官民連携新技術研究開発事業 新技術概要書

		本概要	書作成年月	令和 7年 5 月 30 日			
1. 新技術名	超軟弱地盤の農業用パイプラインにおける沈下抑制と環境配慮に関する研究開発						
2. 開発会社	タキロンシーアイシビル株式会社						
	会社名 タキロンシーアイシビル株式会社						
	住所	茨城県かすみがうら市下稲吉2585					
3. 資料請求先	担当課	開発技術部	担当者	時吉 充亮			
	電話	029-875-3615	FAX	029-875-3635			
	ホームページ	https://www.tc-civil.co.jp/					
		大分類	小分類				
4. 工種区分	材料・製品						
				水位の変動により地盤沈下・不			
5. 新技術の概要	等沈下等の地盤変状を生じさせ、農業水利施設において特にパイプラインでは、管体・継手の漏水・破損等により営農に支障をきたすリスクが大きい。したがって、地盤沈下を抑制するための施設の軽量化は超軟弱地盤にとって、重要テーマの一つである。今研究では超軟弱地盤で徐々に普及している、高密度ポリエチレン製のガラス繊維強化ポリエチレン管(JIS K 6799)をベースに、耐圧ポリエチレンリブ管(JIS K 6780)を組み合わせることで外圧性能を保持した新しい軽量化内圧管材を開発することにより、沈下抑制に寄与することを目的の基本とする。また、管の軽量化は、原料使用料の低減すなわち、CO2をはじめとした温室効果ガス(GHG)の排出削減や環境配慮に対しての付加価値も期待できる。さらには、原材料である高密度ポリエチレン樹脂についても、これまでの石油由来のナフサではなく、バイオマス由来のナフサを用いた原材料及びリサイクル樹脂について検討・評価することで、化石燃料の枯渇問題、GHGの排出削減への取組を踏まえた環境への配慮を意識した農業用パイプライン施設の構築に向けた適用性の検討を行う。						
6. 適用範囲(留意点)	口径: φ600~1500 許容応力度:10MPa(長期性能20MPa×sf2=10MPa) 埋戻し深さ:0.6~5.0m 設計内水圧:0.5MPa以内 許容ひずみ:3%以内 許容曲率半径:70D 地盤条件:泥炭性軟弱地盤における地盤条件に関しては、施工現地の土質調査の結果を反映させること						

7	7. 従来技術との比較		新技術		比較する従来技術 (当初の工法・標準案)		比較の根拠		
	概要図		中空構造 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		### A A A A A A A A A A A A A A A A A A		従来技術は内外圧同時に耐え うる管厚を一体構造として製造 していたが、新技術では外圧に 強い中空構造(中が空洞)を用 いることで性能を保持したまま 軽量化を図れる		
	工法名		内圧用リブ管		ガラス繊維強化ポリエチレン管		-		
	経済性(直接工事費)		76,500円/10m			建設物価版(北海道)より Φ600 EF継手1か所で比較			
	工程		掘削→設置→接合→電気融着(EF)→冷却→埋戻し(既存と同等)			-			
	品質		耐圧強度:40kN/m (製品重量:60kg/m)		耐圧強度: 40kN/m (製品重量: 75kg/m)		耐圧試験より軽量化した製品 の性能を検証		
	安全性		泥炭地盤への施工1年後 の沈下量11cm		泥炭地盤への施工1年後 の沈下量22cm		実証実験より		
	施工	性	軽量化の分、重機などの 小型化が可能		既存の重機		_		
	周辺環境~	への影響	CO2排出量:-1.17kg/kg (バイオマス由来100%)		CO2排出量:2.18kg/kg (石油由来100%)		自社(組合2社TCC、PRM)算出		
8	. 特許 特開2023—69107								
9	実用新案 申請予定無し								
		農水省	年度	機関			工事·業務名等		
			無し						
1	0. 実績		無し						
		その他							
1	11. 備考		今後はバイオマス由来の材料やリサイクル材を使用した管での検証を進める予定						