.1	< 0.1	< 0.1	_	_	99.7
0.25	49.3	< 0.1	45.7	< 0.1	< 0.1	1.0	< 0.1	< 0.1	96.0
1	17.6	< 0.1	73.7	< 0.1	< 0.1	0.8	< 0.1	< 0.1	92.2
2	10.1	< 0.1	87.3	< 0.1	< 0.1	0.9	< 0.1	0.1	98.4
4	3.6	< 0.1	91.6	< 0.1	< 0.1	0.7	< 0.1	< 0.1	96.1
7	4.2	< 0.1	94.5	< 0.1	< 0.1	1.4	< 0.1	< 0.1	100
10	4.1	< 0.1	95.0	< 0.1	< 0.1	1.3	< 0.1	< 0.1	100

テトラニリプロール - II. 審査報告 - 2. 審査結果

-:試料採取せず

*:個々の成分は9.4%TAR以下 **:個々の成分は1.0%TAR以下

自然水中におけるテトラニリプロールの光照射による DT50 を表 2.5-24 に示す。

テトラニリプロールの DT_{50} は、DFOP モデルにより算定したところ、照射区では 12 時間、暗所区では 6.2 時間であった。

表 2.5-24: 自然水中におけるテトラニリプロールの光照射による DT50

照射区	暗所区
11.7 時間	6.2 時間

(3) 自然水([pyr-2-14C]テトラニリプロール)

滅菌自然水(ドイツ、河川水、pH 8.5)を用い、[pyr-2-1 4 C]テトラニリプロールの試験溶液(0.5 mg/L)を調製し、25±2 $^\circ$ Cで UV フィルター(<290 nm カット)付きキセノンランプ(光強度:666 W/m²、波長範囲:300 $^\circ$ 800 nm)を 11 日間連続照射した。揮発性物質の捕集にはソーダ石灰及びポリウレタンフォーム栓を用いた。照射開始 0、0.25、1、2、4、7及び 11 日後に試料を採取した。

自然水は LSC で放射能を測定後、HPLC で放射性物質を定量し、HPLC、LC-MS、LC-MS-MS 及び TLC で同定した。ソーダ石灰は 18% 塩酸で CO_2 を遊離させ、シンチレーションカクテルで捕集して LSC で放射能を測定した。ポリウレタンフォーム栓は酢酸エチルで抽出し、LSC で放射能を測定した。

自然水中の分解物の定量結果を表 2.5-25 に示す。

テトラニリプロールは経時的に減少し、7日後に0.1%TAR 未満であった。主要分解物は代謝物 M21 及び代謝物 M22 であり、いずれも最大で39%TAR であった。 CO_2 は経時的に増加し、11日後に39%TAR であった。揮発性有機物質は0.2%TAR 以下であった。

暗所区では、テトラニリプロールは経時的に減少し、11 日後に 4.8 % TAR であった。主要分解物は代謝物 M22 であり、経時的に増加して 11 日後に 99 % TAR であった。代謝物 M21 及び CO_2 の生成は認められなかった。

表 2.5-25: 自然水中の分解物の定量結果 (%TAR)

	照射区								
経過 日数	テトラニリ プロール	代謝物 M21	代謝物 M22	未同定 分解物*	CO ₂	揮発性 有機物質	合計		
0	97.7	< 0.1	2.3	< 0.1	_	_	100		
0.25	88.0	2.2	13.1	2.4	0.2	< 0.1	106		
1	43.4	15.9	39.2	3.5	0.8	< 0.1	103		
2	13.2	38.8	22.4	22.7	4.4	0.2	102		
4	1.2	23.0	2.1	56.3	15.5	0.1	98.3		
7	< 0.1	5.7	< 0.1	62.4	27.1	0.1	95.5		
11	< 0.1	0.8	< 0.1	59.0	38.9	0.2	99.2		

	暗所区								
経過 日数	テトラニリ プロール	代謝物 M21	代謝物 M22	未同定 分解物	CO ₂	揮発性 有機物質	合計		
0	97.7	< 0.1	2.3	< 0.1	_	_	100		
0.25	88.6	< 0.1	17.4	< 0.1	< 0.1	< 0.1	106		
1	42.2	< 0.1	61.1	< 0.1	< 0.1	0.2	104		
2	10.8	< 0.1	92.6	< 0.1	< 0.1	< 0.1	104		
4	3.8	< 0.1	97.9	< 0.1	< 0.1	0.1	102		
7	4.9	< 0.1	98.8	< 0.1	< 0.1	< 0.1	104		
11	4.8	< 0.1	99.0	1.2	< 0.1	0.1	106		

- : 試料採取せず

*:個々の成分は7.3%TAR以下

自然水中におけるテトラニリプロールの光照射による DT_{50} を表 2.5-26 に示す。 テトラニリプロールの DT_{50} は、SFO モデルにより算定したところ、照射区では 19 時間、

サイフーリフロールの **D1**50 は、**SFO** モノルにより昇足したところ、照射区では **19** 時間、 暗所区では **18** 時間であった。

表 2.5-26: 自然水中におけるテトラニリプロールの光照射による DT50

照射区	暗所区
18.8 時間	18.3 時間

(4) 水中光分解動態のまとめ

水中におけるテトラニリプロールの光照射による主要な分解経路は、オキサジン環形成による代謝物 M20 の生成、加水分解物である代謝物 M22 のピリジン環の脱離による代謝物 M34 の生成、代謝物 M34 のキナゾリノン環の脱離を伴う加水分解による代謝物 M43 の生成であり、その後さらに分解されて CO_2 になると考えられた。

2.5.3.2.2 代謝物 M22 の水中光分解

滅菌リン酸緩衝液(pH 7)を用い、非標識の代謝物 M22 の試験溶液(0.1 mg/L)を調製し、25±1 ℃で UV フィルター(<290 nm カット)付きキセノンランプ(光強度:676 W/m²、波長範囲:300~800 nm)を 30 時間連続照射した。揮発性物質はソーダ石灰及びポリウレタンフォーム栓で捕集した。照射開始 0、2、4、6、8、24 及び 30 時間後に試料を採取した。緩衝液は LC-MS-MS で代謝物 M22 を定量及び同定した。

緩衝液中の代謝物 M22 の定量結果を表 2.5-27 に示す。

代謝物 M22 は経時的に減少し、30 時間後に 0 時間後の濃度の 13 %であった。暗所区では、代謝物 M22 は試験期間をとおして 0 時間後の濃度の $100\sim111$ %であり、分解は認められなかった。

緩衝液中における代謝物 M22 の光照射による DT_{50} は SFO モデルにより算定したところ、0.42 (東京春換算 2.8) 日であった。

経過時間	照射区	暗所区
0	100	100
2	89.7	110
4	79.0	110
6	67.4	110
8	59.8	104
24	16.1	108
30	13.4	111

表 2.5-27: 緩衝液中の代謝物 M22 の定量結果 (0 時間後の濃度に対する割合 (%))

2.5.3.3 水質汚濁性

テトラニリプロール、代謝物 M20、代謝物 M21、代謝物 M22 及び代謝物 M43 を分析対象 として実施した水質汚濁性試験の報告書を受領した。

砂質埴壌土 (pH 4.2 (KCl)、OC 1.8%) 及びシルト質壌土 (pH 4.6 (KCl)、OC 8.6%) の模 擬水田(水稲栽培)に、テトラニリプロール 1.5%粒剤を育苗箱処理した水稲の苗を処理当日 に移植した (75 g/箱、20 箱/10 a、225 g ai/ha)。移植 0、1、2、3、5、7、10 及び 14 日後に田 面水を採取した。分析法は2.2.5.1に示した田面水分析法を用いた。

試験結果概要を表 2.5-28 に示す。

テトラニリプロールは経時的に減少し、7日後に定量限界(0.001 mg/L)未満となった。代 謝物 M22 は経時的に増加減少し、2 日後に 0.008~0.013 mg/L、14 日後に 0.001 mg/L であっ た。代謝物 M21 は試験期間をとおして 0.002 mg/L 未満であった。代謝物 M20 及び代謝物 M43 は試験期間をとおして定量限界(0.001 mg/L)未満であった。

試験土壌	水試料 経過日数 テトラニリプロ		テトラニリフ゜ロール	代謝物 M20	代謝物 M21	代謝物 M22	代謝物 M43
		0	0.078	< 0.001	< 0.001	0.003	< 0.001
		1	0.047	< 0.001	< 0.001	0.006	< 0.001
		2	0.012	< 0.001	0.002	0.013	< 0.001

表 2.5-28: テトラニリプロール 1.5%粒剤を用いた水質汚濁性試験結果 (mg/L*)

		0	0.078	< 0.001	< 0.001	0.003	< 0.001
		1	0.047	< 0.001	< 0.001	0.006	< 0.001
		2	0.012	< 0.001	0.002	0.013	< 0.001
砂質埴壌土	田面水	3	0.004	< 0.001	0.002	0.008	< 0.001
沙貝坦埃上	田山小	5	0.001	< 0.001	0.002	0.005	< 0.001
		7	< 0.001	< 0.001	0.002	0.004	< 0.001
		10	< 0.001	< 0.001	0.001	0.002	< 0.001
		14	< 0.001	< 0.001	0.001	0.001	< 0.001
	田面水	0	0.088	< 0.001	< 0.001	0.002	< 0.001
		1	0.064	< 0.001	< 0.001	0.002	< 0.001
		2	0.024	< 0.001	< 0.001	0.008	< 0.001
シルト質壌土		3	0.010	< 0.001	0.001	0.007	< 0.001
ンルド貝塚上		5	0.001	< 0.001	0.001	0.003	< 0.001
		7	< 0.001	< 0.001	0.001	0.003	< 0.001
		10	< 0.001	< 0.001	< 0.001	0.001	< 0.001
		14	< 0.001	< 0.001	< 0.001	0.001	< 0.001

