資料2-3

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細① ピリダベン

1. 分析対象物質

ピリダベン

化学名: 2-tert-butyl-5-(4-tert-butylbenzylthio)-4-chloropyridazin-3(2H)-one

分子式: C₁₉H₂₅ClN₂OS

分子量: 364.9

構造式:

性 状: 無色結晶

融 点: 111~112℃

蒸気圧: <0.01 mPa (25°C)

分配係数: log Pow = 6.37 (23±1℃, 蒸留水)

溶解性: 水 0.012 mg/L (24°C)

アセトン 460, エタノール 57, ヘキサン 10, ベンゼン 110,

キシレン 390, シクロヘキサン 320, n-オクタノール 63 (以上g/L, 20°C)

安定性: 90日間50℃で安定, 光に対して不安定,

暗所で30日間,加水分解に対して安定 (pH5, 7, 9, 25°C)

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

ピリダベン標準品:純度100%(和光純薬工業製)

アセトン,トルエン,メタノール:残留農薬試験用(和光純薬工業製)

メタノール:残留農薬試験用(和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

酢酸アンモニウム: 試薬特級 (和光純薬工業製)

グラファイトカーボンミニカラム: InertSep GC, 500 mg/6 mL (ジーエルサイエンス製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製)

液体クロマトグラフ・質量分析計システム (LC-MS/MS):

島津製作所 Nexera X2 System

サイエックス Triple Quad 4500

データ処理装置: サイエックス Analyst

4. 液体クロマトグラフ・質量分析計の操作条件

4.1. 高速液体クロマトグラフ

カラム: ZORBAX Eclipse Plus C18 (アジレント・テクノロジー製)

内径 2.1 mm, 長さ 100 mm, 粒径 1.8 μm

溶離液: メタノール/5 mmol/L 酢酸アンモニウム

70:30 (5 min) - (2 min) - 95:5 (2.9 min)

流速: 0.3 mL/min

カラム温度: 40℃ 試料注入量: 2 μL

保持時間: 約 8.6 min

4.2. 質量分析計

イオン化法: エレクトロスプレー イオン化法 (ESI)

正モード

イオン化温度: 700°C

イオンスプレー電圧: 5500 V

Declustering Potential: 81 V

Collision Energy: 33 V

Collision Cell Exit Potential: 12 V

イオン検出法: MRM

モニタリングイオン: プリカーサーイオン m/z 365.1

プロダクトイオン m/z 309.0

5. 検量線の作成

ピリダベン標準品 10.0 mg を 50 mL 容メスフラスコに精秤し、アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をアセトンで希釈して $2 \, \text{mg/L}$ 標準溶液を調製し、 さらメタノール/水 (70:30, v/v) 混液で希釈して $0.1 \, \text{mg/L}$ 標準溶液を調製した。この溶液を同混液で希釈して 0.00025, 0.0005, 0.0025, 0.005 及び $0.01 \, \text{mg/L}$ の標準溶液を調製した。この溶液を前記条件の液体クロマトグラフ・質量分析計に注入し、データ処理装置を用い

てピリダベンのピーク面積を測定し、横軸に重量 (ng)、縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた(4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2 組の果実分析用試料のうち 1 組をミキサーで均一化して調製試料を作製した。果肉分析用試料についても果実と同様に調製試料を作製した。各調製試料は 2 組以上作製し、それぞれ密封して冷凍保存 $(-20^{\circ}\text{C}\,\text{以下})$ した。分析時にその 1 組を取り、分析に供した。

6.2. 抽出

均一化した試料 20 g をはかりとり,アセトン $100 \, \text{mL}$ を加え, $30 \, \text{分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し,残渣をアセトン <math>50 \, \text{mL}$ で洗い,同様にろ過した。ろ液を合わせ,アセトンで $200 \, \text{mL}$ に定容した後,その $2.5 \, \text{mL}$ (試料 $0.25 \, \text{g}$ 相当量)を分取した。

6.3.グラファイトカーボンミニカラムによる精製

グラファイトカーボンミニカラムにメタノール及び水を順次 5 mL ずつ流下し、前処理した。前項で分取した抽出液に水 2.5 mL を添加して混和した後、グラファイトカーボンミニカラムに移して流下した。さらにメタノール/水 (90:10, v/v) 混液 5 mL を流下し、これらの流出液を捨てた。次に、メタノール/トルエン (75:25, v/v) 混液 10 mL を流下し、溶出液を取り、 40° C 以下の水浴中で減圧濃縮し、最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のメタノール/水 (70:30, v/v) 混液に溶解した。この溶液を前記条件の液体クロマトグラフ・質量分析計に注入してピーク面積を求め、検量線よりピリダベンの重量を求め、試料中の残留濃度を算出した。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

量定量限界
L) (mg/kg)
0.01
量 検出限界
L) (mg/kg)
0.005

8. 回収率

分析法確認のため,高知の無処理試料*を用いて,0.01 mg/kg (定量限界相当),0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚,無添加試料は 2 連分析し,全て定量限界未満であった。回収率の算出結果を示す。

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	104,	103,	101,	101	2
		100,	99		101	2
高知	0.25	95,	95,	93,	93	3
		92,	89		93	3
高知	0.01	76,	75,	72,	73	4
		71,	70		13	4

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	107,	102,	102,	102	2
		101,	99		102	3
高知	0.25	104,	103,	102,	100	4
		98,	95		100	4
高知	0.01	103,	102,	96,	06	0
		93,	85		96	8

^{*}H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20 検体を超えるごとに,各 1 検体の無処理試料及び 0.1 mg/kg 添加試料 (内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施の FAPAS 技能試験 (Fera Science Ltd.) における Z スコアは全て Z<2 であった。

9.1.果肉

	使用したほ場	回収率	無処理区の分析値
カ か ロ	使用したは場	(%)	(mg/kg)
2015/8/28	宮崎	93	< 0.01
2015/11/9	高知	87	< 0.01
2015/11/10	茨城	77	< 0.01
2015/11/24	宮崎	89	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2.果実

	使用したほ場	回収率	無処理区の分析値
<u> </u>	(C) (1) (C) (C) (C)	(%)	(mg/kg)
2015/8/28	宮崎	95	< 0.01
2015/11/9	高知	82	< 0.01
2015/11/10	茨城	95	< 0.01
2015/11/24	宮崎	91	< 0.01

回収試料の添加濃度: 0.1 mg/kg

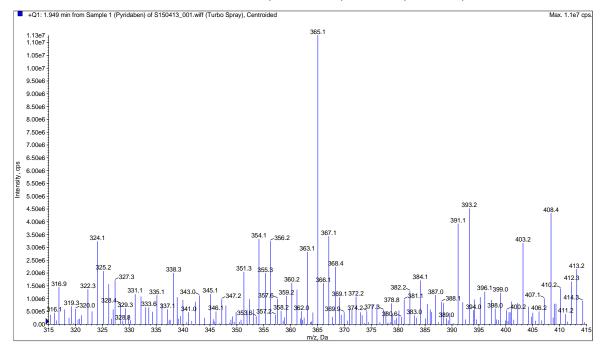
^{*}抽出日を記載

^{*}抽出日を記載

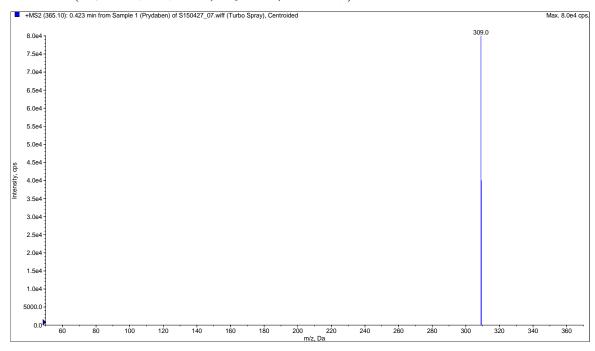
10. 保存安定性確認

均一化した各無処理試料にピリダベンを添加し、冷凍暗所 (−20°C 以下)に保存した。 一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安 定性の結果を示す。

10.1.果肉


は担々	添加濃度	保存期間	回川	又率	平均回収率
ほ場名 	(mg/kg)	(mg/kg) (日)		6)	(%)
茨城	0.5	27 (2015/10/28-11/24)	93,	92	92
高知	0.5	41 (2015/10/14-11/24)	88,	88	88
宮崎	0.5	116 (2015/7/31-11/24)	93,	90	92

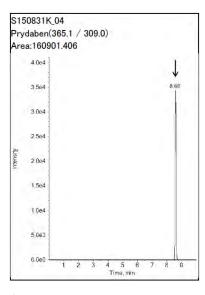
10.2.果実


)工-担力	添加濃度	保存期間	口	[[[]]]	平均回収率
ほ場名	(mg/kg)	g) (目)		6)	(%)
茨城	0.5	27 (2015/10/28-11/24)	100,	96	98
高知	0.5	41 (2015/10/14-11/24)	91,	89	90
宮崎	0.5	116 (2015/7/31-11/24)	92,	90	91

