表1.8-4 各種酸度調整材の特徴

	ピートモス	航 安	硫黄華	サンドセット	Dr. pH
嵌	●ミズゴケヤシダなどの水気の多い場所で育つ植物が推積して腐植し、何年もかけて泥炭化したものを乾燥させて粉砕したもので、土壌を柔らかくし、保水力・保肥力を向上させる働きがある。 ●有機酸を含むために酸性を示し、土壌の pH をアルカリ性から酸性に傾ける効果がある。 ● 有機酸を含むために酸性を示し、土壌の pH をアルカリ性から酸性に傾ける効果がある。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	●硫酸アンモニウムの工業上の慣用名で,(NH4)2SO4の化学組成を持ち,水によく溶ける(溶解度;75g/100g,20°C)無色透明の結晶である。 ●化学的には中性であるが,副生分の硫黄の影響で土壌を酸性にする効果があるが,土壌が酸性に傾き過ぎないように配慮が必要である。 ● 法効性の窒素肥料で,最も代表的な化学肥料である。 ● 海外体のままでも施肥可能であるが, 施肥効果を入ビーディーに得たい場合は水に溶かしディーディーディーディーディーが多が、地間効果をスピーディーに得たい場合は水に溶かして使用する。	●硫黄の蒸気が凝結固化したもので,天然には火山,温泉などの噴出口にみられる無臭で黄色の粉末. ●土に混ぜると,硫黄が微生物の硫酸根(SO4²-)に変ってpHが低下するが,混合後,目的のpHで下するが,混合後,目的のpHに下がるまで約1ヶ月要する. ●ECが高くなるため,塩類障害に弱い作物には使用しない.	●サンドセットは ph5.5~6.5 の床土を ph5 前後にするための「育苗床土酸度調整材」である。 ・ 酸度調整はサンドセットの主成分である硫黄(三酸化硫黄;SO3)の働きによるものである。 ● ph11~12 のアルカリ土を酸性にすることもできなくはないが、本来の目的ではないたいかいが、アルカリ土を酸性上にしたいのためがが、サンドセットではないが、サンドセットではないが、サンドセットではない。であれば、サンドセットではなく、硫黄華や硫化第一鉄を使った方がいい(製造メーカーからの助言).	●アルカリ土壌を中性化する 薬剤で、溶液タイプと粉体タ イプがあり、溶液タイプと粉体タ イプがあり、溶液タイプはリ ン酸塩、ポリ鉄、有機酸を、粉 体タイプは塩類(カルシウム 塩、アルミニウム塩)をそれぞ れ主成分とする。 ● 中和反応で生成される塩類 を難溶化するため、ECの上昇 を抑え、植物に優しい中和剤 である。 ● 溶液タイプは希釈して散布 するものと、原液のまま散布 するものと、原液のまま散布
単味 pH (実測値)	 ●液固比10 (ピートモスの吸 水率が高く, JGS 0211 に規定 される液固比 5 では懸濁状態 にならない)のpHは4.65を 示した. 	●0.5%水溶液(200 倍希釈) の pH は 5.66 を示した.	●未測定 (未入手).	●未測定 (未入手).	溶液 B-type の原液の pH は0.57 を示した.
試験結果	● pH10.3 のアルカリ改賃土 懸濁液にピートモスを乾土質 量比で33.3%添加することで pH は6.94 を示したが,ピー トモスの乾燥嵩比重が 0.091Mg/m³と小さいため, 体積比が土の3倍を超過した.	●pH10.3 のアルカリ改質土 懸濁液に硫安の 0.5%水溶液 (200 倍希釈)を液固比約 1 で添加 (乾土質量に対する硫 安の添加比は3.3%)すること で, pHは8.81を示した.			● pH10.3 の処理土懸濁液 (JGS-0211)に Dr.pH 溶液 B-type 原液を滴下させると, 乾土質量比1.3%で pHは6.4 を示した.
判定	×	Δ	I	Ť	0

1.8.2 機能監視の結果

(1) 物理特性

1) 土木用改質土

コアカッターで採取した模擬農道の透水係数と現場密度の経時変化を**図1**.8-12 (山口ため池)及び**図1**.8-13 (新潟貯水池)に示す.