^{*:}テトラニリプロール等量換算

2.5.3.4 水產動植物被害予測濃度

2.5.3.4.1 第1段階

水産動植物の被害防止に係る農薬登録保留基準値と比較(2.6.2.2 参照)するため、ヨーバルフロアブル(テトラニリプロール 18.2 %水和剤)及びヨーバルトップ箱粒剤(テトラニリプロール 1.5 %粒剤)について、テトラニリプロールの水産動植物被害予測濃度第1段階(水産 PEC_{tierl})を算定 11 した。

その結果、最大となるテトラニリプロールの水産 PEC_{tierl} は、ヨーバルトップ箱粒剤における $0.68 \mu g/L$ であった。

1) 水産動植物被害予測濃度の算定に用いる計算シートは、環境省がホームページにおいて提供している。 (URL: http://www.env.go.jp/water/sui-kaitei/kijun.html)

(1) ヨーバルフロアブル

水田以外使用について申請されている使用方法に基づき、表 2.5-29 に示すパラメータを 用いてテトラニリプロールの水産 PECtierl を算定した結果、0.0040 μg/L となった。

表 2.5-29: ヨーバルフロアブルの水産 PECiest 算出に関する使用方法及びパラメータ

剤型	18.2 %水和剤
適用作物	果樹
単回の農薬散布量	140 g/10 a (5,000 倍 700 L/10 a)
地上防除/航空防除	地上防除
施用方法	散布
単回の有効成分投下量	254.8 g/ha
地表流出	0.02 %
ドリフト	あり(ドリフト率 3.4%)
施用方法による農薬流出補正係数	1

(2) ヨーバルトップ箱粒剤

水田使用について申請されている使用方法に基づき、表 2.5-30 に示すパラメータを用いてテトラニリプロールの水産 PECtierl を算定した結果、0.68 μg/L となった。

表 2.5-30: ヨーバルトップ箱粒剤の水産 PECierl 算出に関する使用方法及びパラメータ

剤型	1.5 %粒剤
適用作物	稲
単回の農薬散布量	1,500 g/10 a (75 g/育苗箱、20 箱/10 a)
地上防除/航空防除	地上防除
施用方法	箱処理
単回の有効成分投下量	225 g/ha
ドリフト	なし
施用方法による農薬流出補正係数	0.2

2.5.3.4.2 第2段階

テトラニリプロールの魚介類中の推定残留濃度(2.4.2.3 参照)を算定するため、ヨーバルトップ箱粒剤(テトラニリプロール 1.5%粒剤)について、テトラニリプロールの水産動植物

被害予測濃度第2段階(水産PECtier2)を算定1)した。

水田使用について申請されている使用方法に基づき、表 2.5-31 に示すパラメータ及びシルト質壌土における水質汚濁性試験結果 (2.5.3.3 参照) を用いてテトラニリプロールの水産 PECtier2 を算定した結果、0.25 μg/L となった。

1): 水産動植物被害予測濃度の算定に用いる計算シートは、環境省がホームページにおいて提供している。 (URL: http://www.env.go.jp/water/sui-kaitei/kijun.html)

表 2.5-31:1.5 % 粒剤の水産 PECtion 算出に関する使用方法及びパラメータ

剤型	1.5 %粒剤
適用作物	稲(箱育苗)
単回の農薬散布量	1,500 g/10 a (75 g/育苗箱、20 箱/10 a)
地上防除/航空防除	地上防除
施用方法	箱処理
単回の有効成分投下量	225 g/ha
ドリフト	なし
施用方法による農薬流出補正係数	1
止水期間	0
有機炭素吸着係数	200*1
加水分解半減期	考慮せず
水中光分解半減期	考慮せず

^{*1:} 土壌吸着試験における K^{ads}Foc の中央値

2.5.3.5 水質汚濁予測濃度

環境大臣の定める水質汚濁に係る農薬登録保留基準値と比較(2.3.3.2 参照)するため、テトラニリプロールの水質汚濁予測濃度第1段階(水濁 PECtierl)を算定した。

その結果、テトラニリプロールの水濁 PEC_{tierl} は水田使用における水濁 PEC_{tierl} 及び水田以外使用における水濁 PEC_{tierl} の合計として 3.0×10^{-3} mg/L であった。

(1) 水田使用

水田使用における水濁 PEC_{tierl} は水田に使用した農薬の有効成分が全量河川に流出するものとして算定する。申請されている使用方法に基づき、表 2.5-32 に示すパラメータを用いて水濁 PEC_{tierl} を算定した結果、 3.0×10^{-3} mg/L であった。

水濁 PECtierl = 単回有効成分投下量×総使用回数×農薬使用面積÷年間河川水量

 $= 225 \text{ g/ha} \times 1 \ \square \times 50 \text{ ha} \div 3,756,000 \text{ m}^3$

= 0.0030 mg/L

表 2.5-32: 水田使用における水濁 PECtierl 算出に関する使用方法及びパラメータ

X 216 52 · And Carrier of the Partie of the			
剤型	1.5 %粒剤		
適用作物	稲		
単回の農薬散布量	1,500 g/10a (75 g/箱、20 箱/10 a)		
施用方法	育苗箱散布		
総使用回数	1回		
単回の有効成分投下量	225 g/ha		

(2) 水田以外使用

水田以外使用について申請されている使用方法に基づき、表 2.5-33 に示すパラメータを 用いてテトラニリプロールの水濁 PEC_{tierl} を算定 ¹⁾した結果、1.3×10⁻⁵ mg/L であった。

1) 水質汚濁予測濃度の算定に用いる計算シートは、環境省がホームページにおいて提供している。 (URL: http://www.env.go.ip/water/dojo/noyaku/odaku_kijun/kijun.html)

表 2.5-33: 水田以外使用における水濁 PECiter 算出に関する使用方法及びパラメータ

双 2.3-33 . 水田以下使用における水圏 r Ectierl 昇田に関する使用力伝及し、アプ				
剤型	18.2 %水和剤			
適用作物	樹木類			
単回の農薬散布量	希釈倍数 5000 倍、700 L/10 a			
地上防除/航空防除	地上防除			
施用方法	散布			
総使用回数	3 回			
単回の有効成分投下量	254.8 g/ha			
地上流出率	0.02 %			
ドリフト	あり(ドリフト率 5.8 %)			
施用方法による農薬流出補正係数	1			

2.6 標的外生物への影響

2.6.1 鳥類への影響

テトラニリプロール原体を用いて実施した鳥類への影響試験の報告書を受領した。

結果概要を表 2.6-1 に示す。試験の結果、テトラニリプロールの鳥類への影響は認められなかった。

鳥類混餌投与試験については、鳥類経口投与試験における LD₅₀ 値が 300 mg/kg より大きいため、試験実施は不要と判断した。

表 2.6-1: テトラニリプロールの鳥類への影響試験の結果概要

生物種	1 群当りの 供試数	投与方法	投与量 (mg/kg 体重)	LD ₅₀ 及び NOEL (mg/kg 体重)	観察された症状
コリンウズラ	雄 5、雌 5	強制経口投与	0,2,000	LD ₅₀ : >2,000 NOEL: 2,000	なし

2.6.2 水生生物への影響

2.6.2.1 原体の水産動植物への影響

テトラニリプロール原体を用いて実施した魚類急性毒性試験、ミジンコ類急性遊泳阻害試験、ユスリカ幼虫急性遊泳阻害試験及び藻類生長阻害試験の報告書を受領した。

中央環境審議会土壌農薬部会農薬小委員会による評価(URL:

http://www.env.go.jp/water/sui-kaitei/kijun/rv/372tetraniliprole.pdf) を以下に転記する。(本項末まで)

魚類

(1) 魚類急性毒性試験 [i] (コイ)

コイを用いた魚類急性毒性試験が実施され、96 hLC₅₀ > 8,500 μg/L であった。

表 2.6-2: 魚類急性毒性試験結果

被験物質	原体				
供試生物	コイ (Cyprinus carpio) 10 尾/群	ロイ (Cyprinus carpio) 10 尾/群			
暴露方法	止水式	二水式			
暴露期間	96 h	6 h			
設定濃度 (μg/L) (有効成分換算値)	0 10,000				
実測濃度 (μg/L) (幾何平均値、有効成分換算値)	0 8,500				
死亡数/供試生物数 (96 h 後;尾)	0/10 0/10				
助剤	DMF 0.1 mL/L				
LC ₅₀ (μg/L)	>8,500 (実測濃度 (有効成分換算値) に	三基づく)			

テトラニリプロール - II. 審査報告 - 2. 審査結果

甲殼類等

(1) ミジンコ類急性遊泳阻害試験 [i] (オオミジンコ)

オオミジンコを用いたミジンコ類急性遊泳阻害試験が実施され、48 hEC $_{50}=173~\mu g/L$ であった。

表 2.6-3:ミジンコ類急性遊泳阻害試験結果

被験物質	原体						
供試生物	オオミジンコ (Daphnia magna) 30 頭/群						
暴露方法	止水式	止水式					
暴露期間	48 h						
設定濃度 (μg/L) (有効成分換算値)	0	41.9	71.2	121	206	350	
実測濃度 (μg/L) (暴露開始時~暴露終了時、有効成分換算值)	0	40.2~36.7	65.2~60.9	108~105	192~179	331~295	
遊泳阻害数/供試生物数 (48 h 後;頭)	1/30	2/30	5/30	7/30	15/30	30/30	
助剤	DMF 0.1 mL/L						
EC ₅₀ (μg/L)	173 (95 %信頼限界 147~199) (設定濃度 (有効成分換算値) に基づく)						

(2) ユスリカ幼虫急性遊泳阻害試験 [ii] (ユスリカ幼虫)