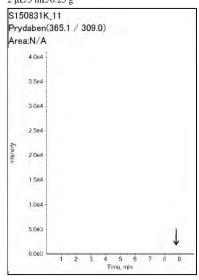
付図-1. ピリダベンのマススペクトル

ピリダベンのマススペクトル (一次イオン) の一例 (正モード)

ピリダベンのプロダクトスキャンスペクトルの一例 (プリカーサーイオン; m/z=365.1, 正モード)

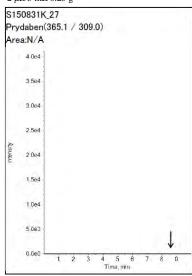


付図-2. ピリダベンのクロマトグラム (代表例) 付図-2-1. 果肉

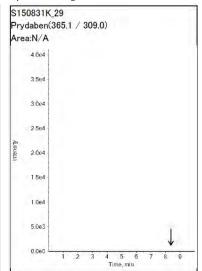

標準品 0.02 ng

標準品 0.001 ng

宮崎 無処理 2 μL/5 mL/0.25 g



宮崎 2回処理3日後 2 μL/5 mL/0.25 g


S150831K_25
Prydaben(365.1 / 309.0)
Area:N/A
40e4
35e4
30e4
25e4

1.5e4
1.0e4
5.0e3

宮崎 2回処理7日後 2 μL/5 mL/0.25 g

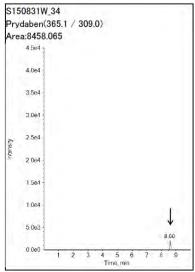
宮崎 2回処理 14 目後 2 μL/5 mL/0.25 g

付図-2-2. 果実

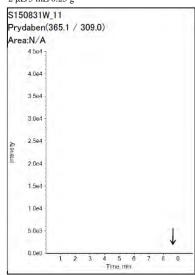
2.0e4

1.5e4

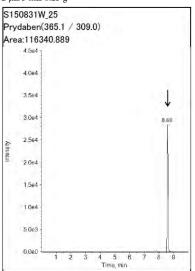
1 0e4

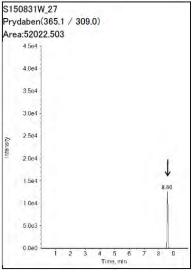

5.0e3

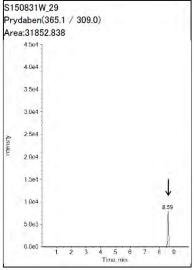
0.0e0


S150831W_31
Prydaben(365.1 / 309.0)
Area:150756.394

4.5e4
4.0e4
3.5e4
3.0e4


標準品 0.001 ng


宮崎 無処理 2 μL/5 mL/0.25 g


宮崎 2回処理3日後 2 μL/5 mL/0.25 g

宮崎 2回処理7日後 2 μL/5 mL/0.25 g

宮崎 2回処理14日後2 μL/5 mL/0.25 g

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細② TPN

1. 分析対象物質

TPN

化学名: tetrachloroisophthalonitrile

分子式: $C_8Cl_4N_2$ 分子量: 265.9

構造式:

CI CI CN

性 状: 無色結晶 融 点: 252.1°C

蒸気圧: 0.076 mPa (25°C)

分配係数: $\log P_{OW} = 2.92 (25^{\circ}C)$

溶解性: 水 0.81 mg/L (25°C)

アセトン 20.9, 1,2-ジクロロエタン 22.4, 酢酸エチル 13.8,

n-ヘプタン 0.2, メタノール 1.7, キシレン 74.4 (以上g/L)

安定性: 室温で安定、水溶液中や結晶状態において紫外線照射に対して安定、

酸性溶液中や弱アルカリ溶液中で安定 (pH>9で徐々に加水分解)

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

TPN 標準品:純度 99.9% (和光純薬工業製)

アセトニトリル, アセトン, トルエン, ヘキサン: 残留農薬試験用 (和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

リン酸: 試薬特級 (和光純薬工業製)

グラファイトカーボン/NH₂積層ミニカラム:

Supelclean ENVI-Carb/LC-NH₂, 500 mg/500 mg/6 mL (シグマアルドリッチ製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製) ガスクロマトグラフ (ECD): 7890A GC System (アジレント・テクノロジー製) データ処理装置: OpenLAB CDS ChemStation Edition (アジレント・テクノロジー製)

4. ガスクロマトグラフ (ECD) の操作条件

カラム: Rtx-1 (Restek 製)

内径 0.53 mm, 長さ 30 m, 膜厚 1.0 μm

温度: カラム 210°C (1 min)-10/min-270°C (1 min)- 10°C /min-

280°C (3 min)

注入口 280°C, 検出器 300°C

ガス流量: キャリアー (He) 6 mL/min

メイクアップガス (N₂) 54 mL/min

注入量: 2 μL

保持時間: 約 3.0 min

5. 検量線の作成

TPN 標準品 10.0 mg を 50 mL 容メスフラスコに精秤し、アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をアセトンで希釈して 10 mg/L 標準溶液を調製し、さらにこの標準溶液をヘキサンで希釈して 0.2 mg/L 標準溶液を調製した。この溶液をヘキサンで希釈して 0.0002, 0.0004, 0.002, 0.004 及び 0.008 mg/L の標準溶液を調製した。この溶液を前記条件のガスクロマトグラフに注入し、データ処理装置を用いて TPN のピーク面積を測定し、横軸に重量 (ng)、縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた (4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2組の果実分析用試料のうち1組を適切な大きさに細切した。細切試料1 kgに対して10% リン酸溶液500 g を加えてミキサーで均一化し、調製試料を作製した。果肉分析用試料についても果実と同様に調製試料を作製した。各調製試料は2組以上作製し、それぞれ密封して冷凍保存 $(-20^{\circ}\text{C}$ 以下)した。分析時にその1組を取り、分析に供した。

6.2. 抽出

均一化した試料 30 g (試料 20 g 相当量) をはかりとり、アセトン 100 mL を加え、30 分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し、残渣をアセトン <math>50 mL で洗

い, 同様にろ過した。ろ液を合わせ, アセトンで 200 mL 定容とし, その 2 mL (試料 $0.2~\mathrm{g}$ 相当量) を分取した。

6.3. グラファイトカーボン/NH2積層ミニカラムによる精製

グラファイトカーボン/ NH_2 積層ミニカラムにアセトニトリル 5 mL を流下し前処理した。分取した抽出液を積層ミニカラムに流下した。さらにアセトニトリル 5 mL を流下し、これらの流出液を捨てた。次に、アセトニトリル/トルエン (75:25, v/v) 混液 20 mL を流下し、溶出液を取り、 40° C 以下の水浴中で減圧濃縮し、最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のヘキサンに溶解した。この溶液を前記条件のガスクロマトグラフに注入 してピーク面積を求め、検量線より TPN の重量を求め、試料中の残留濃度を算出した。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

定量限界相当量	試料採取量	最終溶液	注入量	定量限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.0008	0.2	5	2	0.01
最小検出量	試料採取量	最終溶液	注入量	検出限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.0004	0.2	5	2	0.005

8. 回収率

分析法確認のため,高知の無処理試料*を用いて,0.01 mg/kg (定量限界相当),0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚,無添加試料は 2 連分析し,全て定量限界未満であった。回収率の算出結果を示す。

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	93,	92,	87,	90	4
		87,	86		89	4
高知	0.25	91,	90,	88,	89	2
		87,	87		89	
高知	0.01	106,	106,	105,	105	1
		103,	103,		103	1

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	96,	92,	89,	00	5
		86,	85		90	3
高知	0.25	94,	90,	90,	90	3
		89,	88		90	3
高知	0.01	108,	108,	108,	107	2
		107,	104,		107	2

^{*}H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20 検体を超えるごとに,各 1 検体の無処理試料及び 0.1 mg/kg 添加試料 (内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施の FAPAS 技能試験 (Fera Science Ltd.) における Z スコアは全て Z<2 であった。

9.1.果肉

₩		回収率	無処理区の分析値
分析日*	使用したほ場	(%)	(mg/kg)
2015/9/2	宮崎	83	< 0.01
2015/11/2	高知	70	< 0.01
2015/11/27	茨城	79	< 0.01
2015/12/14	茨城	99	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2.果実

	使用したほ場	回収率	無処理区の分析値
	(C) 13 (C) (C) (C)	(%)	(mg/kg)
2015/9/2	宮崎	89	< 0.01
2015/11/2	高知	84	< 0.01
2015/11/27	茨城	88	< 0.01
2015/12/14	茨城	103	< 0.01

