


図7 地震波加振中の変形挙動

#### 2) 地盤パラメータの設定

中空ねじり試験の結果を用いて、改良された構成式に必要な地盤パラメータを設定し、これを用いた数値シミュレーションを行い、繰返し変形試験、液状化試験、Ko繰返しせん断試験の3種類の試験結果を同時に高い精度で再現できることが確認された。

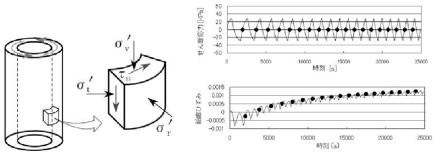
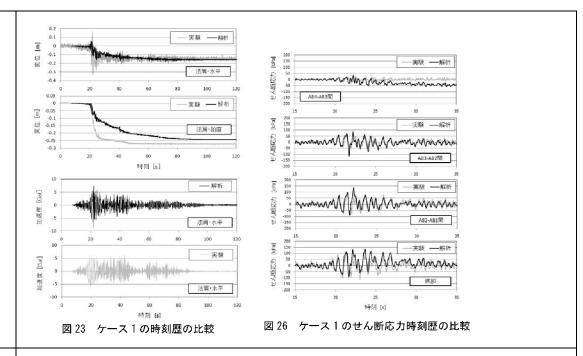



図 13 中空ねじり試験の応力状態


図 14 せん断応力と鉛直ひずみ時刻歴

### 【参考】NAFSS 構成式に関する設定パラメータ

初期間隙比、ポアソン比、膨潤係数、応力比-ひずみ増分比関係の閾値、 ダイレタンシー係数、変相角、破壊角、単調載荷試験の応力-ひずみ関係、 繰返し変形試験結果、平均有効応力の下限値、骨格曲線→履歴曲線の収束特性、 圧縮側への応力経路特性、膨張側への応力経路特性、液状化時のひずみの増大特性

### 3) 有効応力解析による遠心力模型実験の数値シミュレーション

盛土形状が異なる2ケースの実験を対象に有効応力解析を実施し、いずれの結果ついて も、最終的な沈下量は約10%の誤差で再現された。また、盛土内部の応力状態を実験を解析 とで比較したところ、せん断応力は位相特性ならびに振幅の両方が精度よく再現されてい た。



ため池にお ける適用に ついて 本研究の対象は、比較的よく締まった砂質土を対象としており、本事業でコントロールモデルとして実施した珪砂による試験と類似した材料と考えられる。一方、解析用パラメータのフィッティングに用いる室内試験は中空ねじり試験結果に基づき設定されている。

揺すり込み沈下のシミュレーションには、研究者の所属機関が開発した有効応力解析コード (NAFSS)を用いており、構成式に関するパラメータは多岐にわたっているが、解析精度はかなり高い結果となっており、揺すり込み沈下を含めた盛土の地震時挙動に対する適用性は高いものと考えられる。

一方、ため池における揺すり込み沈下の検討にあたっては、想定地震動やため池の構成材料の特性に応じたモデルの採用が必要と考えられ、多様な解析手法のうち、特に詳細・厳密な再現性を得る目的における有効応力解析の適用の必要性を示すものと考えられる。

# 3)鉄道盛土における検討事例

| 3)     | 上における検討事例                                                            |
|--------|----------------------------------------------------------------------|
| 研究報文名  | 「鉄道盛土の耐震設計における地震変形量の検討」(H16、全国地質調査業協会 技術 e フ                         |
|        | オーラム)                                                                |
| 研究担当者  | 穴井和孝・小西英俊・立尾広幸 (㈱東京ソイルリサーチ)                                          |
| (所属機関) |                                                                      |
| 研究目的と  | 沖積地盤上に築造中の鉄道盛土につて、L2 地震動に対する盛土の地震へ軽量を算定し、耐                           |
| 成果     | 震性能を評価した。                                                            |
| 研究成果の  | (研究報文のうち、揺すり込み沈下に関する事項を抽出して引用)                                       |
| 概要     | 地震変形量に関する解析の流れは、図−1 に示すとおり、「地盤の液状化」、「揺すり込                            |
|        | み」、「すべり土塊の滑動」の3パターンにおける変形量を算定し、その合計を盛土の地                             |
|        | 震変形量とする。                                                             |
|        | START                                                                |
|        | 上質条件の設定                                                              |
|        | <b>荷重条件の設定</b>                                                       |
|        | 設計地震執の設定                                                             |
|        | ・ スペクトルの速定<br>・ 池玄正設計池宏製の設定                                          |
|        | 地株の液状化判定                                                             |
|        | A 25 TRAVITAÇÃO (L 9/2)                                              |
|        | 地球の彼太化による次   描すり込みによる法下   すべり上頭の滑頭による   下量の基定                        |
|        |                                                                      |
|        | 1.2 比雲筋に対する深上大端の総定下星等定                                               |
|        | R N D                                                                |
|        | 図-1 解析の流れ                                                            |
|        | <揺すり込み沈下による変形量の算定>                                                   |
|        | 揺すり込みによる沈下量の算定は、以下の手順で実施した。                                          |
|        | ① 地中における水平方向の最大応答変位の深度方向分布を算定。                                       |
|        | 世人斯波達度。<br>世人斯波達度。<br>對 上 の 版文 類 別 別 別 別 別 別 別 別 別 別 別 別 別 別 別 別 別 別 |
|        |                                                                      |
|        | 解解図 i 4 ?                                                            |
|        | A                                                                    |
|        | 図ー3 地盤の水平変位量の鉛直方向分布図(例)                                              |
| L      |                                                                      |