ユスリカ幼虫を用いたユスリカ幼虫急性遊泳阻害試験が実施され、 $48\,hEC_{50}=230\,\mu g/L$ であった。

表 2.6-4: ユスリカ幼虫急性遊泳阻害試験結果

被験物質	原体							
供試生物	ドブユスリカ幼虫 (Chironomus riparius) 30 頭/群							
暴露方法	止水式							
暴露期間	48 h	48 h						
設定濃度 (μg/L) (有効成分換算値)	0	8.00	16.0	32.0	64.0	128	256	
実測濃度 (μg/L) (幾何平均値、有効成分換算値)	0	8.10	16.7	32.5	63.5	152	294	
遊泳阻害数/供試生物数 (48 h 後;頭)	0/30	0/30	0/30	1/30	7/30	9/30	15/30	
助剤	DMF 0.1 mL/L							
EC ₅₀ (μg/L)	271 (95 %信頼限界 186~514) (実測濃度 (有効成分換算値) に基づく)							

藻類

(1) 藻類生長阻害試験 [i] (ムレミカヅキモ)

Pseudokirchneriella subcapitata を用いた藻類生長阻害試験が実施され、72 hErC₅₀ > 1,970 μg/L であった。

公 2.0 3 · 1 宋								
被験物質	原体							
供試生物	P. subcapitata 初期生物量:1.0×10 ⁴ cells/mL							
暴露方法	振とう培養							
暴露期間	96 h							
設定濃度 (μg/L)	0	625	1,250	2,500	5,000	10,000		
実測濃度 (μg/L) (幾何平均値、有効成分換算値)	0	440	851	1,970	3,900	5,770		
72 h 後生物量 (×10 ⁴ cells/mL)	63.3	55.1	64.8	65.0	1	_		
0-72 h 生長阻害率(%)		3.4	-0.4	-0.2	_	_		
助剤	DMF 0.1 mL/L							
ErC ₅₀ (μg/L)	>1,970 (0-72 h 実測濃度 (有効成分換算値) に基づく)							

表 2.6-5: 藻類生長阳害試験結果

2.6.2.2 水産動植物の被害防止に係る農薬登録保留基準

2.6.2.2.1 登録保留基準値

中央環境審議会土壌農薬部会農薬小委員会による評価 (URL:

http://www.env.go.jp/water/sui-kaitei/kijun/rv/372tetraniliprole.pdf) を以下に転記する。(本項末まで)

登録保留基準値

各生物種の LC_{50} 、 EC_{50} は以下のとおりであった。

魚類 [i] (コイ急性毒性) 96 hLC $_{50}$ > 8,500 μ g/L 甲殻類等 [i] (オオミジンコ急性遊泳阻害) 48 hEC $_{50}$ = 173 μ g/L 甲殻類等 [ii] (ユスリカ急性遊泳阻害) 48 hEC $_{50}$ = 271 μ g/L 藻類 [i] (ムレミカヅキモ生長阻害) 72 hErC $_{50}$ > 1,970 μ g/L

魚類急性影響濃度(AECf)については、魚類 [i] の LC_{50} (>8,500 μ g/L)を採用し、不確実係数 10 で除した>850 μ g/L とした。

甲殻類等急性影響濃度(AECd)については、甲殻類等 [i] の EC_{50} (173 $\mu g/L$)を採用し、不確実係数 10 で除した 17.3 $\mu g/L$ とした。

藻類急性影響濃度(AECa)については、藻類 [i] の ErC_{50} (>1,970 $\mu g/L$)を採用し、>1,970 $\mu g/L$ とした。

これらのうち最小の AECd より、登録保留基準値は 17 μg/L とする。

2.6.2.2.2 水産動植物被害予測濃度と登録保留基準値の比較

水田以外の使用について申請されている使用方法に基づき算定した水産動植物被害予測濃度(水産 PECtierl) の最大値は、0.68 μg/L (2.5.3.4 参照) であり、登録保留基準値 17 μg/L を

^{-:}細胞凝集のため計測できず

テトラニリプロール - II. 審査報告 - 2. 審査結果

下回っている。

2.6.2.3 製剤の水産動植物への影響

ョーバルフロアブル (テトラニリプロール 18.2 %水和剤) 及びョーバルトップ箱粒剤 (テトラニリプロール 1.5%粒剤) を用いて実施した魚類急性毒性試験、ミジンコ類急性遊泳阻害試験及び藻類生長阻害試験の報告書を受領した。

結果概要を表 2.6-6 に示す。

表 2.6-6: テトラニリプロール製剤の水産動植物への影響試験の結果概要

		> / 2C/11 · > / 1 · D	. /4> F	3 P (100 C 12 /11 /1	11/02/		
被験物質 試験名		生物種	暴露方	水温	暴露期間	LC50又はEC50	
		工10/1里	法	$(^{\circ}\!\mathbb{C})$	(h)	(mg/L)	
	魚類急性毒性	コイ	止水	21.6~22.1	06	529 (I.C.)	
	思規心圧毋圧	(Cyprinus carpio)	止水	21.0 - 22.1	96	>538 (LC ₅₀)	
ヨーバル	ミジンコ類	オオミジンコ	止水	20.2~20.7	40	0.202 (EG.)	
	急性遊泳阻害 (Daphnia magna)		止水	20.2 20.7	48	0.382 (EC ₅₀)	
	藻類生長阻害	緑藻	振とう	22.4~22.9	70	. 541 (F.C.)	
		(Pseudokirchneriella subcapitata)	培養法	22.4 ~ 22.9	72	>541 (ErC ₅₀)	
	魚類急性毒性	コイ	止水	21.5~22.7	06	> 1.000 (I.C.)	
7. 37.	思規心性母性	(Cyprinus carpio)	止水	21.5 22.7	96	>1,000 (LC ₅₀)	
ョーバル トップ 箱粒剤 -	ミジンコ類 オオミジンコ		止水	20.1 - 20.0	40	0.500 (EG.)	
	急性遊泳阻害	(Daphnia magna)	止水	$20.1 \sim 20.8$	48	0.538 (EC ₅₀)	
	古拓上目四字	緑藻	振とう	22.0~24.0	72	1.000 (F. G.)	
	藻類生長阻害	(Pseudokirchneriella subcapitata)	培養法	22.0°~24.0	72	>1,000 (ErC ₅₀)	

ヨーバルフロアブル

農薬使用ほ場の近隣にある河川等に流入した場合の水産動植物への影響を防止する観点から、ほ場からの流出水中の製剤濃度 $11.75 \, \mathrm{mg/L}$ (使用量 $587.5 \, \mathrm{g/10a}$ 、水量 $50,000 \, \mathrm{L}$ (面積 $10 \, \mathrm{a}$ 、水深 $5 \, \mathrm{cm}$ 相当)) と製剤の水産動植物の LC_{50} 又は EC_{50} との比(LC_{50} 又は EC_{50} 人製剤濃度)を算定した。その結果、魚類において $0.1 \, \mathrm{e}$ 、甲殻類及び藻類においては $0.01 \, \mathrm{e}$ 超えたことから、水産動植物に対する注意事項は不要であると判断した。

 LC_{50} 又は EC_{50} が $1.0 \, mg/L$ を下回ったことから、容器等の洗浄及び処理に関する注意事項が必要であると判断した。

ヨーバルトップ箱粒剤

農薬使用ほ場の近隣にある河川等に流入した場合の水産動植物への影響を防止する観点から、ほ場からの流出水中の製剤濃度 30 mg/L (使用量 1,500 g/10a、水量 50,000 L (面積 10 a、水深 5 cm 相当)) と製剤の水産動植物の LC_{50} 又は EC_{50} との比(LC_{50} 又は EC_{50} 人製剤濃度)を算定した。その結果、甲殻類において 0.1 を下回ったことから、甲殻類に対する注意事項が必要であると判断した。

 LC_{50} 又は EC_{50} が $1.0 \, mg/L$ を下回ったことから、容器等の洗浄及び処理に関する注意事項が必要であると判断した。

2.6.2.4 生物濃縮性

2.6.2.4.1 代謝物 M22 の生物濃縮性

ピリミジノン環の 4 位の炭素を 14 C で標識した代謝物 M22(以下「 $[^{14}$ C]代謝物 M22」という。)を用いて実施した生物濃縮性試験の報告書を受領した。

放射性物質濃度は代謝物 M22 換算で表示した。

*:14C 標識の位置

ブルーギル(Lepomis macrochirus)を用いて、流水式装置により、[14 C]代謝物 M22 の高濃度処理区($0.3\,\mathrm{mg/L}$)及び低濃度処理区($0.03\,\mathrm{mg/L}$)を設定し、取込期間 28 日間及び排泄期間 14 日間の試験を実施した。水は取込開始 0、1、3、7、10、14、21 及び 28 日後に、魚体は取込開始 1、3、7、10 入び 14、21 及び 28 日後に採取した。

水は液体シンチレーションカウンター (LSC) で放射能を測定した。取込開始 28 日後の試験水の原液中の代謝物 M22 は高速液体クロマトグラフィー (HPLC) で定量及び同定した。 魚体は可溶化剤で処理後、LSC で放射能を測定した。

取込期間中の水及び魚体中の放射性物質濃度を表 2.6-7 に示す。

魚体中の放射性物質濃度は取込開始後 $7\sim28$ 日に定常状態となった。定常状態における高濃度処理区及び低濃度処理区 * の放射性物質の平均魚体中濃度はそれぞれ 55.1 mg/kg 及び 4.40 mg/kg、平均水中濃度はそれぞれ 0.237 μ g/L 及び 0.028 μ g/L であり、BCFss はそれぞれ 232 及び 156 であった。

*: 低濃度処理区では、 $27\sim28$ 日に試験水の原液が空になったことにより試験水中濃度が低下したと考えられたことから、取込開始 $7\sim21$ 日を定常状態として算出。