回収試料の添加濃度: 0.1 mg/kg

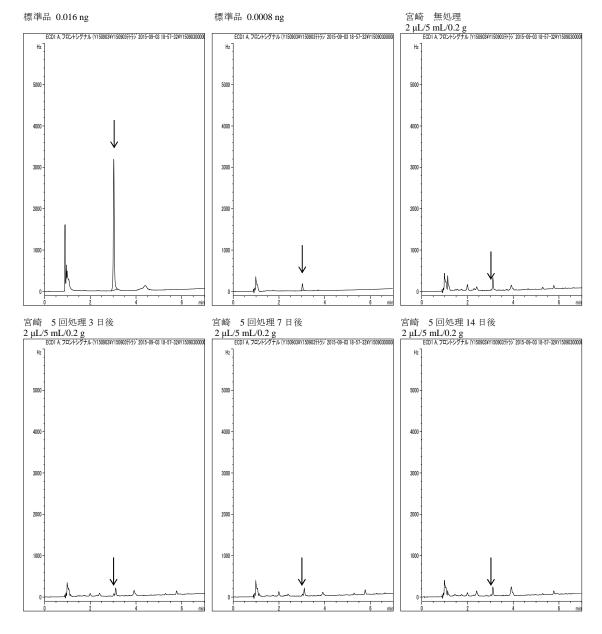
^{*}抽出日を記載

^{*}抽出日を記載

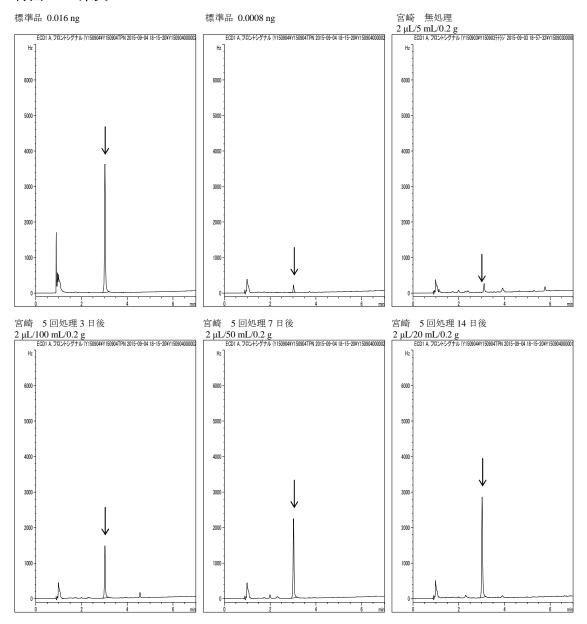
10. 保存安定性確認

均一化した各無処理試料に TPN を添加し、冷凍暗所 (-20°C 以下) に保存した。一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安定性の結果を示す。

10.1.果肉


ほ場名	添加濃度 保存期間		回収率		平均回収率
(よ場石	(mg/kg)	(日)	(%	6)	(%)
茨城	0.5	47 (2015/10/28-12/14)	89,	87	88
高知	0.5	61 (2015/10/14-12/14)	95,	90	92
宮崎	0.5	136 (2015/7/31-12/14)	94,	91	92

10.2.果実


ほ担 夕	添加濃度 保存期間		回収率		平均回収率
ほ場名 	(mg/kg)	(日)	(%)		(%)
茨城	0.5	47 (2015/10/28-12/14)	97,	86	92
高知	0.5	61 (2015/10/14-12/14)	99,	96	98
宮崎	0.5	136 (2015/7/31-12/14)	77,	72	74

付図-1. TPNのクロマトグラム (代表例)

付図-1-1. 果肉

付図-1-2. 果実

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細③ キノキサリン系

1. 分析対象物質

キノキサリン系

化学名: S,S-(6-methylquinoxaline-2,3-diyl) dithiocarbonate

分子式: $C_{10}H_6N_2OS_2$

分子量: 234.3

構造式:

CH3 N S

性 状: 黄色結晶

融 点: 170°C

蒸気圧: 0.026 mPa (20°C)

分配係数: $\log P_{OW} = 3.78 (20^{\circ}C)$

溶解性: 水 1 mg/L (20°C)

トルエン 25, ジクロロメタン 40, ヘキサン 1.8,

イソプロパノール 0.9, シクロヘキサノン 18, DMF 10 (以上g/L, 20°C)

安定性: 通常の条件下で比較的安定

アルカリ溶液中では加水分解

加水分解半減期 (22°C); 10日 (pH4), 80時間 (pH7), 225分 (pH9)

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

キノキサリン系標準品:純度99.5%(和光純薬工業製)

アセトニトリル, アセトン, 酢酸エチル, ヘキサン: 残留農薬試験用 (和光純薬工業製)

アセトニトリル: LC/MS 用 (和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

ギ酸:高速液体クロマトグラフィー用 (関東化学製)

リン酸: 試薬特級 (和光純薬工業製)

多孔性ケイソウ土カラム: InertSep K-Solute, 20 mL 容 (ジーエルサイエンス製)

シリカゲルミニカラム: Sep-Pak シリカカートリッジ, プラス (ウォーターズ製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製)

液体クロマトグラフ・質量分析計システム (LC-MS/MS):

1290 HPLC 6460 Triple Quad LC/MS (アジレント・テクノロジー製)

データ処理装置: MassHunter (アジレント・テクノロジー製)

4. 液体クロマトグラフ・質量分析計の操作条件

4.1. 高速液体クロマトグラフ

カラム: ZORBAX Eclipse Plus C18 (アジレント・テクノロジー製)

内径 2.1 mm, 長さ 100 mm, 粒径 1.8 μm

アセトニトリル/0.1%ギ酸 溶離液:

60:40 – (5 min) – 95:5 (2 min)

流速: 0.2 mL/min

カラム温度: 40°C 試料注入量: 5 μL

保持時間: 約 4.6 min

4.2. 質量分析計

イオン化法: エレクトロスプレー イオン化法 (ESI)

正モード

300°C 乾燥ガス温度: 乾燥ガス流量: 5 L/min ネブライザー圧力: 45 psi シースガス温度: 400°C シースガス流量: 11 L/min

イオン導入電圧: 3500 V

フラグメンター電圧: 100 V

コリジョン電圧: 15 V (コリジョンガス; N₂)

イオン検出法: MRM

モニタリングイオン: プリカーサーイオン m/z 235.0

プロダクトイオン m/z 207.2

5. 検量線の作成

キノキサリン系標準品 10.1 mg を 50 mL 容メスフラスコに精秤し,アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をアセトンで希釈して 10 mg/L 標準溶液を調製し, さらにこの標準溶液をアセトンで希釈して 0.2 mg/L 標準溶液を調製した。この溶液をアセ トニトリル/水 (50:50, v/v) 混液で希釈して 0.0001, 0.0002, 0.001, 0.002 及び 0.004 mg/L の標準溶液を調製した。この溶液を前記条件の液体クロマトグラフ・質量分析計に注入し、データ処理装置を用いてキノキサリン系のピーク面積を測定し、横軸に重量 (ng)、縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた (4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2組の果実分析用試料のうち1組を適切な大きさに細切した。細切試料1kgに対して10% リン酸溶液500gを加えてミキサーで均一化し、調製試料を作製した。果肉分析用試料に ついても果実と同様に調製試料を作製した。各調製試料は2組以上作製し、それぞれ密封 して冷凍保存(-20℃以下)した。分析時にその1組を取り、分析に供した。

6.2. 抽出

均一化した試料 30 g (試料 20 g 相当量)をはかりとり、アセトン 100 mL を加え、30 分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し、残渣をアセトン <math>50 mL で洗い、同様にろ過した。ろ液を合わせ、アセトンで 200 mL に定容した後、その 2 mL (試料 0.2 g 相当量)を分取した。

6.3. 精製

6.3.1. 多孔性ケイソウ土カラムによる精製

分取した抽出液に水 15 mL を添加後,注射針を装着した多孔性ケイソウ土カラムに流下した。5 分間放置後, ヘキサン 20 mL で容器内を洗って多孔性ケイソウ土カラムに移して流下した。さらにヘキサン 40 mL で同様の操作を繰り返し,全溶出液を取り,40℃以下の水浴中で減圧濃縮し,最後は窒素気流下で溶媒を留去した。

6.3.2. シリカゲルミニカラムによる精製

シリカゲルミニカラムにヘキサン $10\,\,\mathrm{mL}$ を流下し、前処理した。残留物をヘキサン $5\,\,\mathrm{mL}$ に溶解し、シリカゲルミニカラムに移して流下した。 さらにヘキサン $5\,\,\mathrm{mL}$ を流下し、これらの流出液を捨てた。次に、ヘキサン/酢酸エチル $(98:2,\,\mathrm{v/v})$ 混液 $10\,\,\mathrm{mL}$ を流下し、溶出液を取り、 $40^{\circ}\mathrm{C}$ 以下の水浴中で減圧濃縮し、最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のアセトニトリル/水 (50:50, v/v) 混液に溶解した。この溶液を前記条件 の液体クロマトグラフ・質量分析計に注入してピーク面積を求め、検量線よりキノキサリ ン系の重量を求め、試料中の残留濃度を算出した。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