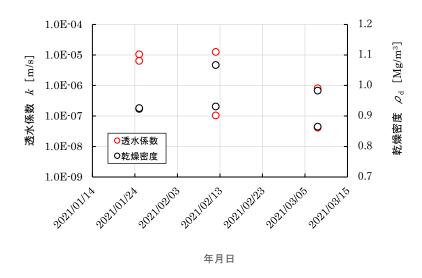


図1.8-12 模擬農道の透水係数と乾燥密度の経時変化(山口ため池)

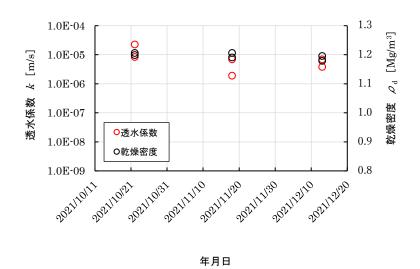


図1.8-13 模擬農道の透水係数と乾燥密度の経時変化(新潟貯水池)

全体としては新潟より山口の方がバラツキが大きくなっているが、回帰分析を行うと、 山口、新潟とも、透水係数、乾燥密度が減少する傾向にあり、乾燥密度が減少しているに もかかわらず、透水係数が低下している.

図1.8-14(山口ため池)及び図1.8-15(新潟貯水池)は、模擬農道の含水 比と乾燥密度の関係を示す.

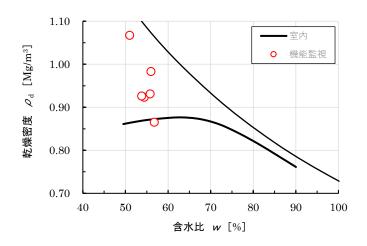


図1.8-14 模擬農道の含水比と乾燥密度の関係(山口ため池)

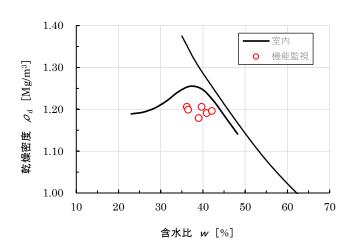


図1.8-15 模擬農道の含水比と乾燥密度の関係 (新潟貯水池)

山口のため池底泥改質土は、含水比が突固め試験結果における最適含水比より小さいにもかかわらず、乾燥密度は最大乾燥密度より大きな値を示したのに対し、新潟の貯水池底泥土は、含水比が最適含水比にほぼ近い値を示したにもかかわらず、乾燥密度は最大乾燥密度より小さな値を示した。山口のため池底泥土は、突固め試験結果より、含水比が変化しても乾燥密度はあまり変化しなかったが、機能監視においては、含水比が10%程度変化すると乾燥密度が0.2Mg/m³程度変化した。一方、新潟の貯水池底泥改質土の突固め試験結果から、含水比のわずかの変化に伴って乾燥密度が大きく変化するという結果を得ているが、機能監視においては含水比が10%程度変化しても乾燥密度の変化は0.03Mg/m³程度であり、いずれも改質土の乾燥密度は含水比に依存しないことを示した。

図1.8-16(山口ため池)及び図1.8-17(新潟貯水池)は、模擬農道の乾燥密度と透水係数の関係を示す.

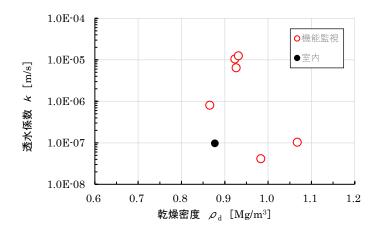


図1.8-16 模擬農道の乾燥密度と透水係数の関係(山口ため池)

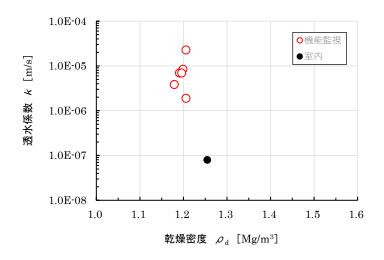


図1.8-17 模擬農道の乾燥密度と透水係数の関係 (新潟貯水池)

山口,新潟とも乾燥密度と透水係数の関係は明確ではないが,乾燥密度の変化が大きい 山口の方が,透水係数の変化も大きくなっている.