|       | ② ①を基に、地中の深度方向のせん断ひずみ $(\gamma)$ を求め、下式によりせん断剛性率 $(G)$ を求める。 $G = \gamma \cdot V s^2/g$ ③ ②を基に、 $G/Go - \gamma$ 曲線から、せん断剛性低下率 $(G/Go)$ を求める。 ④ 地震前後の変形係数 $E_{bef}$ 、 $E_{atf}$ を下式より求める。 $E_{bef} = 2 \times G \times (1 + \nu)$ $E_{aft} = E_{bef} \times G/Go$ ⑤ 地震前と地震後の自重による地盤変形量の差を下式から求める。 $Sg = \int_0^H \left( \frac{1}{E_{aft}(z)} - \frac{1}{E_{bef}(z)} \right) \cdot \sigma_{\nu}(z) dz$ |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ため池にお | $Sg = \int_0^\infty \left( \overline{E_{aft}(z)} - \overline{E_{bef}(z)} \right) \cdot O_v(z) dz$ 本手法の基本的な考え方は、大ダムの研究事例に示した手法を簡略化したものとなってい                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                      |
| ける適用に | る。動的解析によらない場合の揺すり込み沈下量を概算する場合には適用可能と考えられ                                                                                                                                                                                                                                                                                                                                                             |
| ついて   | る。                                                                                                                                                                                                                                                                                                                                                                                                   |

# 4)人工島・港湾構造物における研究事例

| 研究報文名  | 「中間土からなる人工島・護岸構造物の耐震性能評価 -液状化・揺すり込み変形抑止の地                        |
|--------|------------------------------------------------------------------|
|        | 盤強化技術の開発-」(国土交通省 建設技術研究開発平成 19 年度成果発表会)                          |
| 研究担当者  | 浅岡顕 (名古屋大学):研究代表                                                 |
| (所属機関) |                                                                  |
| 研究目的と  | 埋立地・海上人工島は、砂でも粘土でもない「中間土」からなり、その耐震性評価には曖                         |
| 成果     | 昧な部分が多い。本研究開発では、来るべき海洋型地震の特性も踏まえて耐震性を再評価                         |
|        | し、強化必要箇所の抽出と強化技術の確立が必要となることから、①中間土地盤のモデル                         |
|        | 化、②砂から細粒分を多く含む土まで「中間土」を連続的に扱える弾塑性構成式の高度化                         |
|        | と、既存液状化判定手法の抜本的改良、③非排水・排水・部分排水に対する有限変形・水                         |
|        | ~土骨格連成・地盤解析プログラムの実施を含めた開発、を行う。                                   |
| 研究成果の  | (研究報文のうち、揺すり込み沈下に関する事項を抽出して引用)                                   |
| 概要     | <液状化/揺すり込み変形解析のための有限変形・水〜土骨格連成地盤解析コードの構築と                        |
|        | 検証>                                                              |
|        | 名大が開発した慣性力対応の水~土骨格連成地盤解析プログラム(GEOASIA ;All Soils                 |
|        | All Status All Round Geo-Analysis Integration) の3種類に対するテストランを通じて |
|        | プログラムの検証を行った。                                                    |
|        | ①均質砂地盤に最大加速度 100gal の減衰振動を約 10 秒間与えると、中密地盤は液状化を                  |
|        | 示した後に圧密沈下(すなわり揺すり込み沈下)が層厚の約 5%生じた。一方、密な地盤で                       |
|        | は液状化が起こらず、その後の圧密沈下も 1/5 以下となった。                                  |
|        | ②泥岩埋立人工地盤(中間土地盤)についても地震荷重(最大水平加速度 400gal、鉛直 200gal               |
|        | の減衰振動)を与えたところ、液状化後に揺すり込み沈下を起こした。盛土直下の地盤は地                        |
|        | 震中に大沈下を示し、その後30年かけて遅れ沈下が生じた。水平部についても液状化後約                        |
|        | 20cm の揺すり込み沈下が生じている。                                             |

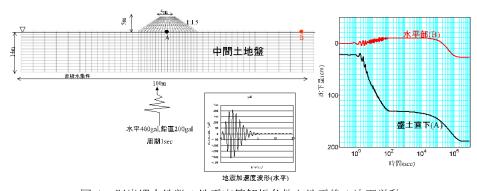



図-1 泥岩埋立地盤の地震応答解析条件と地震後の沈下挙動

③高速道路の上層に厚い砂層のある自然堆積沖積粘土地盤に対し、盛土載荷により 2 次圧 密進行中の地盤を対象に地震荷重を与えたところ、盛土荷重を支えきれずに下層粘土層が すべり始め、盛土は大沈下を示した。

