7.2.2 開水路の変状検出

(1) 基本的な考え方

農業水利施設の機能保全の手引き「開水路」では、1次点検(巡回目視) と2次点検(近接目視と計測)について点検手法を定義しており、これに従い具体的な点検が実施されている。

UAV で撮影した画像による点検は、写真による変状箇所の検出に加え、三次元点群データを整備することにより、その規模の検出を行う。

なお、適用範囲は、実験事例等から一次点検(巡回目視)と二次点検(近接目視と計測)の一部とする。

(2) 点検項目と適用範囲

UAV で撮影した画像による点検項目は、表 7.2 に示す項目とする。

表7.2 点検項目 (構造に関する) 及び UAV の適用範囲

				現地	点検内容と対応可(O)否(×) 点検項目	利用成果	
		点検区分				写真	3D ^{注 2)}
	力学安全性	ひび割れ	最大幅	_	ひび割れの最大幅の計測	×	×
			延長	_	ひび割れの延長、範囲の計測	0	×
			有無の検出、タイプの判別	0	ひび割れのタイプ判別(幅 1mm 以上で判別)	0	×
		変形・歪み	変形・歪み量	0	変状の有無、歪量の計測(水平、鉛直)	0	0
		圧縮強度	圧縮強度(反発硬度)	_	簡易計測	×	×
	耐久性	材料劣化	浮き	0	変状の有無、変状範囲の計測	0	×
			剥離・剥落・スケーリング	0	変状の有無、変状範囲の計測	0	×
			ポップアウト(剥がれ)	0	変状の有無、変状範囲の計測	0	×
			(析出物)ゲルの滲出	0	変状の有無、変状範囲	0	×
冓			錆汁、変色	0	変状の有無、変状範囲の計測	0	×
円			摩耗·風化	0	変状の有無、変状範囲の計測	0	×
. L			漏水(痕跡)	0	変状の有無、変状範囲の計測	0	×
昔			鉄筋露出	0	変状の有無、変状範囲の計測	0	×
		中性化	中性化深さ/中性化残り	_	写真、画像結果では点検不可	×	×
			鉄筋かぶり	_	写真、画像結果では点検不可	×	×
	安定性	地盤変形	背面土の空洞化	_	写真、画像結果では点検不可	×	×
			不同沈下	_	目視による有無、簡易計測(5cm)	0	0
	上記性能を含む構造性能	目地の劣化	目地の開き(幅 1mm 以上)	0	変状の有無、箇所、開き幅の計測	0	0
			段差	0	変状の有無、箇所、段差の計測(6mm 以上を対象)	0	0
			止水板の破断	0	変状の有無	0	×
			漏水痕跡	0	変状の有無、箇所	0	×
			周縁コンクリートの欠損等	0	変状の有無、箇所	0	×

注 1)現地踏査:点検レベルは変状有無の検出まで(O:UAV撮影で対応可能、-:維持管理マニュアルでは点検項目に該当しない)

注 2) 3D: 三次元点群データ及びその加工成果

(3) 点検方法と点検事例

① ひび割れ

- ○ひび割れは、垂直撮影および斜め撮影の単写真、オルソフォト画像より変状箇所・範囲を検出する。
 - 注) 高度 3m で 0.2mm 以上まで検出可能であるが、飛行の安全面から高度 10m で 1mm 以上までの検出を標準とする。
- ○ひび割れの長さ、範囲は、オルソフォト画像より直線的に計測する。

■ ひび割れの検出例

図7.12 ひび割れの検出例

- ② 変形・歪み、転倒・滑動、浮上、欠損・損傷
- 〇変形・歪み、転倒・滑動、浮上、欠損・損傷は、鉛直撮影および斜め撮影の 単写真、オルソフォト画像より変状箇所・範囲を検出する。
- 〇相対変化量(水平、垂直)は、オルソフォト画像、三次元点群データから計測する。
 - 歪み(目地開き)の検出例