2) 土壤用改質土

図1.8-18(山口ため池)及び図1.8-19(新潟貯水池)は、コアカッターで採取した模擬畑の透水係数と現場密度の経時変化を示す。

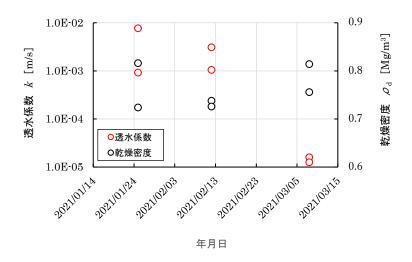


図1.8-18 模擬畑の透水係数と乾燥密度(山口ため池)

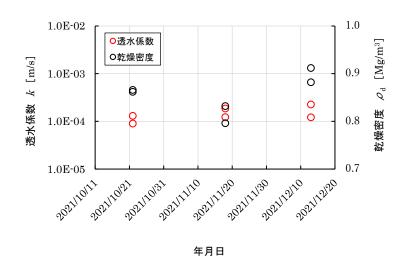


図1.8-19 模擬畑の透水係数と乾燥密度(新潟貯水池)

回帰分析の結果,山口の模擬畑は時間経過とともに乾燥密度が増加し,透水係数は減少する傾向を示し,土壌が経時的に締まっていく様相を示した.

図1.8-20(山口ため池)及び図1.8-21(新潟貯水池)は、コアカッター及び採土管で採取した模擬畑の含水比と乾燥密度の関係を示す。山口、新潟ともばらつきが大きく、両者の関係は明確ではないが、山口はコアカッター採取試料の含水比が高く、採土管採取試料の含水比が低くなっている。

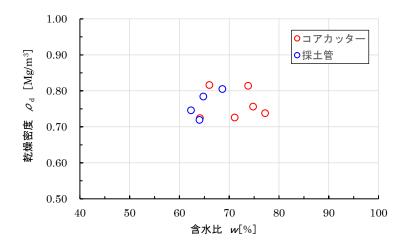


図1.8-20 模擬畑の含水比と乾燥密度の関係(山口ため池)

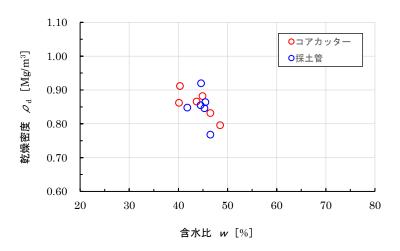


図1.8-21 模擬畑の含水比と乾燥密度の関係 (新潟貯水池)

図1.8-22 (山口ため池) 及び図1.8-23 (新潟貯水池) は,模擬畑の乾燥密度と透水係数の関係を示す.

山口, 新潟とも, 両者の関係は明確ではない.

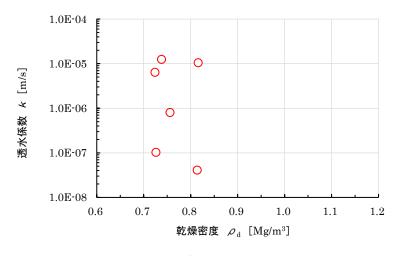


図1.8-22 模擬畑の乾燥密度と透水係数の関係(山口ため池)

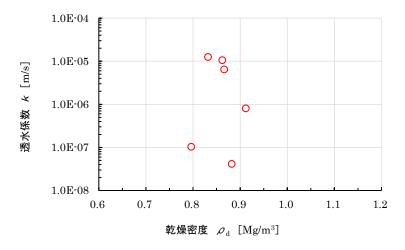


図1.8-23 模擬畑の乾燥密度と透水係数の関係 (新潟貯水池)

図1.8-24は山口における機能監視期間中の模擬畑の水分特性曲線を,図1.8-25は易効性有効水の経時変化を示す.

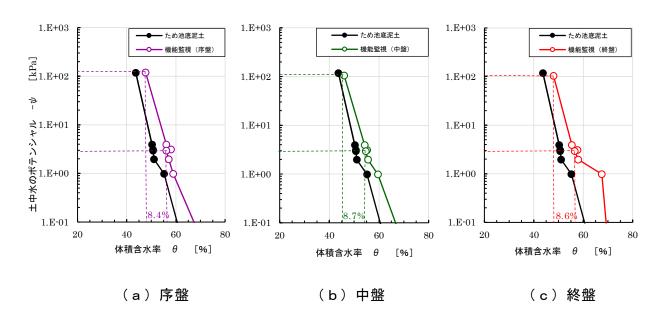


図1.8-24 模擬畑の水分特性曲線(山口ため池)

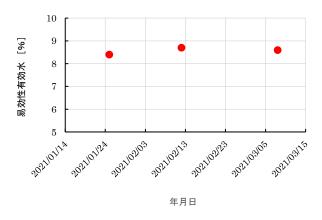


図1.8-25 模擬畑易効性有効水の経時変化(山口ため池)

機能監視期間は2カ月足らずの短い期間であったが、模擬畑の易効性有効水は増減傾向を示さず、8~9%の間を変動した.