以上のように、代表的な3つの地盤の動的大変形解析を通じて、砂・中間土・粘土まで、 土の種類を問わず、外力条件に応じた液状化の判定、地震中の液状化から地震後の揺すり 込み変形・沈下まで計算が可能であることが検証された。

ため池にお ける適用に ついて 水-土連成モデルによる動的解析として、今回本事業で検証した有効応力解析コードの適用 が必要である。特に、ため池(フィルダム)はゾーン毎に異なる土の性状を有しているこ と、貯水圧の浸透により、飽和・不飽和部が存在する条件下における動的挙動を評価する 必要があることから、多様な条件に対応した解析コードの開発や適用性の判断が重要とな る。

ため池等における揺すり込み沈下に関しては、本事業で検証した解析コードのうち、有 効応力解析のプログラムを用いることで、モデルに考慮することは可能である。

しかしながら、各々解析コードにおいて設定すべきパラメータの数が多く、またプログラムによって構成式は異なっていることから、今後多数のため池において検証を行う際の手法としては研究途上の課題といえる。

その一方で、実際の地震発生時のため池等における挙動として、すべり変形を伴わない 圧縮沈下(いわゆる「揺すり込み沈下」と見なされる)が確認されている事例もあり、比 較的簡易的な手法によって定量的な評価を行う手法を見出すことの意義はあるものと考え られる。

今回収集・整理した検討事例の中では、「大ダムにおける検討手法(等価線形化法による動的解析と累積損傷解析を組み合わせた沈下量の算定法)」の適用性をため池においても検証していくことが合理的である。繰返し載荷に伴う築堤材料の強度低下を考慮したすべり破壊検討手法(ニューマークD法)とも対応した方法になりうるものと考えられる。

### 1. 6. 3 ③コントロールモデルとの比較による簡易耐震性能照査手法の検証

### (1)検討方針

本研究で実施した震動実験を対象とし、以下の解析プログラムについて、実験結果に対する再現能力の検証を行った。

表-1.6.3.2.1 検証に用いた解析プログラム

| 解析手法     | 解析プログラム           |
|----------|-------------------|
| 等価線形解析   | 等価線形①             |
| 準静的解析手法  | ニューマークD法(詳細法、簡易法) |
| 逐次積分法 *1 | 逐次非線形①            |
|          | 逐次非線形②            |
|          | 逐次非線形③            |
|          | 逐次非線形④            |

<sup>\*1</sup> 逐次積分法の解析コードは、有効応力解析が可能な以下のプログラムを使用 逐次非線形①:LIQCA、 逐次非線形②:FLIP、 逐次非線形③:Soil Plus、 逐次非線形④:NONSOLAN

解析に用いる基本的なパラメータは、室内土質試験結果をもとに設定した。入力地震動は、 震動実験において震動台基盤で観測された波形とし、解析モデル下端(固定条件)から入力し た。

### (2)1G 場振動実験等の比較

1)1G場(非湛水、ゆる詰め)

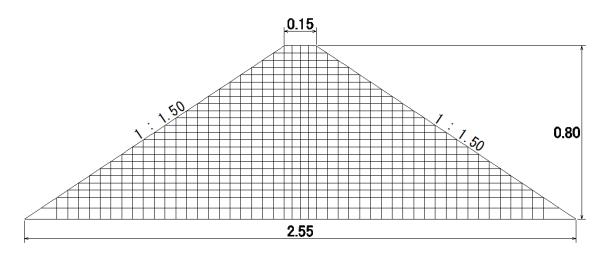



図-1.6.3.2.1 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

各プログラムによる解析結果を以下に示す。

応答加速度は、各プログラムにおいて、一定のばらつきを示した。変形量については、どの プログラムによる計算結果も、微小 (0.00cm 未満) であった。

| 入力             |               | 解析結果(gal)  |        |        |        |        |  |
|----------------|---------------|------------|--------|--------|--------|--------|--|
| レベル<br>(gal)   | 実験結果<br>(gal) | 等価<br>線形化法 | 逐次積分法  |        |        |        |  |
| *下段実験値         |               | 等価線形①      | 逐次非線形① | 逐次非線形② | 逐次非線形③ | 逐次非線形④ |  |
| 50<br>(50.5)   | 101.8         | 54.7       | 64.2   | 74.7   | 75.4   | 55.0   |  |
| 100<br>(101.1) | 162.0         | 120.2      | 128.2  | 124.9  | 132.7  | 106.0  |  |
| 300<br>(402.1) | 578.5         | 488.8      | 564.1  | 553.4  | 498.5  | 579.0  |  |
| 400<br>(577.8) | 897.8         | 771.2      | 1134.2 | 858.3  | 810.2  | 1928.0 |  |
| 500<br>(716.2) | 2795.4        | 981.6      | 1489.6 | 1474.5 | 1049.4 | 3367.0 |  |