定量限界相当量	試料採取量	最終溶液	注入量	定量限界
(ng)	(g)	(mL)	(μL)	(mg/kg)
0.001	0.2	10	5	0.01
最小検出量	試料採取量	最終溶液	注入量	検出限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.0005	0.2	10	5	0.005

8. 回収率

分析法確認のため、高知の無処理試料*を用いて、0.01 mg/kg (定量限界相当)、0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚、無添加試料は 2 連分析し、全て定量限界未満であった。回収率の算出結果を示す。

*H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)	
高知	5	95,	94,	94,	0.4	1	
		94,	93		94	1	
高知	0.25	98,	98,	97,	07	1	
		97,	97		97	1	
高知	0.01	95,	95,	94,	0.4	1	
		93,	92		94	1	

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)	
高知	5	97,	97,	96,	06	1	
		96,	96		96	1	
高知	0.25	98,	98,	97,	97	1	
		97,	97		91	1	
高知	0.01	98,	98,	98,	00		
		98,	97		98	0	

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20検体を超えるごとに,各1検体の無処理試料及び0.1 mg/kg添加試料(内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施のFAPAS技能試験(Fera Science Ltd.)におけるZスコアは全てZ<2であった。

9.1.果肉

ハ エヒ ↦ *	仕田)よった 旧	回収率	無処理区の分析値
分析日*	使用したほ場	(%)	(mg/kg)
2015/9/2	宮崎	91	< 0.01
2015/11/4	高知	106	< 0.01
2015/11/27	茨城	104	< 0.01
2015/12/14	茨城	103	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2.果実

	使用したほ場	回収率	無処理区の分析値
		(%)	(mg/kg)
2015/9/2	宮崎	94	< 0.01
2015/11/4	高知	108	< 0.01
2015/11/27	茨城	105	< 0.01
2015/12/14	茨城	100	< 0.01

回収試料の添加濃度: 0.1 mg/kg

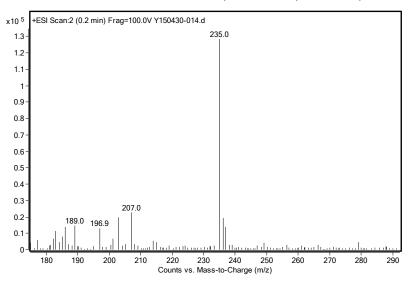
^{*}抽出日を記載

^{*}抽出日を記載

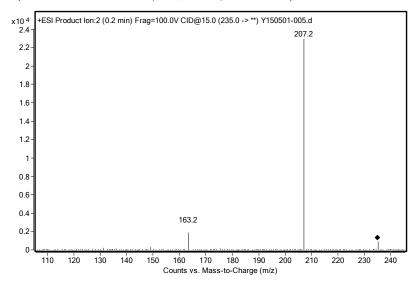
10. 保存安定性確認

均一化した各無処理試料にキノキサリン系を添加し、冷凍暗所 (−20°C 以下)に保存した。一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安定性の結果を示す。

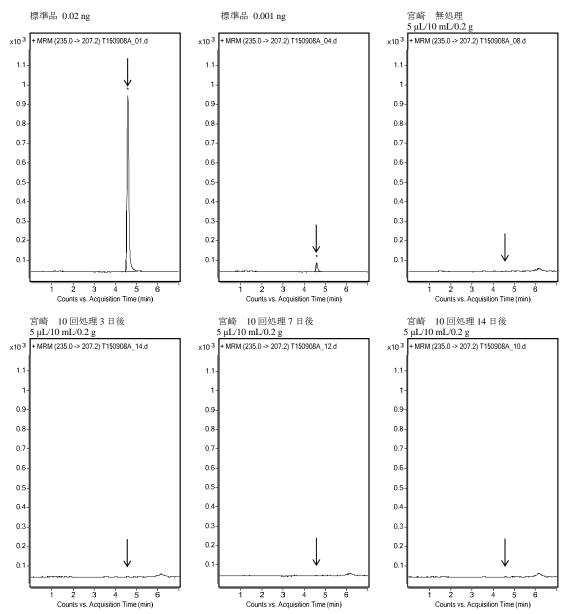
10.1.果肉

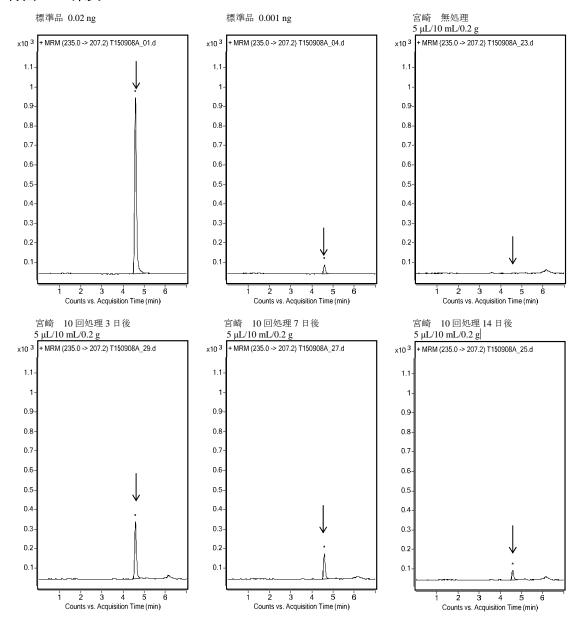

ほ場名	添加濃度 保存期間		口	収率	平均回収率
は場名	(mg/kg)	(目)	(%)		(%)
茨城	0.5	47 (2015/10/28-12/14)	104,	103	104
高知	0.5	61 (2015/10/14-12/14)	103,	103	103
宮崎	0.5	136 (2015/7/31-12/14)	98,	97	98

10.2.果実


ほ場名	添加濃度 保存期間		回収率		平均回収率
(よ場石	(mg/kg)	(日)	(%)		(%)
茨城	0.5	47 (2015/10/28-12/14)	104,	104	104
高知	0.5	61 (2015/10/14-12/14)	104,	103	104
宮崎	0.5	136 (2015/7/31-12/14)	98,	97	98

付図-1. キノキサリン系のマススペクトル


キノキサリン系のマススペクトル (一次イオン) の一例 (正モード)


キノキサリン系のプロダクトスキャンスペクトルの一例 (プリカーサーイオン;m/z=235.0,正モード)

付図-2. キノキサリン系のクロマトグラム (代表例) 付図-2-1. 果肉

付図-2-2. 果実

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細④ 試料重量,作物写真

1.試料重量等

101/4-5	An rm	φ ⊅ \Β	亚	公式护手具	ツントロー	アイトロッエや	壬 目 1	J. (0/)	田中の回と
試料	処理	経過	平均重量	総平均重量	送付量	送付量の平均	重量比	七(%)	果皮の厚さ
	回数	日数	(kg/個)	(kg/個)	(kg)	(kg)	果肉	果皮	(mm)
茨城	0	_	1.46	1.35	14.6	8.54	89	11	2.1
	C	3	1.27		6.34		89	11	2.2
	C	7	1.28		6.38		88	12	2.1
	C	14	1.37		6.85		89	11	2.1
							平均	89:11	平均 2.1
高知	0	_	1.36	1.42	13.6	9.89	91	9	2.0
	C	3	1.44		8.62		90	10	2.1
	C	7	1.45		8.68		90	10	2.1
	C	14	1.44		8.65		88	12	2.2
							平均	90:10	平均 2.1
宮崎	0	_	1.38	1.31	24.8	12.0	89	11	1.9
	C	3	1.17		6.99		91	9	2.0
	C	7	1.34		8.03		90	10	2.1
	C	14	1.33		8.00		90	10	2.0
							平均	90:10	平均 2.0

3 ほ場の総平均重量

1.36 kg/個

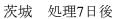
C: ピリダベンは2回処理

TPN は 5 回処理

キノキサリン系は10回処理

2.作物写真

2.1.茨城



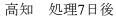
IET 15-1001 H27 作物? ルーフ 化 メロン 日植防茨城 3 日後 (6-1)

茨城 無処理

茨城 処理3日後

茨城 処理14日後

2.2.高知



1ET 15-1001 H27 作物ゲループ化 メロン 日植防高知 3 日後(0-1)

高知 無処理

高知 処理3日後

高知 処理14日後

2.3.宮崎

宮崎 無処理

宮崎 処理3日後

宮崎 処理7日後

宮崎 処理14日後

資料2-4

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細① テトラジホン

1. 分析対象物質

テトラジホン

化学名: 4-chlorophenyl 2,4,5-trichlorophenyl sulfone

分子式: C₁₂H₆Cl₄O₂S

分子量: 356.0

構造式:

 $CI - SO_2 - CI$

性 状: 無色結晶

融 点: 146°C

蒸気圧: 9.4×10⁻⁷ mPa (25°C)

分配係数: $\log P_{OW} = 4.61$

溶解性: 水 0.078 mg/L (20°C)

アセトン 67.3, メタノール 3.46, 酢酸エチル 67.3,

ヘキサン 1.52, ジクロロメタン 297, キシレン 105 (以上g/L, 20°C)

安定性: 非常に安定(強酸,強アルカリに対して安定),

熱や紫外線照射に対して安定,

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

テトラジホン標準品:純度 99.9% (和光純薬工業製)

アセトン, 酢酸エチル, ヘキサン: 残留農薬試験用 (和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

多孔性ケイソウ土カラム: InertSep K-Solute, 5 mL 容 (ジーエルサイエンス製)

グラファイトカーボンミニカラム: InertSep GC, 500 mg/6 mL(ジーエルサイエンス製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製) ガスクロマトグラフ (ECD): 7890A GC System (アジレント・テクノロジー製) データ処理装置: OpenLAB CDS ChemStation Edition (アジレント・テクノロジー製)

4. ガスクロマトグラフ (ECD) の操作条件

カラム: Rtx-1 (Restek 製)

内径 0.53 mm, 長さ 30 m, 膜厚 1.0 μm

温度: カラム 240°C (10 min) - 30°C /min - 280°C (1 min)

注入口 280°C, 検出器 300°C

ガス流量: キャリアー (He) 6 mL/min

メイクアップガス (N_2) 54 mL/min

注入量: 2 μL

保持時間: 約 8.3 min

5. 検量線の作成

テトラジホン標準品 10.0 mg を 50 mL 容メスフラスコに精秤し、アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をヘキサンで希釈して 10 mg/L 標準溶液を調製し、さらにこの標準溶液をヘキサンで希釈して 2 mg/L 標準溶液を調製した。この溶液をヘキサンで希釈して 0.0005, 0.001, 0.005, 0.01 及び 0.02 mg/L の標準溶液を調製した。この溶液を 1.00容液を前記条件のガスクロマトグラフに注入し、データ処理装置を用いてテトラジホンのピーク面積を測定し、横軸に重量 (ng)、縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた (4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2 組の果実分析用試料のうち 1 組をミキサーで均一化して調製試料を作製した。果肉分析用試料についても果実と同様に調製試料を作製した。各調製試料は 2 組以上作製し、それぞれ密封して冷凍保存 $(-20^{\circ}\text{C}\,\text{以下})$ した。分析時にその 1 組を取り、分析に供した。

6.2. 抽出

均一化した試料 20 g をはかりとり,アセトン $100 \, \text{mL}$ を加え, $30 \, \text{分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し,残渣をアセトン <math>50 \, \text{mL}$ で洗い,同様にろ過した。ろ液を合わせ,アセトンで $200 \, \text{mL}$ に定容した後,その $5 \, \text{mL}$ (試料 $0.5 \, \text{g}$ 相当量)を分取し,

水 5 mL を添加して 40℃ 以下の水浴中で減圧濃縮し、アセトンを留去した。

6.3. 多孔性ケイソウ土カラム及びグラファイトカーボンミニカラムの

連結カラムによる精製

グラファイトカーボンミニカラムに酢酸エチル 5 mL を流下し前処理した。多孔性ケイソウ土カラムの下にグラファイトカーボンミニカラムを連結し、前項の濃縮液を多孔性ケイソウ土カラムに流下した。5 分放置後、酢酸エチル 40 mL で容器内を洗って多孔性ケイソウ土カラムに移して流下し、全溶出液を取り、40 以下の水浴中で減圧濃縮し、最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のヘキサンに溶解した。この溶液を前記条件のガスクロマトグラフに注入 してピーク面積を求め、検量線よりテトラジホンの重量を求め、試料中の残留濃度を算出 した。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

·	· ·	· ·		
定量限界相当量	試料採取量	最終溶液	注入量	定量限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.002	0.5	5	2	0.01
最小検出量	試料採取量	最終溶液	注入量	検出限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.001	0.5	5	2	0.005
-				

8. 回収率

分析法確認のため,高知の無処理試料*を用いて,0.01 mg/kg (定量限界相当),0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚,無添加試料は 2 連分析し,全て定量限界未満であった。回収率の算出結果を示す。

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)	
高知	5	85,	83,	82,	0.1	4	
		80,	77		81	4	
高知	0.25	92,	88,	88,	88	3	
		88,	85		00	<u>.</u>	
高知	0.01	84,	84,	83,	80	7	
		76,	72		80	/	

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	84,	83,	83,	82	3
		82,	77		82	<u>.</u>
高知	0.25	94,	91,	89,	90	2
		88,	87		90	3
高知	0.01	84,	82,	82,	0.1	4
		80,	76		81	4

^{*}H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20 検体を超えるごとに,各1 検体の無処理試料及び0.1 mg/kg 添加試料(内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施のFAPAS技能試験(Fera Science Ltd.)における Z スコアは全て Z<2 であった。

9.1.果肉

	使用したほ場	回収率 無処理区の分析	
カ か ロ 	使用したは物	(%)	(mg/kg)
2015/8/28	宮崎	91	< 0.01
2015/10/19	宮崎	91	< 0.01
2015/11/9	高知	96	< 0.01
2015/11/10	茨城	103	< 0.01
2015/12/2	茨城	80	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2.果実

>			
	使用したほ場	回収率	無処理区の分析値
カ か ロ 	使用したは場	(%)	(mg/kg)
2015/8/28	宮崎	87	< 0.01
2015/10/19	宮崎	97	< 0.01
2015/11/9	高知	98	< 0.01
2015/11/10	茨城	96	< 0.01
2015/12/2	茨城	83	< 0.01
2015/11/10	茨城	96	< 0.01

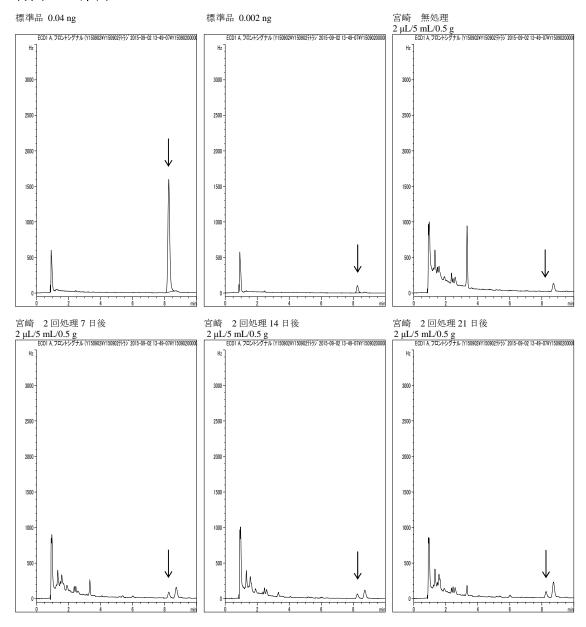
回収試料の添加濃度: 0.1 mg/kg

^{*}抽出日を記載

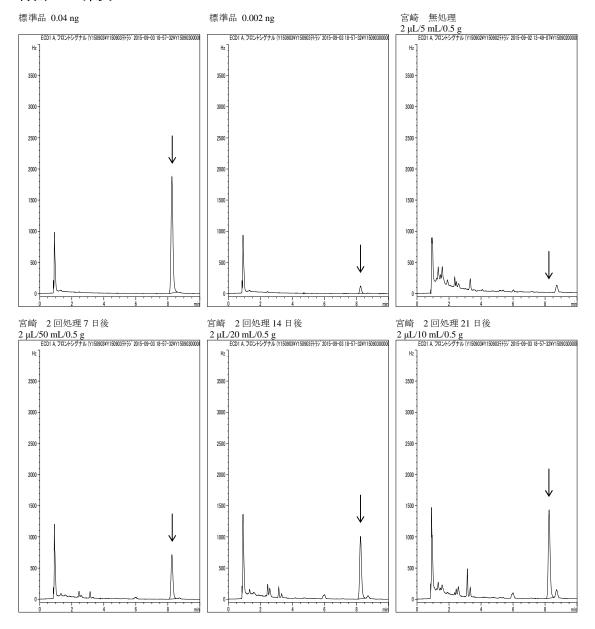
^{*}抽出日を記載

10. 保存安定性確認

均一化した各無処理試料にテトラジホンを添加し、冷凍暗所 (−20°C以下)に保存した。 一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安 定性の結果を示す。


10.1. 果肉

ほ場名	添加濃度	保存期間	回川	又率	平均回収率
	(mg/kg)	(日)	(%)		(%)
茨城	0.5	35 (2015/10/28-12/2)	90,	85	88
高知	0.5	49 (2015/10/14-12/2)	89,	85	87
宮崎	0.5	80 (2015/7/31-10/19)	81,	76	78