図1.8-26は機能監視期間中における模擬畑(新潟貯水池)の水分特性曲線を,図1.8-27は易効性有効水の経時変化を示す.

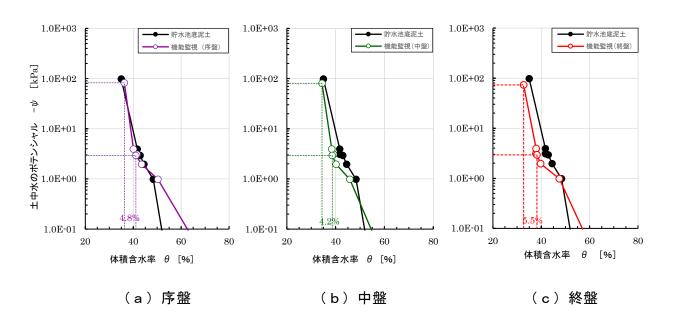


図1.8-26 模擬畑の水分特性曲線(新潟貯水池)

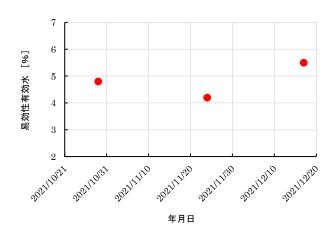


図1.8-27 模擬畑易効性有効水の経時変化(新潟貯水池)

機能監視期間は2カ月足らずの短い期間であったが、模擬畑の易効性有効水は増減傾向を示さず、 $4\sim5.5\%$ の間を変動した.

(2) 化学特性

1) 土木用改質土

表1.8-5 (山口ため池) 及び表1.8-6 (新潟貯水池) は、模擬農道に用いた土木用改質土の化学試験結果を示す。

	ı	T	T	T	
水溶性成分	単位	ため池底泥土	室内改質土	機能	監視
小俗性风 刀	中 14	/こめ/他/広ル上	配合③	序盤	終盤
ナトリウム	mg/g	0.023	0.11	0.17	0.16
カリウム	mg/g	0.034	0.060	0.17	0.14
カルシウム	mg/g	0.53	6.7	6.9	3.0
マグネシウム	mg/g	0.012	0.002	0.001	< 0.001
塩化物イオン	mg/g	0.011	0.027	0.032	0.012
硫化物イオン	mg/g	0.72	8.3	11	3.5

表1.8-5 土木用改質土の化学試験結果(山口ため池)

表 1. 8 - 6 土木用改質土の化学試験結果(新潟貯水池)

小冰小叶子八	光 /去	10小沙山 11、	室内改質土	機能	監視
水溶性成分	単位	貯水池底泥土	配合③	序盤	終盤
ナトリウム	mg/g	0.009	0.033	0.11	0.11
カリウム	mg/g	0.020	0.045	0.15	0.14
カルシウム	mg/g	0.020	6.7	6.6	6.6
マグネシウム	mg/g	0.006	0.004	0.001	0.003
塩化物イオン	mg/g	0.004	0.008	0.016	0.014
硫化物イオン	mg/g	0.039	12	9.5	9.3

山口と新潟とで、底泥土(原泥)中の水溶性成分濃度が大きく異なるので改質に伴う数値変化について述べることは難しいが、底泥土に再生半水石膏と高炉セメントB種を添加したことで、改質土のカルシウムと硫化物イオンが大幅に増加したことは明らかであり、これは室内改質土、機能監視序盤について共通して言えることである.

カルシウムに関していえば、原泥と室内改質土の濃度の違いは、山口で 12 倍、新潟で 335 倍となっているが、改質後はいずれも 6.7 mg/g と同じ値を示している.一方、硫化物 イオンは、改質に伴い山口が 12 倍、新潟で 308 倍となっているが、改質後は $8\sim12 mg/g$ を示している.機能監視序盤の分析値は、一部を除いて概ね室内配合試験試料分析値の 1 ~3 倍を示し、機能監視期間中、山口のカルシウムと硫化物イオンが $1/2\sim1/3$ となったが、他の項目及び新潟では大きな変化はなかった.

2) 土壤用改質土

表1.8-7 (山口ため池) 及び表1.8-8 (新潟貯水池) は、模擬畑に用いた土壌 用改質土の化学試験結果を示す.