表-1.6.3.2.2 最大加速度一覧 (天端)

表-1.6.3.2.3 沈下量(天端)

| 入力    | 実験結果   | 解析結果(cm) |             |        |        |  |  |
|-------|--------|----------|-------------|--------|--------|--|--|
| レベル   | (cm)   |          | <b>う</b> 分法 |        |        |  |  |
| (gal) | *1     | 逐次非線形①   | 逐次非線形②      | 逐次非線形③ | 逐次非線形④ |  |  |
| 50    | 0.00   | 0.00     | 0.00        | 0.00   | 0.00   |  |  |
| 50    | (0.00) | (0.00)   | (0.00)      | (0.00) | (0.00) |  |  |
| 100   | 0.00   | 0.00     | 0.00        | 0.00   | 0.00   |  |  |
| 100   | (0.00) | (0.00)   | (0.00)      | (0.00) | (0.00) |  |  |
| 300   | 0.01   | 0.00     | 0.00        | 0.00   | 0.26   |  |  |
| 300   | (0.01) | (0.00)   | (0.00)      | (0.00) | (0.26) |  |  |
| 400   | 0.01   | 0.00     | 0.00        | 0.00   | 1.97   |  |  |
| 400   | (0.02) | (0.00)   | (0.01)      | (0.00) | (2.23) |  |  |
| 500   | 4.83   | 0.00     | 0.08        | 0.00   | 0.20   |  |  |
| 500   | (4.85) | (0.00)   | (0.09)      | (0.00) | (2.43) |  |  |

※1 () 外:各入力ステップにおける沈下量、() 内:累積沈下量

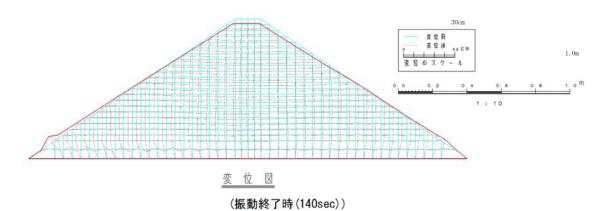



図-1.6.3.2.2 1 G 場 500gal 加振の残留変形図

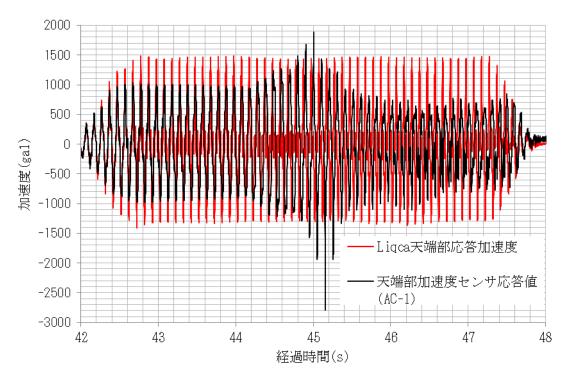



図-1.6.3.2.3 天端における加速度(解析結果(逐次非線形①)と実験結果の比較)

### 2) 16場(湛水、ゆる詰め)



図-1.6.3.2.4 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

### a) 動的解析手法

表-1.6.3.2.4 最大加速度一覧 (天端)

| 入力実験結果       | 解析結果 (gal)                    |        |        |        |        |        |
|--------------|-------------------------------|--------|--------|--------|--------|--------|
|              | レベル<br>(gal)<br>*下段実験値 (AC-1) | 等価線形化法 | 逐次積分法  |        |        |        |
|              |                               | 等価線形①  | 逐次非線形① | 逐次非線形② | 逐次非線形③ | 逐次非線形④ |
| 300<br>(331) | 960                           | 457. 0 | 936. 0 | 960. 4 | 424.8  | 375. 0 |

表-1.6.3.2.5 沈下量(天端)

| 入力    | 実験結果  | 解析結果 (cm) |        |        |        |  |  |
|-------|-------|-----------|--------|--------|--------|--|--|
| レベル   | (cm)  | 逐次積分法     |        |        |        |  |  |
| (gal) | DVC-1 | 逐次非線形①    | 逐次非線形② | 逐次非線形③ | 逐次非線形④ |  |  |
| 300   | 2.90  | 14.50     | 3. 67  | 0.01   | 0.06   |  |  |

表-1.6.3.2.6 間隙水圧 (ダム軸底部)

| 入力    | 実験結果    | 解析結果(kpa) |        |        |          |  |
|-------|---------|-----------|--------|--------|----------|--|
| レベル   | (kpa)   | 逐次積分法     |        |        |          |  |
| (gal) | (PC-N9) | 逐次非線形①    | 逐次非線形② | 逐次非線形③ | 逐次非線形④   |  |
| 300   | 2.39    |           | _      | _      | 6. 86kpa |  |
| 300   | (-)     | (0.80)    | (0.97) | (-)    | (-)      |  |