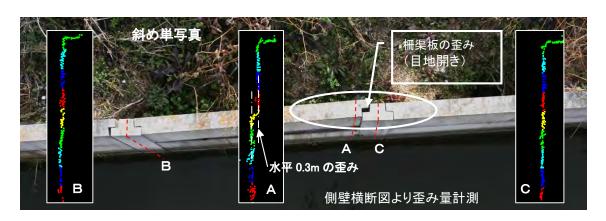


図7.13 側壁の歪み(目地開き)の検出例

■ 目地部の損傷(破断)の検出例

図7.14 目地部の損傷(破断)の検出例

③ 材料劣化

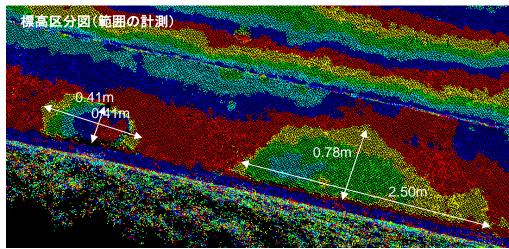
- 〇材料劣化は、開水路表面の状態について、垂直撮影および斜め撮影の単写 真、オルソフォト画像により変状箇所を検出する。
- ○変状範囲は、オルソフォト画像により計測する。
 - コンクリート表面の剥落、欠損の検出例

図7.17 コンクリート表面の剥落、欠損の検出例

■ 錆汁・変色、欠損、鉄筋の露出の検出例

図7.18 欠損・鉄筋の露出の検出例

■ 鋼材の腐食の検出例


図7.19 鋼材の腐食の検出例

④ 地盤変形(背面土の空洞化)

- 〇周辺地盤の変状(陥没、ひび割れなど)は、撮影した垂直、斜め画像及び標高分布図により検出する。
- ○周辺地盤の変状範囲、規模は、三次元点群データにより計測する。

■ 周辺地盤の変状検出例

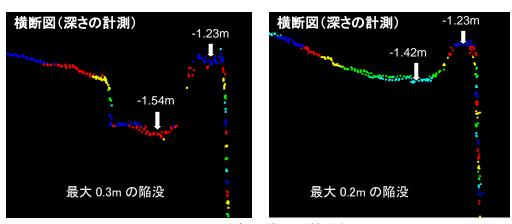
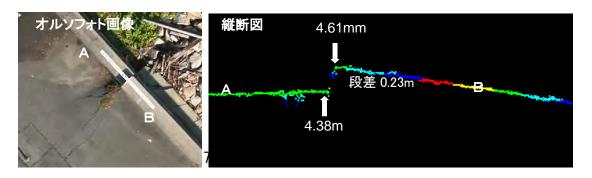


図7.20 周辺地盤の陥没の検出例

⑤ 不同沈下

- ○不同沈下は、開水路側壁の天端高を計測することで検出する。
- 〇天端の高さは、三次元点群データより作成した標高区分図、縦横断図から検出 する。
- 〇基準高さ(設計高)との相対高、標高は、縦横断図から計測する。
- 〇沈下量は、基準高さ(設計高)又は過年度計測高さとの差分を縦横断図から算出する。
 - 不同沈下の検出例


図7.21 不同沈下の検出例

⑥ 目地の開き、段差

- 〇目地開き、段差、止水版の破断等の目地の劣化は、垂直撮影および斜め撮影 の単写真、オルソフォト画像より変状箇所・範囲を検出する。
- 〇段差は、三次元点群データ(縦断図)より計測する。
 - 目地開き、周縁コンクリートの欠損検出例

■ 段差の検出・計測例

⑦ 漏水痕跡

〇漏水・漏水痕跡などは、垂直撮影および斜め撮影の単写真、オルソフォト画像より 箇所・範囲を検出する。

■ 漏水痕跡の検出例

図7.24 地の劣化による漏水の痕跡

〇参考資料

- ・一般社団法人日本写真測量学会(2015)測量調査に供する小型無人航空機 を安全に運航するための手引き, p. 36.
- ・熊田貴之・宇多高明・鈴木真二・酒井和也・野志保仁・森田 学・柄沢研治 (2010) 無人飛行機 (UAV) による新しい海岸モニタリング手法. 海洋開発論 文集, 26, pp. 1167-1171.
- ・三浦 麻・筑紫二郎・林 静夫・田中 明 (2004) 東松浦半島内の盆地における冬季の地形風と夜間昇温過程. 農業土木学会論文集, 231, pp. 249-258.
- Nex, F. and F. Remondino (2014) UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), pp. 1-15.
- ・大石 哲・白谷栄作・桐 博英・高橋順二・水上幸治・村木広和 (2015) U A V を使った低空画像解析による海岸堤防の劣化状態の検出. 土木学会論文集 B2 (海岸工学), 71(2)
- ・白谷栄作・桐 博英・高橋 順二・大石 哲・村木広和 (2015) 無人航空 機 (UAV) を活用したストックマネジメントの展望. 農業農村工学会誌, 83(10), pp. 839-842.
- ・飛田幹男,神谷泉,岩橋純子,中埜貴元,髙桑紀之:無人航空機による西之島空中写真の撮影とその分析,国土地理院時報,125,pp.115~124 (2014)