表 2.6-7	:取込期間におけ	る水及び魚体中の放射性物質濃度

取込期間(日)		0	1	3	7	10	14	21	28
高濃度処理区 (0.3 mg/L)	試験水中濃度 (mg/L)	0.246	0.200	0.205	0.245	0.237	0.239	0.263	0.202
	魚体中濃度 (mg/kg)	_	14.4	30.9	46.4	52.4	60.3	64.0	52.6
低濃度処理区 (0.03 mg/L)	試験水中濃度 (mg/L)	0.024	0.026	0.026	0.030	0.027	0.027	0.028	0.006*
	魚体中濃度 (mg/kg)	_	1.76	2.64	4.04	4.51	4.27	4.78	3.92*

^{- :} 試料採取せず

^{*:27~28}日に試験水の原液が空になったことにより、濃度が低下したと考えられた。

排泄期間中の魚体中の総放射性物質濃度を表 2.6-8 に示す。 魚体中の放射性物質は排泄開始 10 日後までに 95 %以上が排泄された。

表 2.6-8:排泄期間における魚体中の放射性物質濃度 (mg/kg)

排泄期間(日)	1	3	7	10	14
高濃度処理区(0.3 mg/L)	43.7	22.2	5.24	2.50	0.45
低濃度処理区(0.03 mg/L)	2.68	1.10	0.18	0.11	0.05

水中及び魚体中の総放射性物質濃度を用いて、非線形パラメータ推定法より、取込速度定数(k1)及び排泄速度定数(k2)を算出し、BCFkを求めた。これらの結果を表 2.6-9 に示す。

表 2.6-9: 総放射性物質の取込速度定数 (k1)、排泄速度定数 (k2) 及び生物濃縮係数 (BCFk)

	k1	k2	BCFk
高濃度処理区 (0.3 μg/L)	71.6	0.298	240
低濃度処理区 (0.03 µg/L)	82.6	0.460	180

2.6.3 節足動物への影響

2.6.3.1 ミツバチ

テトラニリプロール原体を用いて実施した急性毒性(経口及び接触)試験の報告書を受領した。

結果概要を表 2.6-10 に示す。試験の結果、テトラニリプロールのミツバチへの影響が認められたことから、ヨーバルフロアブルについては、ミツバチへの影響を回避するための注意事項が必要であると判断した。ヨーバルトップ箱粒剤については、申請されている作物及び使用方法から暴露のおそれが低いと考えられるため、ミツバチへの影響を回避するための注意事項は不要であると判断した。

表 2.6-10: テトラニリプロールのセイヨウミツバチへの影響試験の結果概要

試験名	供試生物	供試虫数	供試薬剤	投与量 (μg ai/頭)	48h 累積死亡率 (%)	48 h LD ₅₀ (µg ai/頭)
				0 (無処理)	0	
				0 (助剤)	0	
	急性毒性 セイヨウミツハドチ 1区10豆			0.0067	3.3	
急性毒性		1 区 10 頭 3 反復	原体	0.012	73	0.010
(経口)	(Apis mellifera L.) 成虫			0.020	100	0.010
				0.031	100	
			0.069	100		
				0.14	100	

				0 (無処理)	0	
				0 (助剤)	0	
				0.063	0	
急性毒性	セイヨウミツハ゛チ (<i>Apis mellifera</i> L.) 成虫	1 区 10 頭 3 反復	原体	0.13	0	1.25
(接触)	(Apis meilifera L.) 成虫	3 反復	原 中	0.25	17	1.25
				0.5	37	
				1.0	23	
				2.0	70	

2.6.3.2 蚕

テトラニリプロール原体を用いて実施した急性毒性(経口)試験の報告書を受領した。

結果概要を表 2.6-11 に示す。試験の結果、テトラニリプロールの蚕への影響が認められたことから、ヨーバルフロアブルについては、蚕への影響を回避するために注意事項が必要であると判断した。ヨーバルトップ箱粒剤については、申請されている作物及び使用方法から暴露のおそれが低いと考えられるため、蚕への影響を回避するための注意事項は不要であると判断した。

表 2.6-11: テトラニリプロールの蚕への影響試験の結果概要

試験名	供試生物	供試虫数	供試薬剤	試験方法	試験結果
急性毒性 (経口)	蚕 錦秋×鐘和 (Bombyx mori) 4 齢起蚕	1区20頭 3反復	原体	に調製した試験液に、 桑葉を浸漬処理して	死亡率(96 h): 100 %(無処理区 0 %) 異常行動: 大量の吐液と体躯の縮小 摂餌状況: 2日後以降摂餌が認められず 4,5 齢期間中の経過日数: 4 齢期間中に全て死亡

2.6.3.3 天敵昆虫等

ョーバルフロアブル (テトラニリプロール 18.2 %水和剤) を用いて実施した寄生蜂、捕食性ダニ及びクサカゲロウの急性毒性 (接触) 試験の報告書を受領した。

結果概要を表 2.6-12 に示す。試験の結果、テトラニリプロールの寄生蜂への影響が認められた。

表 2.6-12:ヨーバルフロアブルの天敵昆虫等への影響試験の結果概要

試験名	供試生物	供試虫数	供試薬剤	試験方法	試験結果
急性毒性 (接触)	寄生蜂 (Aphidius rhopalosiphi) 成虫	1区15頭4反復	18.2 % 水和剤	供試薬剤を所定量ガラス板(10 cm×10 cm)に噴霧して、風乾後、処理面に接触できるよう試験容器に設置し、供試生物を放飼。48h後までの死亡を観察。	無処理区: 0.0 % 0.5 g ai/ha: 41.7 % 0.9 g ai/ha: 63.3 %

テトラニリプロール - II. 審査報告 - 2. 審査結果

試験名	供試生物	供試虫数	供試薬剤	試験方法	試験結果
	捕食性ダニ (Typhlodromus pyri) 成虫	1 区 20 頭 5 反復		供試薬剤を所定量ガラス 板(24 mm×60 mm)に噴霧 し、風乾後、処理面に接触 できるよう試験容器に設 置し、供試生物を放飼。7 日後までの死亡を観察。7 日後以降の5 日間は産卵 を観察。	6 g ai/ha: 15.0 % 11 g ai/ha: 9.0 % 22 g ai/ha: 12.0 % 44 g ai/ha: 22.0 % 一個体当たりの産卵数(5 d): 無処理区: 5.3 個 3 g ai/ha: 4.0 個 6 g ai/ha: 4.8 個 11 g ai/ha: 4.8 個 22 g ai/ha: 5.4 個 44 g ai/ha: 4.5 個
	クサカケ゛ロウ (Chrysoperla carnea) 2日齢幼虫	1区 40頭		所定量の供試薬剤を豆葉 ディスクに噴霧し、風乾後 その上に供試生物を放飼。 19 日後までの死亡を観 察。19 日後以降の 4 日間 は産卵を観察。	11 g ai/ha: 7.5 % 22 g ai/ha: 7.7 % 44 g ai/ha: 10.0 % 一個休当たりの辞刷物(4.d):

2.7 薬効及び薬害

2.7.1 薬効

(1) ヨーバルフロアブル

キャベツ、はくさい、ブロッコリー、みずな、こまつな、チンゲンサイ、いちご、ねぎ、レタス、だいず、さといも、未成熟とうもろこし、なす、トマト、ピーマン、きゅうり、メロン、すいか、なし、もも、ぶどう、かき、りんご、あんず、うめ、すもも、おうとう、茶、きく、パンジー、シクラメン、さくら、さざんか及びプラタナスについてヨーバルフロアブル (テトラニリプロール 18.2 %水和剤) を用いて実施した薬効・薬害試験の報告書を受領した。

試験設計概要を表 2.7-1 に示す。各試験区において、試験対象とした各害虫に対して無処理区と比べて効果が認められた。

表 2.7-1 ヨーバルフロアブルの薬効・薬害試験設計概要

	- · /• / - / / / / / / / / / / / / / / / /	米日下吸		式験条件		
作物名	対象害虫	希釈倍数 (倍)	使用濃度* (kg ai/hL)	使用時期	使用方法	試験数
	コナカ゛	200	0.0010	育苗期後半	灌注	3
	2) //	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	4
	アオムシ	200	0.0910	育苗期後半	灌注	3
	7 4 4 7	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	3
	ネキリムシ類(カフ゛ラヤカ゛、タマナヤカ゛)	200	0.0910	育苗期後半	灌注	1
	(N)	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	6
	ハイマタ゛ラノメイカ゛	200	0.0910	育苗期後半	灌注	3
	/ "[17	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	3
	ハスモンヨトウ	200	0.0910	育苗期後半	灌注	2
	. ,	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	4
	アブラムシ類(モモアカアブラムシ、ニセダイコン	200	0.0910	育苗期後半	灌注	2
	アブ ラムシ)	200	0.0910	定植当日	(0.5 L/セルトレイ1冊)	5
	ネキ゛アサ゛ ミウマ	200	0.0910	育苗期後半	灌注	5
キャベツ		200	0.0710	定植当日	(0.5 L/セルトレイ1冊)	1
	コナカ゛	2,500	0.0073			3
	***	5,000	0.0036		124 114	6
	アオムシ	2,500	0.0073	_	散布	4
	, , ,	5,000	0.0036		124 114	8
	ウワバ類(タマナギンウワバ、イラクサギンウワ	2,500	0.0073	_	散布	2
	n*)	5,000	0.0036			6
	ハイマタ゛ラノメイカ゛	2,500	0.0073	_	散布	2
	1 7 7 7 7	5,000	0.0036		12471	6
	ヨトウムシ	2,500	0.0073	_	散布	2
	.,	5,000	0.0036			6
	ハスモンヨトウ	2,500	0.0073	_	散布	2
	.,	5,000	0.0036		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6
	オオタハ゛コカ゛	2,500	0.0073	_	散布	2
		5,000	0.0036			6