※()外:過剰間隙水圧、()内:過剰間隙水圧比

# b) 準静的解析手法

表-1.6.3.2.7 沈下量(天端)

| 7 4       | なら 仕田          | 解析結果(cm) |                     |                     |  |  |  |
|-----------|----------------|----------|---------------------|---------------------|--|--|--|
| 入力<br>レベル | 実験結果           | 準静的解析手法  |                     |                     |  |  |  |
| (gal)     | (cm)<br>DVC-1  | ニューマーク法  | ニューマーク D 法<br>(詳細法) | ニューマーク D 法<br>(簡易法) |  |  |  |
| 300       | 2. 9<br>(2. 9) | 0.0      | 0.0 (0.0)           | 0. 04<br>(0. 04)    |  |  |  |

### (3)60G場(遠心場)模型実験との比較

1)60G場(遠心場)(非湛水、ゆる詰め)

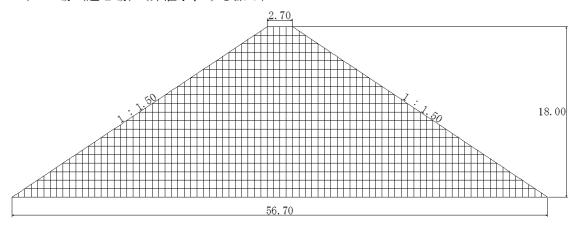



図-1.6.3.2.5 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

表-1.6.3.2.8 最大加速度一覧 (天端)

| 入力              | 実験結果                  | 解析結果 (gal)   |            |         |        |        |  |
|-----------------|-----------------------|--------------|------------|---------|--------|--------|--|
| レベル             | (gal)                 | 等価線形化法 逐次積分法 |            |         |        |        |  |
| (gal)<br>*下段実験値 | (ch36 上段<br>/ch35 下段) | 等価線形①        | 逐次非線形<br>① | 逐次非線形②  | 逐次非線形③ | 逐次非線形④ |  |
| 100<br>(104. 5) | 252. 7<br>(148. 6)    | 237. 4       | 204. 3     | 293. 9  | 193. 5 | 171.8  |  |
| 200<br>(202. 8) | 435. 3<br>(300. 4)    | 374. 0       | 350. 0     | 839. 7  | 346. 0 | 304. 1 |  |
| 300<br>(291. 0) | 649. 5<br>(409. 0)    | 493.8        | 563. 7     | 1007. 4 | 443.8  | 467. 1 |  |
| 400<br>(390. 3) | 825. 8<br>(566. 4)    | 625. 1       | 800. 5     | 924. 2  | 608.7  | 564. 8 |  |
| 500<br>(498. 9) | 1079. 4<br>(802. 1)   | 851.0        | 1072.3     | 921.8   | 662. 3 | 697. 1 |  |
| 600<br>(600. 2) | 1243. 9<br>(1080. 5)  | 959. 2       | 1278.3     | 926.8   | 691.6  | 747. 7 |  |

表-1.6.3.2.9 沈下量(天端)

|       |          | 2 11 01 01 21 0   | 101 重 () (7 (111) |         |         |  |  |
|-------|----------|-------------------|-------------------|---------|---------|--|--|
| 入力    |          | 解析結果(cm)<br>逐次積分法 |                   |         |         |  |  |
| レベル   | 実験結果     |                   |                   |         |         |  |  |
| (gal) | (cm)     | 逐次非線形①            | 逐次非線形②            | 逐次非線形③  | 逐次非線形④  |  |  |
| 100   | 3. 2     | 0. 07             | 2. 8              | 0. 09   | 0. 0    |  |  |
|       | (3. 2)   | (0. 07)           | (2. 8)            | (0. 09) | (0. 0)  |  |  |
| 200   | 9. 5     | 0.06              | 9. 4              | 0. 03   | 0. 4    |  |  |
|       | (12. 7)  | (0.13)            | (12. 2)           | (0. 12) | (0. 4)  |  |  |
| 300   | 16. 6    | 0. 12             | 11. 6             | 0. 05   | 15. 4   |  |  |
|       | (29. 3)  | (0. 25)           | (23. 8)           | (0. 17) | (15. 8) |  |  |
| 400   | 22. 6    | 0. 17             | 8. 1              | 0. 08   | 15. 6   |  |  |
|       | (51. 9)  | (0. 42)           | (31. 9)           | (0. 25) | (31. 4) |  |  |
| 500   | 32. 4    | 0. 2              | 6. 9              | 0. 07   | 16. 7   |  |  |
|       | (84. 3)  | (0. 62)           | (38. 8)           | (0. 32) | (48. 1) |  |  |
| 600   | 100. 7   | 0. 21             | 8. 2              | 0. 44   | 11. 0   |  |  |
|       | (185. 0) | (0. 83)           | (47)              | (0. 76) | (59. 1) |  |  |