10.2. 果実

ほ場名	添加濃度	保存期間	回収率		平均回収率
	(mg/kg)	(日)	(%)		(%)
茨城	0.5	35 (2015/10/28-12/2)	85,	85	85
高知	0.5	49 (2015/10/14-12/2)	86,	81	84
宮崎	0.5	80 (2015/7/31-10/19)	86,	85	86

付図-1. テトラジホンのクロマトグラム (代表例) 付図-1-1. 果肉

付図-1-2. 果実

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細② ダイアジノン

1. 分析対象物質

ダイアジノン

化学名: O, O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate

分子式: C₁₂H₂₁N₂O₃PS

分子量: 304.3

構造式:

P(OCH₂CH₃)₂

(CH₃)₂CH

性 状: 無色液体 融 点: 83~84°C

蒸気圧: 1.2×10¹ mPa (25°C)

分配係数: $\log P_{OW} = 3.30$

溶解性: 水 60 mg/L (20°C)

有機溶媒に易溶

安定性: 中性溶液中で安定,

アルカリ溶液中では緩やかに加水分解

酸性溶液中では非常に速やかに加水分解

加水分解半減期 (20°C); 11.77時間 (pH3.1), 185日(pH7.4), 6日(pH10.4)

120°C以上で分解

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

ダイアジノン標準品:純度99.8%(和光純薬工業製)

アセトニトリル,アセトン:残留農薬試験用(和光純薬工業製)

アセトニトリル: LC/MS 用 (和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

ギ酸:高速液体クロマトグラフィー用 (関東化学株式会社製)

 C_{18} ミニカラム: InertSep C_{18} -C, 1 g/6 mL (ジーエルサイエンス製)

メンブレンフィルター: Millex-LG 0.20 µm (ミリポア製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製)

液体クロマトグラフ・質量分析計システム (LC-MS/MS):

1290 HPLC 6460 Triple Quad LC/MS (アジレント・テクノロジー製)

データ処理装置: MassHunter (アジレント・テクノロジー製)

4. 液体クロマトグラフ・質量分析計の操作条件

4.1. 高速液体クロマトグラフ

カラム: ZORBAX Eclipse Plus C18 (アジレント・テクノロジー製)

内径 2.1 mm, 長さ 100 mm, 粒径 1.8 μm

溶離液: アセトニトリル/0.1%ギ酸

60:40 – (5 min) – 95:5 (2 min)

流速: 0.2 mL/min

カラム温度: 40℃ 試料注入量: 5 μL

保持時間: 約 4.3 min

4.2. 質量分析計

イオン化法: エレクトロスプレー イオン化法 (ESI)

正モード

乾燥ガス温度: 300°C 乾燥ガス流量: 5 L/min ネブライザー圧力: 45 psi シースガス温度: 400°C シースガス流量: 11 L/min イオン導入電圧: 3500 V

フラグメンター電圧: 100 V

コリジョン電圧: $20 V (コリジョンガス; N_2)$

イオン検出法: MRM

モニタリングイオン: プリカーサーイオン m/z 305.0

プロダクトイオン m/z 169.2

5. 検量線の作成

ダイアジノン標準品 10.0 mg を 50 mL 容メスフラスコに精秤し、アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をアセトンで希釈して 10 mg/L 標準溶液を調製し、さらにアセトンで希釈して 0.2 mg/L 標準溶液を調製した。この 0.2 mg/L 標準溶液を

アセトニトリル/水 (50:50, v/v) 混液で希釈して 0.04~mg/L 標準溶液を調製し、さらに同混液で希釈して 0.00002, 0.00004, 0.0002, 0.0004 及び 0.0008~mg/L の標準溶液を調製した。この溶液を前記条件の液体クロマトグラフ・質量分析計に注入し、データ処理装置を用いてダイアジノンのピーク面積を測定し、横軸に重量 (ng), 縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた(4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2 組の果実分析用試料のうち 1 組をミキサーで均一化して調製試料を作製した。果肉分析用試料についても果実と同様に調製試料を作製した。各調製試料は 2 組以上作製し、それぞれ密封して冷凍保存 (−20°C以下) した。分析時にその 1 組を取り、分析に供した。

6.2. 抽出

均一化した試料 20 g をはかりとり, アセトン 100 mL を加え, 30 分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し, 残渣をアセトン 50 mL で洗い, 同様にろ過した。ろ液を合わせ, アセトンで 200 mL に定容した。

6.3. C₁₈ミニカラムによる精製

 C_{18} ミニカラムにアセトニトリル及び水を順次 $5\,\text{mL}$ ずつ流下し,前処理した。前項の抽出液 $2\,\text{mL}$ (試料 $0.2\,\text{g}$ 相当量)を分取し,水 $5\,\text{mL}$ を添加して混和した後, C_{18} ミニカラムに移して流下した。さらにアセトニトリル/水 $(50:50,\,\text{v/v})$ 混液 $5\,\text{mL}$ を流下し,これらの流出液を捨てた。 C_{18} ミニカラムを吸引乾燥した後,アセトニトリル $10\,\text{mL}$ を流下し,溶出液を取り, 40°C 以下の水浴中で減圧濃縮し,最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のアセトニトリル/水 (50:50, v/v) 混液に溶解した。この溶液を前記条件の液体クロマトグラフ・質量分析計に注入してピーク面積を求め、検量線よりダイアジノンの重量を求め、試料中の残留濃度を算出した。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

定量限界相当量	試料採取量	最終溶液	注入量	定量限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.0002	0.2	50	5	0.01
最小検出量	試料採取量	最終溶液	注入量	検出限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.0001	0.2	50	5	0.005

8. 回収率

分析法確認のため, 高知の無処理試料*を用いて, 0.01 mg/kg (定量限界相当), 0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚, 無添加試料は 2 連分析し, 全て定量限界未満であった。回収率の算出結果を示す。

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	100,	97,	96,	06	2
		95,	94		96	2
高知	0.25	96,	95,	94,	94	1
		94,	93		94	1
高知	0.01	98,	98,	98,	0.0	1
		97,	97		98	1

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	95,	93,	93,	02	1
		93,	92		93	1
高知	0.25	96,	96,	94,	95	1
		94,	93		93	1
高知	0.01	98,	98,	98,	98	1
		97,	97		70	1

^{*}H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20検体を超えるごとに,各1検体の無処理試料及び0.1 mg/kg添加試料(内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施のFAPAS技能試験(Fera Science Ltd.)におけるZスコアは全てZ<2であった。

9.1.果肉

	使用したほ場	回収率	無処理区の分析値
<u> </u>		(%)	(mg/kg)
2015/ 8/28	宮崎	97	< 0.01
2015/10/19	宮崎	98	< 0.01
2015/11/ 9	高知	98	< 0.01
2015/11/10	茨城	92	< 0.01
2015/12/2	茨城	97	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2.果実

	使用したほ場	回収率	無処理区の分析値
	DC/ N C 1 = 1/2	(%)	(mg/kg)
2015/ 8/28	宮崎	93	< 0.01
2015/10/19	宮崎	96	< 0.01
2015/11/ 9	高知	97	< 0.01
2015/11/10	茨城	85	< 0.01
2015/12/2	茨城	93	< 0.01

回収試料の添加濃度: 0.1 mg/kg

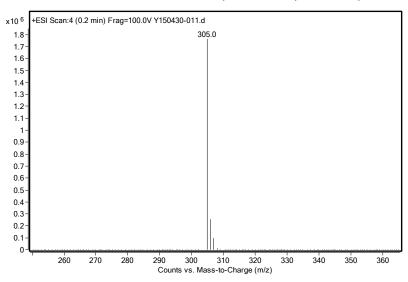
^{*}抽出日を記載

^{*}抽出日を記載

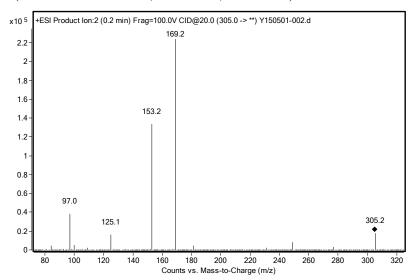
10. 保存安定性確認

均一化した各無処理試料にダイアジノンを添加し、冷凍暗所 (−20°C以下)に保存した。 一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安 定性の結果を示す。