(倍) (cg alm) (契用時期 使用方法				 記	式験条件		
***	作物名	対象害虫			使用時期	使用方法	試験数
キャベツ		アフ゛ラムシ類(モモアカアフ゛ラムシ、ニセタ゛イコン	2,500	0.0073	_	数右	6
大きいか 1	キャベツ	アブ゛ラムシ、ダイコンアブラムシ)	5,000	0.0036		BX411	3
1	11/	(信) (kg ainL) 使用時期 使用す 使用す できない (信) (kg ainL) 使用 (使用す (に要す) (で (に要す) (に要求)	散布	6			
200 0.0910 定植当日 7tkシ 200 0.0910 7tkシ 200 0.0910 7tkシ 200 0.0910 7tkシトレ(1冊) 7tkbシトレ(1冊) 7tkbシトレ(1冊		77 17 1994(11 77 17 1)	5,000	0.0036		世用時期 使用方法 一 散布 一 散布 一 散布 一 散布 一 描	3
Principal of the pr		コナカ゛	200	0.0910			1
							5
Arty 'ラナノ(h'		アオムシ	200	0.0910	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,22,122	2
Act 2 Ac							5
3トウムシ 200 0.0910 育苗期後半 灌注 (0.5 L/tットレイ1冊) 存苗期後半 定権当日 (0.5 L/tットレイ1冊) では当日 では当日 (0.5 L/tットレイ1冊) では当日 では当日 (0.5 L/tットレイ1冊) では当日 で		ハイマタ゛ラノメイカ゛	200	0.0910		· ·	4
3トウムシ 200 0.0910 定植当日 (0.5 L/セルレイ用) 液性当日 (0.5 L/セルレイ用) 液化 定植当日 (0.5 L/セルレイ用) 液化 液化 液化 液化 液化 液化 液化 液							3
Aスモショトウ 200 0.0910		ヨトウムシ	200	0.0910			4
AREV3Hウ 200 0.0910 定植当日 (0.5 L/をルドノ1冊)						, ,	2
はくさい 200 0.0910		ハスモンヨトウ	200 0.09	0.0910		· ·	5
マナッシン 200 0.0910 定植当日 (0.5 L/セルレイ田) では当日 (0.5 L/セルレイ田) では当日 でいちしていいて日冊) では当日 では当日 では当日 では当日 では当日 では当日 でいちしていいて日冊) では当日 では当日 では当日 でいちしていいて日冊) では当日 では当日 では当日 でいちしていいて日冊) では当日 では当日 では当日 でいちしていいて日冊) では当日 では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 でいちしていいて日冊) では当日 では当日 でいちしていいて日冊) では当日 では当日 では当日 でいちしていいていいていいていいていいていいていいていいていいていいていいていいていい		アフ゛ラムシ(ギエアカアフ゛ラムシ ーセタ゛ イコン					3
さくさい			200	0.0910		· ·	4
5,000 0.0036 一 散布 一 散布 一 下水シ 2,500 0.0073 一 散布 一 下水シ 2,500 0.0073 一 散布 一 下水シ 2,500 0.0073 一 下水 下水シ 下水シ 下水シ 1,500 0.0036 一 下水 下水 下水シ 1,500 0.0036 一 下水 下水 下水 下水 下水 下水 下水		·	2.500	0.0073	/CIB - 11	,	2
7thシ 2,500 0.0073 - 散布	はくさい	コナカ゛	·		_	散布	6
1						114.	2
Art アプ・フリングか。 2,500 0.0073 - 散布		アオムシ			_	散布	6
1		ハイマダ゛ラノメイカ゛		0.0073		###	2
1			5,000	0.0036	_	散布	6
5,000		-141	2,500	0.0073	-	散布	2
1		31/147	5,000	0.0036			6
1		ハフエソコしけ	2,500	0.0073		散布	2
大大学 1月 1月 1月 1月 1月 1月 1月 1		/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5,000	0.0036			6
5,000 0.0036 1		<i>ተተ</i> ደለ`	2,500	0.0073	_	数布	2
アファラムシ) 5,000 0.0036 育苗期後半 灌注 (0.5 L/セルトレイ1冊) アオムシ 200 0.0910 育苗期後半 灌注 (0.5 L/セルトレイ1冊) アオムシ 200 0.0910 育苗期後半 灌注 (0.5 L/セルトレイ1冊) アオムシ 200 0.0910 育苗期後半 灌注 (0.5 L/セルトレイ1冊) アイマタ・ラノメイカ・ 200 200 0.0910 育苗期後半 灌注 (0.5 L/セルトレイ1冊) アフ・ラムシ類(モモアカアフ・ラムシ、ニセケ・イコン アフ・ラムシ) 200 0.0910 育苗期後半 灌注 (0.5 L/セルトレイ1冊) コナカ・ 2,500 0.0073 - 散布		AA7/- ~N	5,000	0.0036		HATI	6
フナカ		·	2,500	0.0073	_	散布	6
200 0.0910 定植当日 (0.5 L/セルトレイ1冊) 京苗期後半 灌注 (0.5 L/セルトレイ1冊) 定植当日 (0.5 L/セルトレイ1冊) 京苗期後半 灌注 (0.5 L/セルトレイ1冊) 定植当日 (0.5 L/セルトレイ1冊) 定植当日 (0.5 L/セルトレイ1冊) 京苗期後半 灌注 (0.5 L/セルトレイ1冊) 定植当日 (0.5 L/セルトレイ1冊) 京苗期後半 灌注 (0.5 L/セルトレイ1冊) 京苗期後半 下植当日 (0.5 L/セルトレイ1冊) 京苗期後半 下植当日 (0.5 L/セルトレイ1冊) 京苗期後半 下植当日 (0.5 L/セルトレイ1冊) 京田期後半 下植当日 (0.5 L/セルトレイ1冊) 京田明日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		アブ`ラムシ)	5,000	0.0036		124 114	3
大元シ 200 0.0910 元値当日 (0.5 L/セルトレイ1冊)		コナカ゛	200	0.0910			3
プロッコリー 200 0.0910 定植当日 (0.5 L/セルトレイ1冊) 定植当日 (0.5 L/セルトレイ1冊) で植当日 (0.5 L/セルトレイ1冊) で植当日 (0.5 L/セルトレイ1冊) で植当日 でも当日 でもも当日 でももも でもも当日 でももも当日 でももも当日 でもももももももは でもももももももももももももももももももももももも		, ,		0.0910			5
大元マタ・ラノメイガ 200 0.0910 定植当日 (0.5 L/セルトレイ1冊) 存苗期後半 灌注 (0.5 L/セルトレイ1冊) 存苗期後半 灌注 (0.5 L/セルトレイ1冊) 存苗期後半 灌注 (0.5 L/セルトレイ1冊) 		アオムシ	200	0.0910		· ·	4
プロッコリー 一次モンヨトウ 200 0.0910 定植当日 (0.5 L/セルトレイ1冊)							4
ブロッコリー AREV3トウ 200 0.0910 育苗期後半 定植当日 (0.5 L/セルトレイ1冊) アブ・ラムシ類(モモアカアブ・ラムシ、ニセダ・イコン アブ・ラムシ) 200 0.0910 育苗期後半 灌注 定植当日 (0.5 L/セルトレイ1冊) コナガ 2,500 0.0073 - 散布		ハイマタ゛ラノメイカ゛	200	0.0910		· ·	3
プロッコリー	ブロッコリー					<u> </u>	3
アブ・ラムシ類(モモアカアブ・ラムシ、ニセダ・イコン アブ・ラムシ) 200 の.0910 育苗期後半 定植当日 灌注 (0.5 L/セルトレイ1冊) コナカ・ 2,500 0.0073 — 散布		ハスモンヨトウ	200	0.0910		· ·	1
フブ・ラムシ) 200 0.0910 定植当日 (0.5 L/セルトレイ1冊) 2,500 0.0073 _ 散布		ママンニナン本子フェマルママンニナン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					5
コナガ 2,500 0.0073		1	200	0.0910		· ·	2
		J / 7ΑΫ)	2.500	0.0072	定植当日	(0.5 E/ C// [V] I [III])	6
5,000 0.0036		コナカ゛	·		_	散布	2
2 500 0 0072							6
		アオムシ			_	散布	7

				式験条件		
作物名	対象害虫	希釈倍数 (倍)	使用濃度* (kg ai/hL)	使用時期	使用方法	試験数
	ハイマタ゛ラノメイカ゛	2,500	0.0073	_	散布	2
	/ "[\	5,000	0.0036		HX/III	7
	ヨトウムシ	2,500	0.0073	_	散布	2
ブロッコリー	-1/	5,000	0.0036		127 114	6
	ハスモンヨトウ	2,500	0.0073	_	散布	2
		5,000	0.0036		10.7	6
	アフ゛ラムシ類(モモアカアフ゛ラムシ、ニセタ゛イコン	2,500	0.0073	_	散布	7
- 30 2	アブ・ラムシ)	5,000	0.0036		164	3
みずな	コナカ゛	5,000	0.0036		散布	2
こまつな	コナカ゛	5,000	0.0036		散布	2
チンゲンサイ	コナカ゛	5,000	0.0036	_	散布	2
	ハスモンヨトウ	2,500	0.0073	_	散布	3
いちご		5,000	0.0036			6
	オオタハ゛コカ゛	2,500	0.0073	_	散布	2
		5,000	0.0036	**************************************	N44 N N	6
	ネキ゛アサ゛ミウマ	200	0.0910	育苗期後半 定植当日	灌注 (0.5 L/セルトレイ1冊)	7
	ハモク゛リハ゛ェ類(ネギハモグリバエ)	200	0.0910	育苗期後半	灌注	5
	// //	200	0.0710	定植当日	(0.5 L/セルトレイ1冊)	4
	シロイチモシ゛ョトウ	2,500	0.0073	_	散布	2
ねぎ	. , , , ,	5,000	0.0036		12411	7
	ネキ゛コカ゛	2,500	0.0073	_	散布	3
		5,000	0.0036			7
	ハモク゛リハ゛ェ類(ネギハモグリバエ)	2,500	0.0073	_	散布	6
		5,000	0.0036		#4 / .	4
	アザミウマ類(ネギアザミウマ)	2,500	0.0073	——————————————————————————————————————	散布	6
	ヨトウムシ	200	0.0910	育苗期後半	灌注	3
				定植当日	(0.5 L/セルトレイ1冊)	3
	ハスモンヨトウ	200	0.0910	育苗期後半	灌注	3
				定植当日	(0.5 L/セルトレイ1冊)	3
	オオタハ゛コカ゛	200	0.0910	育苗期後半	灌注	2
				定植当日	(0.5 L/セルトレイ1冊)	5
	ハモク゛リハ゛ェ類(ナモク゛リハ゛ェ)	200	0.0910	育苗期後半	灌注	1
				定植当日	(0.5 L/セルトレイ1冊)	6
レタス	アブラムシ類(モモアカアブラムシ、タイワンヒケー	200	0.0910	育苗期後半	灌注	4
	ナカ * アフ * ラムシ)			定植当日	(0.5 L/セルトレイ1冊)	2
	ウワハ゛類(タマナキ゛ンウワハ゛、イラクサキ゛ンウワ	2,500	0.0073	_	散布	3
	\\`)	5,000	0.0036			6
	ヨトウムシ	2,500	0.0073	_	散布	2
		5,000	0.0036			6
	ハスモンヨトウ	2,500	0.0073	_	散布	2
		5,000	0.0036			6
	オオタハ゛コカ゛	2,500	0.0073	_	散布	3
	44 <i>7</i> / · ~ //	5,000	0.0036			6