### 2)60G場(遠心場)(非湛水・密詰め)

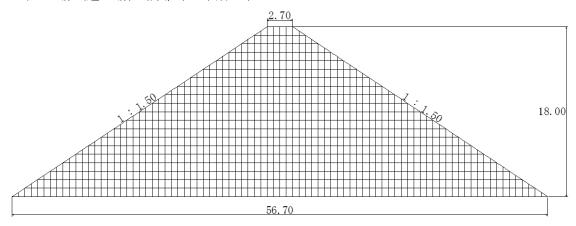



図-1.6.3.2.6 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

表-1.6.3.2.10 最大加速度一覧 (天端)

| 入力                        | 実験結果          |        | 解析結果 (gal)   |         |        |        |  |  |  |
|---------------------------|---------------|--------|--------------|---------|--------|--------|--|--|--|
| レベル                       | 夫峽和米<br>(gal) | 等価線形化法 | 等価線形化法 逐次積分法 |         |        |        |  |  |  |
| (gal)<br>*下段実験値<br>(ch21) | ch29          | 等価線形①  | 逐次非線形①       | 逐次非線形②  | 逐次非線形③ | 逐次非線形④ |  |  |  |
| 100<br>(89. 9)            | 203. 3        | 228. 1 | -            | 322. 2  | 213.0  | 134. 0 |  |  |  |
| 200<br>(180. 6)           | 274. 8        | 373. 7 | -            | 787. 9  | 387. 2 | 293. 0 |  |  |  |
| 300<br>(264. 5)           | 415. 4        | 506. 3 | -            | 918. 0  | 574. 6 | 445. 0 |  |  |  |
| 400<br>(362. 4)           | 489. 0        | 672. 2 | -            | 999.8   | 738. 9 | 637. 0 |  |  |  |
| 500<br>(454. 2)           | 665. 5        | 844. 8 | _            | 1076. 2 | 902. 1 | 837. 0 |  |  |  |
| 600<br>(547. 5)           | 844. 6        | 973. 3 | _            | 1099. 1 | 952. 9 | 955. 0 |  |  |  |

表-1.6.3.2.11 沈下量(天端)

| 2     |          |           |                |                |                |  |  |
|-------|----------|-----------|----------------|----------------|----------------|--|--|
| 入力    | 実験結果     | 解析結果 (cm) |                |                |                |  |  |
| レベル   | (cm)     | 逐次積分法     |                |                |                |  |  |
| (gal) | ch1 残留   | 逐次非線形①    | 逐次非線形②         | 逐次非線形③         | 逐次非線形④         |  |  |
| 100   | 3. 4     | -<br>(-)  | 2. 0<br>(2. 0) | 0.05<br>(00.5) | 0. 0<br>(0. 0) |  |  |
| 200   | 7. 9     | -         | 12. 3          | 0. 02          | 0. 0           |  |  |
|       | (11. 3)  | (-)       | (14. 3)        | (0. 07)        | (0. 0)         |  |  |
| 300   | 14. 5    | -         | 14. 7          | 0. 02          | 2. 9           |  |  |
|       | (25. 8)  | (-)       | (29. 5)        | (0. 09)        | (2. 9)         |  |  |
| 400   | 21. 3    | -         | 8. 8           | -0.01          | 18. 2          |  |  |
|       | (47. 1)  | (-)       | (37. 9)        | (0.09)         | (21. 1)        |  |  |
| 500   | 27. 1    | -         | 8. 7           | 0.00           | 30. 0          |  |  |
|       | (74. 2)  | (-)       | (46. 6)        | (0.09)         | (51. 1)        |  |  |
| 600   | 95. 1    | -         | 7. 5           | 0.00           | 39. 6          |  |  |
|       | (169. 3) | (-)       | (54. 1)        | (0.09)         | (90. 7)        |  |  |

### 3)60G場(遠心場)(湛水・ゆる詰め)

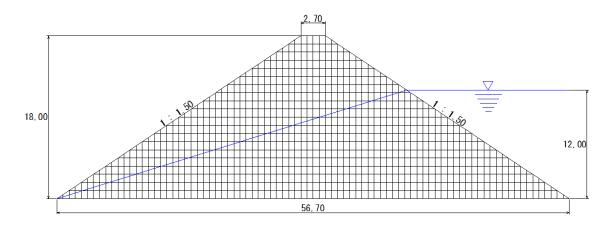



図-1.6.3.2.7 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

### a) 動的解析手法

表-1.6.3.2.12 最大加速度一覧(天端)

| 入力           | 実験結果   | 指果 解析結果 (gal) |              |        |        |        |  |
|--------------|--------|---------------|--------------|--------|--------|--------|--|
| レベル<br>(gal) | (gal)  | 等価線形化法        | 等価線形化法 逐次積分法 |        |        |        |  |
| (ch21)       | (ch30) | 等価線形①         | 逐次非線形①       | 逐次非線形② | 逐次非線形③ | 逐次非線形④ |  |
| 300<br>(366) | 582    | 523. 8        | 890.0        | 626. 0 | 541.8  | 526. 0 |  |
| 400<br>(438) | 806    | 695. 5        | 220.6        | 149. 5 | 607.3  | 675. 0 |  |
| 500<br>(551) | 770    | 1236. 9       | 165. 1       | 141. 4 | 636. 8 | 923. 0 |  |