表 1.	8 - 7	土壌用改質土の化学試験結果	(山口ため池)
10 .	· ,		

水溶性成分	単位	ため池底泥土	室内改質土	機能	監視
水俗性双分	字 1½ 	ため他成化工	配合⑤	序盤	終盤
ナトリウム	mg/g	0.023	0.062	0.099	0.030
カリウム	mg/g	0.034	0.020	0.042	0.002
カルシウム	mg/g	0.53	6.8	7.4	13
マグネシウム	mg/g	0.012	0.001	< 0.001	< 0.001
塩化物イオン	mg/g	0.011	0.026	0.13	0.041
硫化物イオン	mg/g	0.72	9.2	0.034	7.8
土の陽イオン 交換容量	Cmol(+)/kg	9.0	17	20	36
土の強熱減量	%	8.8		13.4	10.0
土の有機炭素 含有量	%	2.5	_	2.7	1.7

表1.8-8 土壌用改質土の化学試験結果(新潟貯水池)

水溶肿卡八	単 位	貯水池底泥土	室内改質土	機能	監視
水溶性成分	単位	灯水他这化工	配合⑤	序盤	終盤
ナトリウム	mg/g	0.009	0.007	0.009	0.015
カリウム	mg/g	0.020	0.016	0.024	0.029
カルシウム	mg/g	0.020	6.9	6.4	6.0
マグネシウム	mg/g	0.006	< 0.001	0.001	0.006
塩化物イオン	mg/g	0.004	0.010	0.007	0.006
硫化物イオン	mg/g	0.039	11	9.1	8.7
土の陽イオン 交換容量	Cmol(+)/kg	12	25	36	19
土の強熱減量	%	5.3	8.0	6.8	6.9
土の有機炭素 含有量	%	1.2	1.4	1.2	1.0

土木用改質土同様,底泥土に再生二水石膏と消石灰を添加したことで,改質土のカルシウムと硫化物イオンが大幅に増加したことは明らかであり,これは室内改質土,機能監視序盤について共通して言えることである.

カルシウムに関していえば、原泥と室内改質土の濃度の違いは、山口で 13 倍、新潟で 345 倍となっているが、改質後はいずれも $6.8\sim6.9$ mg/g とほぼ同じ値を示している. 一方、硫化物イオンは、改質に伴い山口が 13 倍、新潟で 282 倍となっているが、改質後は $9.2\sim11$ mg/g を示している。原泥の濃度が異なり、土木と土壌とで配合が異なるにも拘らず、改質土の濃度が近似していることは、興味深いことである.

山口、新潟とも、室内改質土(配合試験)と機能監視序盤の濃度比は概ね $0.7\sim2$ 倍となっているが、山口の硫化物イオンだけは 1/270(室内>序盤)となっている。また、機能監視序盤と終盤の濃度比は、概ね $0.3\sim1.7$ 倍となっているが、山口のカリウム(0.05 倍)及び硫化物イオン(230 倍)、新潟のマグネシウム(6 倍)といった具合に大きく変化しているものもある。

土の陽イオン交換容量は、山口、新潟とも改質に伴って増加したが、機能監視期間中、 山口が半減したのに対し、新潟は倍増した.

有機物に関しては、山口、新潟とも改質に伴って同等~微増であったが、機能監視期間中、新潟の強熱減量以外は減少した. 但し、機能監視期間が2カ月弱であることを踏まえれば、有機物が分解されたとは考えにくい.

(3) 安定化特性

1)動的コーン貫入抵抗

図1. 8-28は、模擬農道の動的コーン貫入抵抗の深度方向分布と、経時変化を示す。図中プロットは各ステージとも3箇所測定した平均値であるが、山口では深くなるにつれて、また、時間経過に伴って貫入抵抗が大きくなっているのに対し、新潟では GL-0.2m 付近と GL-0.6m 付近に貫入抵抗のピークが認めら、機能監視中盤は序盤より貫入抵抗が大きくなっているが、終盤は中盤とほぼ同じ抵抗を示している。

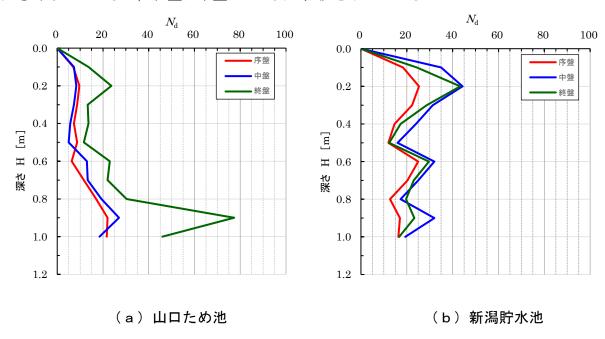


表1.8-28 模擬農道の平均動的コーン貫入抵抗

2) 再泥化

写真1.8-19は、実機で製造した土木用改質土を7日間養生したのち浸漬したものである.水浸後1箇月以上経過しているが、団粒の崩れや溶解、亀裂、軟化及び水の濁りといった再泥化現象は見受けられなかった.