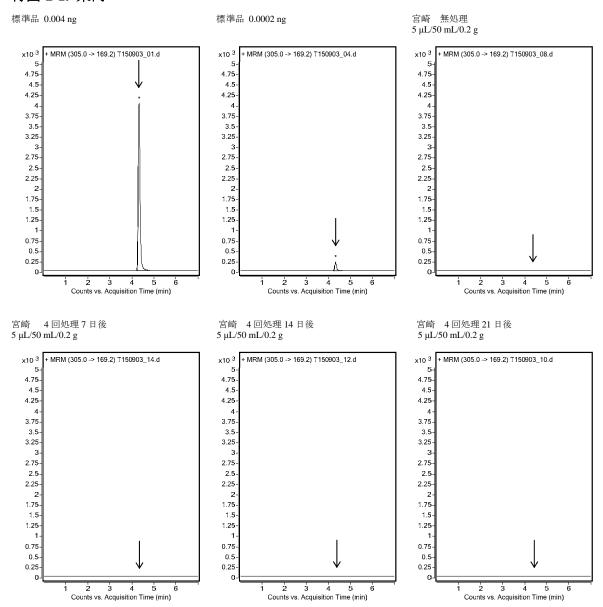
10.1. 果肉

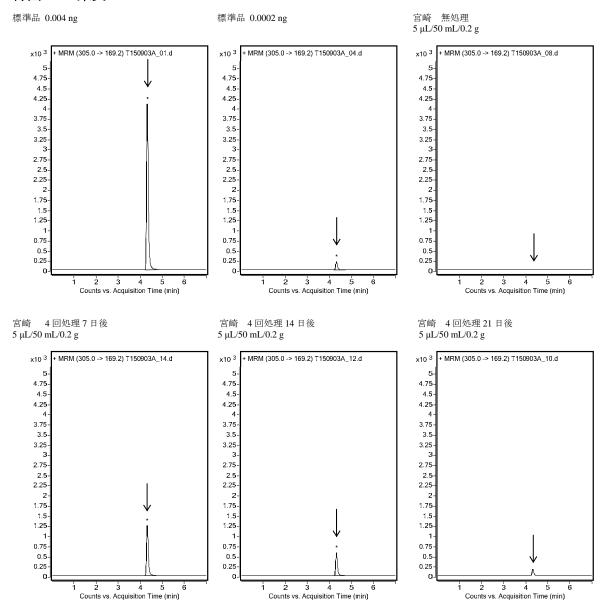

)工-担力	添加濃度	保存期間	回川	又率	平均回収率
ほ場名	(mg/kg)	(日)	(%	5)	(%)
茨城	0.5	35 (2015/10/28-12/2)	97,	95	96
高知	0.5	49 (2015/10/14-12/2)	90,	87	88
宮崎	0.5	80 (2015/7/31-10/19)	87,	81	84

10.2. 果実


ほ担 夕	添加濃度	保存期間	回口	又率	平均回収率
ほ場名 	(mg/kg)	(日)	(%	6)	(%)
茨城	0.5	35 (2015/10/28-12/2)	93,	92	92
高知	0.5	49 (2015/10/14-12/2)	87,	86	86
宮崎	0.5	80 (2015/7/31-10/19)	87,	86	86

付図-1. マススペクトル


ダイアジノンのマススペクトル (一次イオン) の一例 (正モード)


ダイアジノンのプロダクトスキャンスペクトルの一例 (プリカーサーイオン; m/z=305.0, 正モード)

付図-2. ダイアジノンのクロマトグラム (代表例) 付図-2-1. 果肉

付図-2-2. 果実

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細③ キャプタン

1. 分析対象物質

キャプタン

化学名: N-(trichloromethylthio)cyclohex-4-ene-1,2-dicarboximide

分子式: C₉H₈Cl₃NO₂S

分子量: 300.6

構造式:

N-s-cci3

性 状: 無色結晶 融 点: 178°C

蒸気圧: <1.3 mPa (25°C)

分配係数: $\log P_{OW} = 2.8 (25^{\circ}C)$

溶解性: 水 3.3 mg/L (25°C)

キシレン 20, クロロホルム 70, アセトン 21, シクロヘキサン 23, ジオキサン 47, ベンゼン 21, トルエン 6.9, イソプロパノール 1.7,

エタノール 2.9, ジエチルエーテル 2.5 (以上g/kg, 26°C)

安定性: 中性溶液中で緩やかに加水分解,

アルカリ溶液中では速やかに加水分解

加水分解半減期(20°C); 32.4時間(pH5), 8.3時間(pH7), 2分未満(pH10)

出 典: The e-Pesticide Manual 15th Edition. ver. 5.0

2. 標準品及び試薬

キャプタン標準品:純度 99.2% (和光純薬工業製)

アセトニトリル, アセトン, トルエン, ヘキサン: 残留農薬試験用 (和光純薬工業製)

水: PURELAB Flex System で精製した水

(Veolia Water Solutions&Technologies,France)

リン酸: 試薬特級 (和光純薬工業製)

陽イオン交換ミニカラム: InertSep SCX, 1 g/6 mL (ジーエルサイエンス製)

グラファイトカーボンミニカラム: Supelclean ENVI-Carb, 500 mg/6 mL

(シグマアルドリッチ製)

3. 装置及び機器

ミキサー: ロボクープ BLIXER-5Plus, ロボクープ R-23 (エフ・エム・アイ製) ガスクロマトグラフ (ECD): 7890A GC System (アジレント・テクノロジー製) データ処理装置: OpenLAB CDS ChemStation Edition (アジレント・テクノロジー製)

4. ガスクロマトグラフ (ECD) の操作条件

カラム: Rtx-1 (Restek 製)

内径 0.53 mm, 長さ 30 m, 膜厚 1.0 μm

温度: カラム 220°C (1 min) - 5°C /min - 250°C (3 min)

注入口 280°C, 検出器 300°C

ガス流量: キャリアー (He)6 mL/min

メイクアップガス $(N_2)54$ mL/min

注入量: 2 μL

保持時間: 約 4.2 min

5. 検量線の作成

キャプタン標準品 10.1 mg を 50 mL 容メスフラスコに精秤し、アセトンに溶解して 200 mg/L 標準原液を調製した。この原液をアセトンで希釈して 10 mg/L 標準溶液を調製し、 さらにこの標準溶液をヘキサンで希釈して 2 mg/L 標準溶液を調製した。この溶液をヘキサンで希釈して 0.0005, 0.001, 0.005, 0.01 及び 0.02 mg/L の標準溶液を調製した。この溶液を前記条件のガスクロマトグラフに注入し、データ処理装置を用いてキャプタンのピーク面積を測定し、横軸に重量 (ng)、縦軸にピーク面積をとって検量線を作成した。

6. 分析操作

6.1. 試料の前処理

試料は各々を縦に8分割し、対角の2つを取り合わせた (4組作製)。その2組を果実分析用試料とし、残りの2組を果肉分析用試料とした。果肉分析用試料は果肉と果皮に分け、果皮の厚さを測定した。又、果実、果肉及び果皮の各部位の全重量を測定した。

2組の果実分析用試料のうち1組を適切な大きさに細切した。細切試料1 kgに対して10% リン酸溶液500 g を加えてミキサーで均一化し、調製試料を作製した。果肉分析用試料についても果実と同様に調製試料を作製した。各調製試料は2組以上作製し、それぞれ密封して冷凍保存 $(-20^{\circ}\text{C}$ 以下)した。分析時にその1組を取り、分析に供した。

6.2. 抽出

均一化した試料 30 g (試料 20 g 相当量) をはかりとり、アセトン 100 mL を加え、30 分間振とうした。抽出物をろ紙を敷いた桐山漏斗で吸引ろ過し、残渣をアセトン 50 mL で洗い、同様にろ過した。ろ液を合わせ、アセトンで 200 mL に定容した後、その 2.5 mL (試料

0.25 g 相当量) を分取し、水 5 mL を添加して 40°C 以下の水浴中で減圧濃縮し、アセトン を留去した。

6.3. 精製

6.3.1. 陽イオン交換ミニカラムによる精製

陽イオン交換ミニカラムにアセトニトリル及び水を順次 5 mL ずつ流下し,前処理した。前項の濃縮液を陽イオン交換ミニカラムに移して流下した。さらに水/アセトニトリル (80:20, v/v) 混液 5 mL を流下し,これらの流出液を捨てた。次に,水/アセトニトリル (60:40, v/v) 混液 5 mL を流下し,溶出液を分取した。

6.3.2. グラファイトカーボンミニカラムによる精製

グラファイトカーボンミニカラムにトルエン及びアセトンを順次 5 mL ずつ流下し、前処理した。前項の溶出液をグラファイトカーボンミニカラムに移して流下した。さらに水/アセトン (60:40, v/v) 混液 5 mL を流下し、これらの流出液を捨てた。グラファイトカーボンミニカラムを吸引乾燥した後、アセトン 5 mL 及びアセトン/トルエン (70:30, v/v) 混液 5 mL を順次流下し、全溶出液を取り、 40° C 以下の水浴中で減圧濃縮し、最後は窒素気流下で溶媒を留去した。

6.4. 定量

残留物を適量のヘキサンに溶解した。この溶液を前記条件のガスクロマトグラフに注入 してピーク面積を求め、検量線よりキャプタンの重量を求め、試料中の残留濃度を算出し た。