				式験条件		
作物名	対象害虫	希釈倍数 (倍)	使用濃度* (kg ai/hL)	使用時期	使用方法	試験数
	ハエカ [*] Ⅱ ハ [*] 〒米石/十エカ [*] Ⅱ ハ [*] 〒 \	2,500	0.0073		##r -/-:	6
レタス	ハモグ リハ 工類() モグ リハ エ)	5,000	0.0036		世界	3
	アブラムシ類(タイワンヒゲナガアブラムシ、ジ ヤガイモヒゲナガアブラムシ)	2,500	0.0073		散布	7
	マメシンクイカ゛	5,000	0.0036		散布	6
だいず	ウコンノメイカ゛	5,000	0.0036	=	散布	6
	ハスモンヨトウ	5,000	0.0036	_	散布	6
さといも	ハスモンヨトウ	5,000	0.0036		散布	6
未成熟 とうもろこし	アワノメイカ゛	5,000	0.0036	_	散布	6
	ハスモンヨトウ	200	0.0910	育苗期後半		3
	ハエカ゛川 バ 〒米石(十エカ゛川 バ 〒 トットハエカ゛					3
			4			
レタス						2
<u>3</u>	· ·	200	0.0910			5
						2
なす		200	0.0910			4
	/ \/	2.500	0.0072	足框 口	(23 IIIL///K)	
	ハスモンヨトウ			_	散布	2
						6
	オオタハ゛コカ゛	·		_	散布	2
	マッドニトン。本本ではおマッドニトン。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					6
				_	散布	6
			0.0036	玄 世	7° 17#77	4
	•	200	0.0910			1
	,				(23 IIIL///K)	6
	シ、チューリップ。ヒケ、ナカ、アフ、ラムシ、シ、ャカ、	200	0.0910			3
	/ELT, TJ, ZJ, JAY)	200	0.0510	定植当日	(25 mL/株)	5
	コナシ゛ラミ類(タハ゛ココナシ゛ラミ、オンシツコナシ゛	•	0.0010	育苗期後半	ポット灌注	2
1 1	ラミ)	200	0.0910	定植当日	一 散布 ボット灌注 (25 mL/株)	5
レベト	المارية المارية	2,500	0.0073		##- 	2
	ハスモンョトリ	5,000	0.0036	_	权加	6
	ハモク゛リハ゛エ類(マメハモク゛リハ゛エ、 トマトハモ	2,500	0.0073		##- 	6
	ク゛リハ゛エ)	5,000	0.0036	_	取布	3
	アブラムシ類(ワタアブラムシ、チューリップヒゲ	2,500	0.0073			7
	ナガ゛アブ゛ラムシ、ジ゛ャガ゛イモヒケ゛ナガ゛アブ゛ラ ムシ)	5,000	0.0036	1	散布	4
	アフ゛ラムシ類(ワタアブラムシ、モモアカアブラム	200	0.0010	育苗期後半	ポット灌注	1
	<i>シ</i>)	200	0.0910	定植当日	(25 mL/株)	5
	コナシ゛ラミ類(タハ゛ココナシ゛ラミ、オンシツコナシ゛		0.0-1-	育苗期後半	ポット灌注	1
ピーマン	ラミ)	200	0.0910	定植当日		5
	LLL H. S _ LS	2,500	0.0073		## <i>L</i> -	4
	オオタハ゛コカ゛	5,000	0.0036	_	11111111111111111111111111111111111111	6

				式験条件		
作物名	対象害虫	希釈倍数 (倍)	使用濃度* (kg ai/hL)	使用時期	使用方法	試験数
	アブラムシ類(ワタアブラムシ、モモアカアブラム	2,500	0.0073		# <i>L</i> 	6
ピーマン	シ)	5,000	0.0036	_	散布	4
	コナシ゛ラミ類(タバココナシ゛ラミ、オンシツコナシ゛ ラミ)	2,500	0.0073	_	散布	7
	ハモグ゛リハ゛ェ類 (トマトハモグリバェ)	200	0.0910	育苗期後半 定植当日	ポット灌注 (25 mL/株)	4 2
	アブラムシ類(ワタアブラムシ)	200	0.0910	育苗期後半 定植当日	ポット灌注 (25 mL/株)	3
	ハスモンヨトウ	2,500	0.0073	——————————————————————————————————————	散布	3
	,	5,000	0.0036		12.47	6
きゅうり	ウリノメイカ゛	2,500	0.0073	_	散布	2
G W J Y	,,,,,	5,000 0.0036	6			
	ハモク゛リハ゛ェ類 (トマトハモグリバェ)	2,500	0.0073	_	# * * * * * * * * * * * * * * * * * * *	6
		5,000	0.0036			3
	アブラムシ類(ワタアブラムシ)	2,500	0.0073	_	散布	6
	コナジ゛ラミ類(タバココナジ゛ラミ、オンシツコナジ ラミ)	2,500	0.0073	_	散布	6
	アザミウマ類(ネギアザミウマ、ミナミキイロアザ ミウマ)	2,500	0.0073	_	散布	7
	アブ・ラムシ類(ワタアブラムシ)	200	0.0910	育苗期後半 定植当日		2
	コナジ [*] ラミ類(タバココナジラミ、オンシツコナジ ラミ)	200	0.0910	育苗期後半 定植当日		2 4
メロン		2,500	0.0073		数右	6
747	ハモク゛リハ゛ェ類 (トマトハモグリバエ)	5,000	0.0036	_	散布	3
	77° - 10 MIZ (17 hran) - 10 0	2,500	0.0073		#1	6
	アブラムシ類(ワタアブラムシ)	5,000	0.0036	_	散布	3
	コナシ゛ラミ類(タバココナシ゛ラミ、オンシツコナシ゛ ラミ)	2,500	0.0073	_	散布	6
	アブ・ラムシ類(ワタアブ ラムシ)	200	0.0910	育苗期後半 定植当日		5
	コナジ [*] ラミ類(タバココナジラミ、オンシツコナジ ラミ)	200	0.0910	育苗期後半 定植当日		2 4
すいか		2,500	0.0073		##1 .	3
	ハスモンヨトウ	5,000	0.0036	_	散布	6
	ママンニト、本年(ロトママンニ)、	2,500	0.0073		#L	6
	アブラムシ類(ワタアブラムシ)	5,000	0.0036	_	散布	4
	コナシ゛ラミ類(タバココナジラミ)	2,500	0.0073	_	散布	6
	ハマキムシ類(リンコ゛カクモンハマキ、チャノコカクモ	5,000	0.0036		#4-4-	6
n + 20	ンハマキ) 10,000 0,0018	散布	3			
日本なし	この / カブナン/客方/よこの よこの / カブ	5,000	0.0036		#4-4-	6
	シンクイムシ類(ナシヒメシンクイ)	10,000	0.0018	_	散布	4
3 3	シンクイムシ類(モモシンクイガ、モモノゴマダラ	5,000	0.0036		#4-4-	6
<i>t t</i>	メイカ゛、ナシヒメシンクイ)	10,000	0.0018	_	散布	3