表-1.6.3.2.13 沈下量(天端)

| 入力    | 実験結果    | 解析結果 (cm) |         |        |        |  |  |
|-------|---------|-----------|---------|--------|--------|--|--|
| レベル   | (cm)    |           |         |        |        |  |  |
| (gal) | (ch1)   | 逐次非線形①    | 逐次非線形②  | 逐次非線形③ | 逐次非線形④ |  |  |
| 200   | 38. 9   | 225. 9    | 110.1   | 0.13   | 6. 56  |  |  |
| 300   | (44. 4) | (225.9)   | (110.1) | (0.13) | (6.6)  |  |  |
| 400   | 49. 1   | 358. 1    | 99.9    | -0.03  | 9.8    |  |  |
| 400   | (93. 5) | (584.0)   | (210.0) | (0.10) | (16.4) |  |  |
| 500   | 66. 1   | 415. 1    | 93.7    | -0.02  | 12.9   |  |  |
| 500   | (159.6) | (999. 1)  | (303.7) | (0.08) | (29.3) |  |  |

※ () 外:各入力ステップにおける沈下量、() 内:累積沈下量

表-1.6.3.2.14 間隙水圧 (ダム軸底部)

| 入力    | 実験結果         | 解析結果 (kpa)        |              |          |               |  |  |
|-------|--------------|-------------------|--------------|----------|---------------|--|--|
| レベル   | (kpa) 逐次積分法  |                   |              |          |               |  |  |
| (gal) | (ch26)       | 逐次非線形①            | 逐次非線形②       | 逐次非線形③   | 逐次非線形④        |  |  |
| 300   | 94. 2        | 156. 8<br>(0. 85) | -<br>(0.89)  | -<br>(-) | 157. 0<br>(-) |  |  |
| 400   | 96. 0<br>(-) | 178. 5<br>(0. 96) | -<br>(0.90)  | -<br>(-) | 118. 0<br>(-) |  |  |
| 500   | 99. 6<br>(-) | 177. 9<br>(0. 96) | -<br>(0. 93) | -<br>(-) | 78. 0<br>(-)  |  |  |

※()外:過剰間隙水圧、()内:過剰間隙水圧比

# b) 準静的解析手法

表-1.6.3.2.15 沈下量(天端)

|           |              | 解析結果 (cm) |            |            |  |  |
|-----------|--------------|-----------|------------|------------|--|--|
| 入力<br>レベル | 実験結果<br>(cm) | 準静的解析手法   |            |            |  |  |
| (gal)     | (ch1)        | ニューマーク法   | ニューマーク D 法 | ニューマーク D 法 |  |  |
|           |              | ニューマーク伝   | (詳細法)      | (簡易法)      |  |  |
| 200       | 38. 9        | 45. 2     | 45. 2      | 94.8       |  |  |
| 300       | (44. 4)      | (45. 2)   | (45. 2)    | (94. 8)    |  |  |
| 400       | 49. 1        | 95. 0     | 95. 0      | 172.8      |  |  |
| 400       | (93. 5)      | (140. 2)  | (140. 2)   | (350.9)    |  |  |
| 500       | 66. 1        | 160. 4    | 160. 4     | 278. 8     |  |  |
| 500       | (159. 6)     | (300.6)   | (300.6)    | (726. 3)   |  |  |

### (4)60G場(遠心場)(湛水・密詰め)

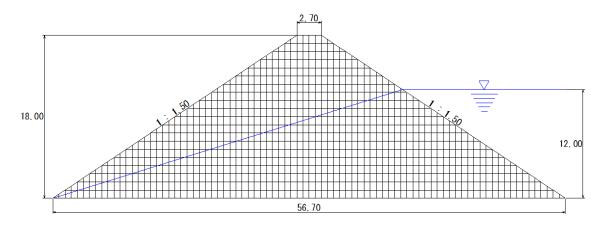



図-1.6.3.2.8 震動台実験の断面図と解析メッシュモデル(寸法単位は m 表記)

# a) 動的解析手法

表-1.6.3.2.16 最大加速度一覧 (天端)

| 入力           | 実験結果   | 解析結果 (gal) |        |         |        |        |  |
|--------------|--------|------------|--------|---------|--------|--------|--|
| レベル<br>(gal) | (gal)  | 等価線形化法     | 逐次積分法  |         |        |        |  |
| (ch21)       | (ch30) | 等価線形①      | 逐次非線形① | 逐次非線形②  | 逐次非線形③ | 逐次非線形④ |  |
| 300<br>(358) | 551    | 475. 6     | _      | 890.4   | 462.8  | 467. 0 |  |
| 400<br>(419) | 774    | 661. 7     | _      | 1014.3  | 517.5  | 689. 0 |  |
| 500<br>(541) | 889    | 993. 7     | -      | 1025. 2 | 522. 3 | 962. 0 |  |