7. 定量限界値 (LOQ) 及び検出限界値 (LOD)

定量限界相当量	試料採取量	最終溶液	注入量	定量限界
(ng)	(g)	(mL)	(μL)	(mg/kg)
0.002	0.25	2.5	2	0.01
最小検出量	試料採取量	最終溶液	注入量	検出限界
(ng)	(g)	(mL)	(µL)	(mg/kg)
0.001	0.25	2.5	2	0.005

8. 回収率

分析法確認のため、高知の無処理試料*を用いて、0.01 mg/kg (定量限界相当)、0.25 及び 5 mg/kg 添加濃度における回収試験を各 5 連分析で実施した。尚、無添加試料は 2 連分析し、全て定量限界未満であった。果実についてはさらに 10 mg/kg 添加濃度における回収試験を本事業の茨城試料を用いて 5 連分析で実施した。回収率の算出結果を示す。

8.1. 果肉

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
高知	5	76,	75,	71,	72	4
		70,	70		12	4
高知	0.25	88,	83,	83,	92	5
		83,	76		83	5
高知	0.01	106,	104,	102,	102	2
		101,	98		102	3

8.2. 果実

試料	添加濃度 (mg/kg)		回収率 (%)		平均回収率 (%)	RSD (%)
茨城	10	83,	81,	81,	90	2
		79,	78		80	2
高知	5	79,	74,	72,	72	5
		71,	71		73	5
高知	0.25	78,	75,	74,	7.4	4
		73,	71		74	4
高知	0.01	110,	102,	101,	102	5
		100,	96		102	5

^{*}H25 農薬登録に係る調理加工試験導入に関する調査事業 無処理試料を均一化したもの

9. 精度管理

「食品衛生検査施設等における検査等の業務の管理の実施について」(平成9年4月1日付け衛食第117号厚生省生活衛生局食品保健課長通知)に基づき,内部精度管理を行った。管理基準: 20 検体を超えるごとに,各 1 検体の無処理試料及び 0.1 mg/kg 添加試料 (内部精度管理試料)を分析した。その結果,下表に示すように問題は認められなかった。又,2015年6月実施の FAPAS 技能試験 (Fera Science Ltd.) における Z スコアは全て Z<2 であった。

9.1. 果肉

 分析日*	使用したほ場	回収率	無処理区の分析値
カ か ロ	使用したは場	(%)	(mg/kg)
2015/9/24	宮崎	107	< 0.01
2015/10/28	高知	76	< 0.01
2015/11/12	茨城	110	< 0.01
2015/12/14	茨城	119	< 0.01

回収試料の添加濃度: 0.1 mg/kg

9.2. 果実

/\+C = *	は田したけ相	回収率	無処理区の分析値
分析日 [*] 	使用したほ場	(%)	(mg/kg)
2015/9/24	宮崎	107	< 0.01
2015/10/28	高知	96	< 0.01
2015/11/12	茨城	104	< 0.01
2015/12/14	茨城	97	< 0.01

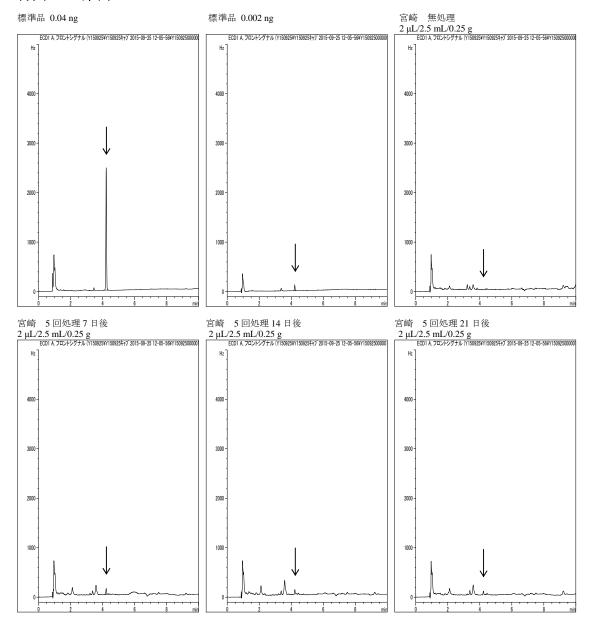
回収試料の添加濃度: 0.1 mg/kg

^{*}抽出日を記載

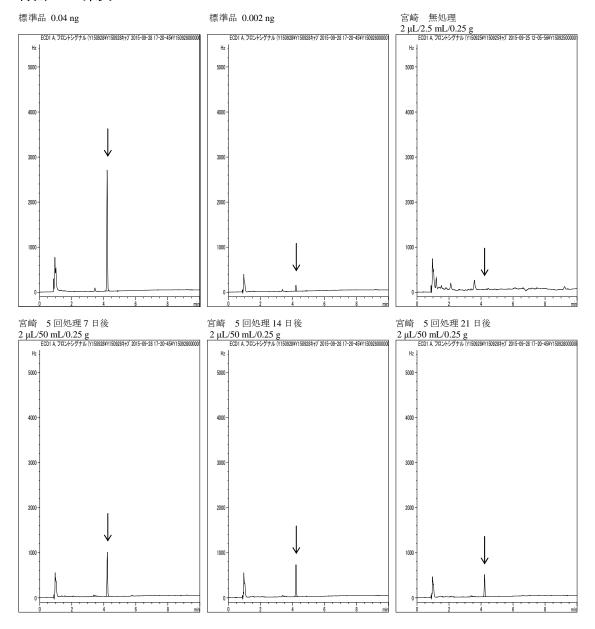
^{*}抽出日を記載

10. 保存安定性確認

均一化した各無処理試料にキャプタンを添加し、冷凍暗所 (−20°C 以下)に保存した。 一定期間保存した後、同様に分析して回収率を求め、保存中の安定性を確認した。保存安 定性の結果を示す。


10.1. 果肉

ほ場名	添加濃度	保存期間	回	[[] [] [] [] [] [] [] [] [] [] [] [] []	平均回収率
	(mg/kg)	(目)	(%)		(%)
茨城	0.5	47 (2015/10/28-12/14)	105,	95	100
高知	0.5	61 (2015/10/14-12/14)	104,	86	95
宮崎	0.5	136 (2015/7/31-12/14)	88,	83	86


10.2. 果実

ほ場名	添加濃度	保存期間	回口	[[]	平均回収率
	(mg/kg)	(目)	(%)		(%)
茨城	0.5	47 (2015/10/28-12/14)	99,	88	94
高知	0.5	61 (2015/10/14-12/14)	103,	93	98
宮崎	0.5	136 (2015/7/31-12/14)	90,	89	90

付図-1. キャプタンのクロマトグラム (代表例) 付図-1-1. 果肉

付図-1-2. 果実

農薬登録における作物のグループ化の検討のための試験委託事業② (メロン) 残留分析詳細④ 試料重量,作物写真

1.試料重量等

試料	処理	経過	平均重量	総平均重量	送付量	送付量の平均	重量比	七(%)	果皮の厚さ
	回数	日数	(kg/個)	(kg/個)	(kg)	(kg)	果肉	果皮	(mm)
茨城	0	_	1.46	1.36	14.6	8.60	89	11	2.1
	DE	7	1.22		6.08		89	11	2.2
	DE	14	1.38		6.89		89	11	2.1
	DE	21	1.36		6.81		87	13	2.2
							平均	89:11	平均 2.2
高知	0	_	1.36	1.44	13.6	10.0	91	9	2.0
	DE	7	1.46		8.76		90	10	2.2
	DE	14	1.47		8.83		88	12	2.2
	DE	21	1.48		8.90		90	10	2.1
							平均	90:10	平均 2.1
宮崎	0	_	1.38	1.56	24.8	13.5	89	11	1.9
	DE	7	1.54		9.22		91	9	2.1
	DE	14	1.66		9.97		91	9	1.9
	DE	21	1.67		10.0		89	11	1.9
							平均	90:10	平均 2.0

3 ほ場の総平均重量

1.45 kg/個

DE: テトラジホンは2回処理 ダイアジノンは4回処理 キャプタンは5回処理

2.作物写真

2.1. 茨城

TET 15-1001 H27 作物 プルーフ 化 メロン 日植防茨城 7 日後 D-17

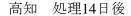
茨城 無処理

茨城 処理7日後

茨城 処理14日後

茨城 処理21日後

2.2. 高知



|ET 15-1001 |H27 作物が h-7 化 |メロン |日権防姦知7日後か1

高知 無処理

高知 処理7日後

高知 処理21日後

2.3. 宮崎

| IET 15-1001 | H27 作物が A-7 化 メロン 日植防宮崎 7 日後の-1)

宮崎 無処理

宮崎 処理7日後

宮崎 処理14日後

宮崎 処理21日後