			試験条件					
作物名	対象害虫	希釈倍数 使用濃度*		使用時期	使用方法	試験数		
		(倍)	(kg ai/hL)	(2/11/17/3/1	(文///) (五			
& &	モモハモク゛リカ゛	5,000	0.0036	_	散布	7		
		10,000	0.0018		120 110	3		
ぶどう	ハマキムシ類(チャノコカクモンハマキ)	5,000	0.0036	_	散布	6		
	1100 350 (77.77)	10,000	0.0018		11/2 114	3		
かき	カキノヘタムシカ゛	5,000	0.0036	_	散布	6		
7,7 - C	N 17 - 7 Pav N	10,000	0.0018		HV-111	4		
	ハマキムシ類(リンコ゛カクモンハマキ、 チャノコカクモ	5,000	0.0036	_	散布	4		
	ンハマキ、トヒ゛ハマキ)	10,000	0.0018		HX4II	6		
	シンクイムシ類(モモシンクイ)	5,000	0.0036	_	散布	6		
	VV)/14V 類(CCVV)/1)	10,000	0.0018		EX.111	5		
りんご	キ゛ンモンハモク゛リカ゛	5,000	0.0036		#r /- :	6		
りんこ	1 /1/11/ 1/	10,000	0.0018		散布	3		
	۵۱/T۱/4184°	5,000	0.0036		##/e-/	7		
	キンモンホソカ゛	10,000	0.0018	_	散布	4		
	1. 14 5 61 4	5,000	0.0036		##./- /	6		
	ヒメホ゛クトウ	10,000	0.0018	_	散布	3		
あんず	ケムシ類(マイマイカ゛、アメリカシロヒトリ)	5,000	0.0036	_	散布	2		
うめ	ケムシ類(アメリカシロヒトリ)	5,000	0.0036	_	散布	2		
	ケムシ類(マイマイカ゛、アメリカシロヒトリ)	5,000	0.0036	_	散布	5		
すもも	シンクイムシ類(スモモヒメシンクイ)	5,000	0.0036	_	散布	3		
	ハマキムシ類(ミタ゛レカクモンハマキ、チャノコカクモ		0.0026	_	散布			
おうとう	ンハマキ、 リンコ゛カクモンハマキ)	5,000	0.0036		HX4 1	6		
	オウトウショウシ゛ョウハ゛エ	5,000	0.0036	_	散布	4		
	チャノコカクモンハマキ	2,500	0.0073	_	散布	9		
	7 (7 = 87) (7) (1	5,000	0.0036		HV-111	4		
	チャハマキ	2,500	0.0073	_	 			
茶	7 (7.14)	5,000	0.0036		HXAII	3		
	チャノホソカ゛	2,500	0.0073	_	散布	6		
	7 17 40 7 14	5,000	0.0036		II\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3		
	ヨモキ゛エタ゛シャク	2,500	0.0073		散布	6		
	111 ±7 √77	5,000	0.0036		11人1月	3		
きく	ハフエソコトウ	2,500	0.0073		±4- 4-	2		
	ハスモンヨトウ	5,000	0.0036	_	散布	2		
101.23	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,500	0.0073		#### - /, -	2		
パンジー	ハスモンヨトウ	5,000	0.0036	_	散布	2		
\.h=\.	, ware 1 on 1 da	2,500	0.0073		#/	2		
シクラメン	ハスモンヨトウ	5,000	0.0036	_	散布	2		
さくら	ケムシ類(アメリカシロヒトリ、モンクロシャチホコ)	5,000	0.0036	_	散布	4		
さざんか	クムシ類(チャドクガ)	5,000	0.0036	_	散布	3		
プラタナス	ケムシ類(アメリカシロヒトリ)	5,000	0.0036	_	散布	2		

^{*:}有効成分濃度

(2) ヨーバルトップ箱粒剤

稲についてヨーバルトップ箱粒剤(テトラニリプロール 1.5%・イソチアニル 2.0%粒剤)

を用いて実施した薬効・薬害試験の報告書を受領した。

試験設計概要を表 2.7-2 に示す。各試験区において、試験対象とした各病害虫に対して無処理区と比べて効果が認められた。

表 2.7-2 ヨーバルトップ箱粒剤の薬効・薬害試験設計概要

[h-+h-h k7	当のかりの方が		試験条件		-√* △34€
作物名	対象害虫	使用量	使用時期	使用方法	── 試験数
). 1.45.24	床土混和	1
		TO Utots	は種前	覆土混和	1
		50 g/箱	は種時(覆土前)		1
	12181.112		移植当日	育苗箱散布	7
	イネト゛ロオイムシ). 1.45.24	床土混和	1
			は種前	覆土混和	1
		75 g/箱	は種時(覆土前)		1
			移植当日	育苗箱散布	3
). 1.45.24	床土混和	2
	W - 45	TO Utots	は種前	覆土混和	1
	ツマク゛ロヨコハ゛イ	50 g/箱	は種時(覆土前)		2
			移植当日	育苗箱散布	9
			は種前	床土混和	1
		TO Utots		覆土混和	1
	コフ゛/ メ イ カ ゙	50 g/箱	は種時(覆土前)	会共然勘 左	1
			移植当日	育苗箱散布	7
稲 (箱育苗)	イ ネツトムシ). 1.45.24	床土混和	1
		TO Utots	は種前	覆土混和	2
		50 g/箱	は種時(覆土前)		1
			移植当日	育苗箱散布	6
).1.1 1.1.1.	床土混和	1
		50 lbs	は種前	覆土混和	1
	ニカメイチュウ	50 g/箱	は種時(覆土前)	**************************************	1
			移植当日	育苗箱散布	7
			1.1.17.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	床土混和	1
	12.545.05.415.	50 this	は種前	覆土混和	1
	イネミス゛ソ゛ ウムシ	50 g/箱	は種時(覆土前)	****************	1
			移植当日	育苗箱散布	7
			沙廷	床土混和	1
	77.41.	50 this	は種前	覆土混和	1
	フタオヒ゛コヤカ゛	50 g/箱	は種時(覆土前)	****************	1
			移植当日	育苗箱散布	7

lh÷thm b	44.65.4.		試験条件		34 K∆ ¥4.
作物名	対象害虫	使用量	使用時期	使用方法	一 試験数
			以 在光	床土混和	1
		50 /5h	は種前	覆土混和	1
		50 g/箱	は種時(覆土前)	育苗箱散布	1
	いもち病		移植当日	月田相飲仰	3
	V · も ら/内		は種前	床土混和	1
		75 - 155	(よ/里刊)	覆土混和	1
		75 g/箱	は種時(覆土前)	育苗箱散布	1
			移植当日	月田相耿仰	3
	苗腐敗症	50 -155	は種前	床土混和	2
	(もみ枯細菌病菌)	50 g/箱	は種時(覆土前)	育苗箱散布	5
	白葉枯病	50 g/箱	は種前	床土混和	1
			(よ/里刊	覆土混和	1
稲 (箱育苗)			は種時(覆土前)	育苗箱散布	1
	苗立枯細菌病	50 g/箱	は種前	床土混和	1
			(よ/里刊)	覆土混和	2
			は種時(覆土前)	育苗箱散布	1
			は種前	床土混和	1
	内穎褐変病	50 -155	(よ/里刊)	覆土混和	1
	門积陷炎州	50 g/箱	は種時(覆土前)	育苗箱散布	1
			移植当日	月田相飲仰	3
			は種前	床土混和	2
	まな状細帯庁	50 -1/5/5	パン(生月)	覆土混和	1
	もみ枯細菌病	50 g/箱	は種時(覆土前)	去 #燃 # <i>七</i>	2
			移植当日	育苗箱散布	3
	穂枯れ(ごま葉枯病菌)	50 g/箱	移植当日	育苗箱散布	3

2.7.2 対象作物への薬害

(1) ヨーバルフロアブル

ョーバルフロアブルについて、表 2.7-1 に示した薬効・薬害試験において薬害は認められなかった。

キャベツ、はくさい、ブロッコリー、みずな、こまつな、チンゲンサイ、いちご、ねぎ、レタス、えだまめ、だいず、さといも、未成熟とうもろこし、なす、トマト、ピーマン、きゅうり、メロン、すいか、なし、もも、ぶどう、かき、りんご、あんず、うめ、すもも、おうとう、茶、マリーゴールド、きく、パンジー、シクラメン、さくら、さざんか及びプラタナスについて、ヨーバルフロアブルを用いて実施した限界薬量薬害試験及び茶の残臭試験の報告書を受領した。

結果概要を表 2.7-3、表 2.7-4 に示す。限界薬量薬害試験の結果、薬害は認められなかった。茶の残臭試験の結果、摘採前日の使用で残臭は認められなかった。

以上から、申請作物に対する薬害について問題がないことを確認した。

表 2.7-3 ヨーバルフロアブルの限界薬量薬害試験結果概要

表 2.7-3	試験	7 7 11 7	ノアワリス	界楽量楽書試験	大阳木似安	
	場所		l I	試験条件		
作物名	実施年度	希釈 倍数 (倍)	使用 濃度* (kg ai/hL)	使用時期	使用方法	結果
	茨城 H25	100	0.182	3 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
キャベツ	茨城 H25	100	0.182	3 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	3 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
はくさい	茨城 H25	100	0.182	3 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
12 ()	茨城 H25	1,250	0.0146	3 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	2 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
ブロッコリー	茨城 H25	100	0.182	2 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	3.5 葉期	散布	茎葉に薬害は認められなかった。
こまつな	茨城 H25	2,500	0.0073	4.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	3 葉期	散布	茎葉に薬害は認められなかった。
みずな	茨城 H25	2,500	0.0073	6 葉期	散布	茎葉に薬害は認められなかった。
// · · · ·	茨城 H26	2,500	0.0073	6.5 葉期	散布	茎葉に薬害は認められなかった。
チンゲンサイ	茨城 H25	2,500	0.0073	7 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	7 葉期	散布	茎葉に薬害は認められなかった。
いちご	茨城 H25	1,250	0.0146	草丈 20cm	散布	花及び茎葉に薬害は認められな かった。
4.90	茨城 H26	1,250	0.0146	草丈 20cm	散布	花及び茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	3 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
ねぎ	茨城 H25	100	0.182	2葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
4∝ €	茨城 H25	1,250	0.0146	2.2 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H28	1,250	0.0146	4 葉期	散布	茎葉に薬害は認められなかった。