表-1.6.3.2.17 沈下量(天端)

| X 1. 0. 0. 2. 17 1/11 \(\frac{1}{2}\) |         |          |         |         |         |  |  |
|---------------------------------------|---------|----------|---------|---------|---------|--|--|
| 入力                                    | 実験結果    | 解析結果(cm) |         |         |         |  |  |
| レベル                                   | (cm)    | 逐次積分法    |         |         |         |  |  |
| (gal)                                 | (ch1)   | 逐次非線形①   | 逐次非線形②  | 逐次非線形③  | 逐次非線形④  |  |  |
| 200                                   | 45. 6   | _        | 22.3    | 0.08    | 5.5     |  |  |
| 300                                   | (56. 4) | (-)      | (22.3)  | (0.08)  | (5.5)   |  |  |
| 400                                   | 29.8    | _        | 18.8    | -0.24   | 8.7     |  |  |
| 400                                   | (86. 2) | (-)      | (41.0)  | (-0.15) | (14. 2) |  |  |
| 500                                   | 41. 0   | _        | 12.3    | -0.05   | 11.9    |  |  |
| 500                                   | (127.2) | (-)      | (53. 3) | (-0.20) | (26.2)  |  |  |

※ () 外:各入力ステップにおける沈下量、() 内:累積沈下量

表-1.6.3.2.18 間隙水圧 (ダム軸底部)

| 入力    | 実験結果   | 解析結果 (kpa) |        |        |        |  |  |
|-------|--------|------------|--------|--------|--------|--|--|
| レベル   | (kpa)  |            | 逐次積分法  |        |        |  |  |
| (gal) | (ch26) | 逐次非線形①     | 逐次非線形② | 逐次非線形③ | 逐次非線形④ |  |  |
| 300   | 104. 7 | -          | -      | _      | 157. 0 |  |  |
| 800   | (-)    | (-)        | (-)    | (-)    | (-)    |  |  |
| 400   | 95.8   | _          | -      | -      | 118. 0 |  |  |
| 400   | (-)    | (-)        | (-)    | (-)    | (-)    |  |  |
| F00   | 95. 4  | -          | -      | -      | 88.0   |  |  |
| 500   | (-)    | (-)        | (-)    | (-)    | (-)    |  |  |

※()外:過剰間隙水圧、()内:過剰間隙水圧比

# b) 準静的解析手法

表-1.6.3.2.19 沈下量(天端)

|           |              | 解析結果(cm) |            |            |  |  |  |
|-----------|--------------|----------|------------|------------|--|--|--|
| 入力<br>レベル | 実験結果<br>(cm) | 準静的解析手法  |            |            |  |  |  |
| (gal)     | (ch1)        | h        | ニューマーク D 法 | ニューマーク D 法 |  |  |  |
|           |              | ニューマーク法  | (詳細法)      | (簡易法)      |  |  |  |
| 200       | 45. 6        | 44. 3    | -          | _          |  |  |  |
| 300       | (56. 4)      | (44. 3)  | (-)        | (-)        |  |  |  |
| 400       | 29.8         | 50. 1    | _          | -          |  |  |  |
| 400       | (86. 2)      | (94. 4)  | (-)        | (-)        |  |  |  |
| 500       | 41.0         | 63. 1    | _          | -          |  |  |  |
| 500       | (127. 2)     | (157. 5) | (-)        | (-)        |  |  |  |

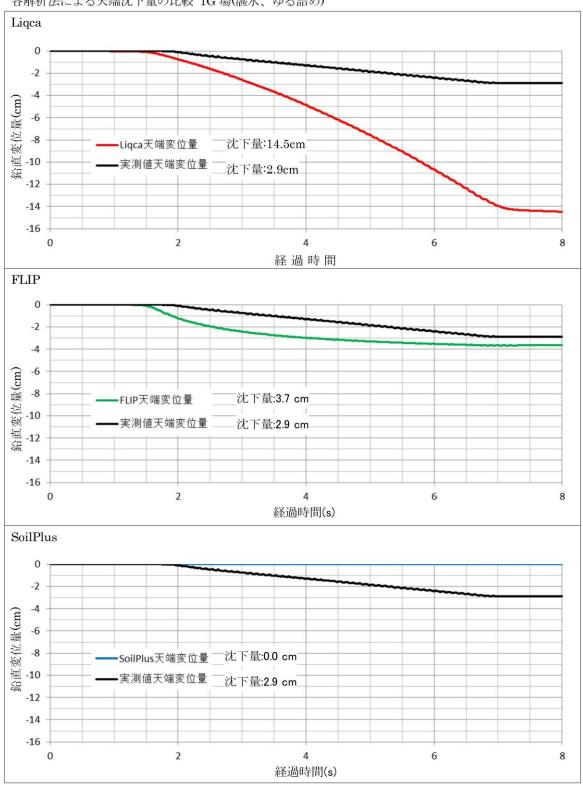



図-1.6.3.2.9 1G場(湛水、ゆる詰め)の各手法による天端沈下量の比較