	試験			試験条件		
作物名	場所 実施 年度	希釈 倍数 (倍)	使用 濃度* (kg ai/hL)	使用時期	使用方法	結果
	茨城 H25	100	0.182	3.5 葉期	灌注 (0.5 L/セルトレイ 1 冊)	茎葉に薬害は認められなかった。
レタス	茨城 H26	100	0.182	4 葉期	灌注 (0.5 L/セルトレイ1 冊)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	4.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	4 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	3.5 葉期	灌注 (0.5 L/セルトレイ 1 冊)	茎葉に薬害は認められなかった。
非結球レタス	茨城 H26	100	0.182	4葉期	灌注 (0.5 L/セルトレイ 1 冊)	茎葉に薬害は認められなかった。
21 Mary 1	茨城 H25	1,250	0.0146	4.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	4 葉期	散布	茎葉に薬害は認められなかった。
えだまめ	茨城 H25	2,500	0.0073	さや肥大期	散布	茎葉及びさやに薬害は認められ なかった。
, 4, 2, 3, 7	茨城 H26	2,500	0.0073	さや肥大期	散布	茎葉及びさやに薬害は認められ なかった。
だいず	茨城 H25	2,500	0.0073	初生葉期	散布	茎葉に薬害は認められなかった。
, ,	茨城 H26	2,500	0.0073	初生葉期	散布	茎葉に薬害は認められなかった。
さといも	茨城 H26	2,500	0.0073	3 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H28	2,500	0.0073	4 葉期	散布	茎葉に薬害は認められなかった。
未成熟	茨城 H25	2,500	0.0073	2.5 葉期	散布	茎葉に薬害は認められなかった。
とうもろこし	茨城 H26	2,500	0.0073	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	4.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
なす	茨城 H25	100	0.182	3 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	5.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
トマト	茨城 H25	100	0.182	3 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。

	試験			試験条件		
作物名	場所実施年度	希釈 倍数 (倍)	使用 濃度* (kg ai/hL)	使用時期	使用方法	結果
	茨城 H25	100	0.182	5.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
ミニトマト	茨城 H25	100	0.182	3葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
イーレムレ	茨城 H25	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	10 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
ピーマン	茨城 H25	100	0.182	5 葉期	ぉ゚ット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	2 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	3.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
きゅうり	茨城 H25	100	0.182	3 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	2.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	1,250	0.0146	5.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	2.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
メロン	茨城 H25	100	0.182	2.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H28	1,250	0.0146	2 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H25	100	0.182	3.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
すいか	茨城 H25	100	0.182	3.5 葉期	ポット灌注 (25 mL/株)	茎葉に薬害は認められなかった。
	茨城 H25	1,250	0.0146	3.5 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H28	1,250	0.0146	4 葉期	散布	茎葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
日本なし	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。

	試験			試験条件		
作物名	場所実施年度	希釈 倍数 (倍)	使用 濃度* (kg ai/hL)	使用時期	使用方法	結果
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
五分と	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
西洋なし	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
5 5	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
ぶどう	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
かき	茨城 H26	2,500	0.0073	開花期	散布	花及び枝葉に薬害は認められなかった。
,, c	茨城 H27	2,500	0.0073	開花期	散布	花及び枝葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
りんご	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
7,6 =	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H28	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
あんず	茨城 H28	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	長野 H28	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H25	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
うめ	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
すもも	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。

	試験	H 100 (11)				
作物名	場所実施	希釈 倍数	使用 濃度*	使用時期	使用方法	結果
	年度	(倍)	(kg ai/hL)			
	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
すもも	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H26	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
おうとう	茨城 H26	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
	茨城 H27	2,500	0.0073	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2,500	0.0073	新梢伸長期	散布	枝葉に薬害は認められなかった。
茶	静岡 H26	1,250	0.0146	一番茶伸長期	散布	茎葉に薬害は認められなかった。
/K	静岡 H27	1,250	0.0146	一番茶伸長期	散布	茎葉に薬害は認められなかった。
マリー	茨城 H26	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
ゴールド	茨城 H27	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
きく	茨城 H26	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
e v	茨城 H27	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
パンジー	茨城 H26	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
7.55	茨城 H27	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
シクラメン	茨城 H26	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
2777.2	茨城 H27	1,250	0.0146	開花期	散布	花及び茎葉に薬害は認められなかった。
	茨城 H25	2500	0.0146	開花期	散布	花に薬害は認められなかった。
さくら	茨城 H26	2500	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。
6 (9	茨城 H26	2500	0.0146	開花期	散布	花に薬害は認められなかった。
	茨城 H27	2500	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。
さざんか	茨城 H26	1,250	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。
2.2.70%	茨城 H27	1,250	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。
プラタナス	茨城 H26	1,250	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。
* . 右动战八連四	茨城 H27	1,250	0.0146	新梢伸長期	散布	枝葉に薬害は認められなかった。

^{*:}有効成分濃度

	試験			試験条件		
作物名	場所実施年度	希釈 倍数	使用 濃度* (kg ai/hL)	使用時期	使用方法	結果
茶	高知 H28	2,500	0.0073	摘採 14 日前 摘採 7 日前 摘採 3 日前 摘採前日	散布	いずれの試験区も残臭は認められなかった。
衆	福岡 H28	2,500	0.0073	摘採 14 目前 摘採 7 目前 摘採 3 目前 摘採前日	散布	いずれの試験区も残臭は認められなかった。

表 2.7-4 ヨーバルフロアブルの茶の残臭試験結果概要

(2) ヨーバルトップ箱粒剤

ョーバルトップ箱粒剤について、表 2.7-2 に示した薬効・薬害試験において薬害は認められなかった。

稲について、ヨーバルトップ箱粒剤を用いて実施した限界薬量薬害試験の報告書を受領 した。

結果概要を表 2.7-5 に示す。限界薬量薬害試験の結果、葉の黄化症状や根張りの不良が認められたが、移植後の生育に影響はなく実用上問題ないと判断した。

以上から、申請作物に対する薬害について問題がないことを確認した。

表 2.7-5 ヨーバルトップ箱粒剤の限界薬量薬害試験結果概要

	試験場所		試験条	件	
作物名	実施年度	使用量	使用時期使用方法		結果
	愛知 H27	50 g/箱 75 g/箱 150 g/箱	は種前	床土混和	いずれの試験区も茎葉及び根に薬害は認められなかった。
	山口 H27	50 g/箱 150 g/箱	は種前	床土混和	150g 区において葉先枯れが認められたが、移植 後の生育に影響はなかった。
	鳥取 H28	50 g/箱 75 g/箱 150 g/箱	は種前	覆土混和	いずれの試験区も茎葉及び根に薬害は認められなかった。
稲 (箱育苗)	佐賀 H28	50 g/箱 150 g/箱	は種前	覆土混和	150g 区において葉に黄化症状、根張りの不良が みられたが、移植後の生育に影響はなかった。
和日(相目田)	千葉 H26	50 g/箱 75 g/箱 150 g/箱	は種時 (覆土前)	散布	いずれの試験区も茎葉及び根に薬害は認められなかった。
	茨城 H26	50 g/箱 150 g/箱	は種時 (覆土前)	散布	いずれの試験区も茎葉及び根に薬害は認められなかった。
	宮城 H26	50 g/箱 75 g/箱 150 g/箱	移植当日	育苗箱散布	いずれの試験区も茎葉及び根に薬害は認められなかった。
	千葉 H26	50 g/箱 150 g/箱	移植当日	育苗箱散布	いずれの試験区も茎葉及び根に薬害は認められなかった。

^{*:}有効成分濃度

2.7.3 周辺農作物への薬害

(1)漂流飛散による薬害

① ヨーバルフロアブル

ばれいしょ、かぼちゃ、かぶ、あずき及び小麦について、ヨーバルフロアブルを用いて 実施した漂流飛散による薬害試験を受領した。

結果概要を表 2.7-6 に示す。試験の結果、薬害は認められなかった。 以上から、漂流飛散による薬害について問題ないと判断した。

表 2.7-6 ヨーバルフロアブルの漂流飛散による薬害試験結果概要

	試験		試験条件			
作物名	場所 実施 年度	希釈 倍数 (倍)	処理 濃度* (kg ai/hL)	処理時期	処理方法	結果
ばれいしょ	茨城 H26	2,500	0.0073	5 葉期	散布	茎葉に薬害は認められなかった。
17411, CT	茨城 H27	2,500	0.0073	3 葉期	散布	茎葉に薬害は認められなかった。
かぼちゃ	茨城 H26	2,500	0.0073	2 葉期	散布	茎葉に薬害は認められなかった。
かならや	茨城 H27	2,500	0.0073	2.5 葉期	散布	茎葉に薬害は認められなかった。
かぶ	茨城 H26	2,500	0.0073	4 葉期	散布	茎葉に薬害は認められなかった。
1,1-25	茨城 H27	2,500	0.0073	4 葉期	散布	茎葉に薬害は認められなかった。
あずき	茨城 H26	2,500	0.0073	4 葉期	散布	茎葉に薬害は認められなかった。
<i>W</i>) y E	茨城 H28	2,500	0.0073	4 葉期	散布	茎葉に薬害は認められなかった。
小麦	茨城 H26	2,500	0.0073	7 葉期	散布	茎葉に薬害は認められなかった。
小久	茨城 H27	2,500	0.0073	7 葉期	散布	茎葉に薬害は認められなかった。

^{*:}有効成分濃度

② ヨーバルトップ箱粒剤

剤型が粒剤であり、漂流飛散による周辺作物への薬害が生ずるおそれがないと考えられたため、試験実施は不要と判断した。

(2) 水田水の流出による薬害

テトラニリプロールの用途は殺虫剤であるため、試験実施は不要と判断した。

(3) 揮散による薬害

テトラニリプロールの用途は殺虫剤であるため、試験実施は不要と判断した。

テトラニリプロール - II. 審査報告 - 2. 審査結果

2.7.4 後作物への薬害

ほ場土壌残留試験(2.5.2.2 参照)における総テトラニリプロール 1 の 50 %消失期(DT_{50})は、水田では壌土で 9.3 日、シルト質壌土で 26 日、畑地では火山灰壌土で 43 日、沖積壌土で 49 日であり、100 日を超えないため、試験実施は不要と判断した。なお、ヨーバルトップ箱 粒剤に含有されるイソチアニルについて、きくに薬害を及ぼすおそれがあることから、使用上の注意事項のその旨の記載が必要であると判断した。

り 土壌中の評価対象化合物であるテトラニリプロール及び代謝物 M22 の合量値 (テトラニリプロール等量換算)