(a) 山口ため池

(b) 新潟貯水池

写真1.8-19 実機処理土(土木用改質土)の再泥化試験

(4) 土壌診断

1) 土壤理化学特性

表1.8-9 (山口ため池) 及び表1.8-10 (新潟貯水池) は、土壌用改質土の土壌理化学分析結果を示す。

不品

風田

運

表1.8-9 土壌用改質土の土壌理化学分析結果(山口ため池)

	試料名称		ため池底泥土	室内改質土 配合⑤	実機処理土 機能監視(序盤)	実機処理土 機能監視(終盤)	
	分析項目	東 位		₩	分析值		目標値
	PH(H ₂ O)	l	9.8	12.5	8.2	12.1	6.0~6.5
	電気伝導率(EC)	mS/cm	0.31	7.92	1.09	7.85	≦0.3
	交換性カルシウム(CaO)	mg/100g	771	7,974	2,798	8,510	上限值; CEC×60/100×0.65×56.08/2 下跟值; CEC×90/100×0.75×56.08/2
	交換性マグネシウム(MgO)	mg/100g	10.9	24.1	33.1	24.1	上限值; CEC×60/100×0.20×40.31/2 下限值; CEC×90/100×0.25×40.31/2
+	-	mg/100g	17.0	24.8	11.7	13.2	上限值; CEC×60/100×0.02×94.20/2 下限值: CEC×90/100×0.10×94.20/2
土葉	Ca/Mg比	l	51.0	238	60.7	253	$2.6 \sim 3.75$
開	Mg/Ktt	I	1.50	2.27	6.62	4.28	2.0~12.5
1	Ca/Ktt	1	76.4	541	401	1,085	6.5~37.5
上	陽イオン交換容量(CEC)	meq/100g	16.9	12.4	12.6	9.80	10以上
<u>H</u>	塩基飽和度	%	168	2,313	804	3,113	06~0∠
	可給態リン酸(P ₂ O ₅)	mg/100g	<3.0	<3.0	<3.0	<3.0	10~100
	アンモニア態窒素(NH4-N)	mg/100g	7.58	3.94	90.9	3.24	I
	硝酸態窒素(NO ₃ -N)	mg/100g	<0.1	<0.1	0.21	<0.1	1
	リン酸吸収係数	mg/100g	613	2,559	2,121	2,709	I
	腐植	%	2.69	06.0	1.96	0.81	>3
į	分析項目	単位		分	分析值		目標値
返刂	可給態-鉄(Fe)	mg/kg	167	121	196	71.1	≥4.5
出世	可給態-マンガン(Mn)	mg/kg	48.5	<0.05	19.9	<0.05	ŽΠ
· (4)	可給態-亜鉛(Zn)	mg/kg	3.59	0.13	8.76	0.61	ΣII
	可給態-銅(Cn)	mg/kg	1.73	0.30	7.22	2.78	≥0.2

表 1. 8-10 土壌用改質土の土壌理化学分析結果(新潟貯水池)

目標値		$6.0 \sim 6.5$	€0.3	上限值:CEC×60/100×0.65×56.08/2 下限值:CEC×90/100×0.75×56.08/2	上限值:CEC×60/100×0.20×40.31/2 下限值:CEC×90/100×0.25×40.31/2	上限值:CEC×60/100×0.02×94.20/2 下限值:CEC×90/100×0.10×94.20/2	$2.6 \sim 3.75$	2.0~12.5	6.5~37.5	≥10	06~0∠	10~100				≥3		≥4.5	<u>√</u>	∑II	≥0.2	
実機処理土 機能監視(終盤)		9.2	2.08	3,801	7.05	8.47	387	1.95	754	9.17	1,483	<3.0	4.17	<0.1	1,576	<0.9		381	31.6	2.38	4.26	
実機処理土 機能監視(序盤)	.值	10.0	2.21	4,883	12.2	8.42	288	3.38	974	8.95	1,954	<3.0	1.27	<0.1	1,907	<0.9		975	30.1	2.84	3.35	
室内改質土 配合⑤	分析值	6.6	2.22	5,631	7.61	7.70	532	2.31	1,229	8.83	2,281	<3.0	1.19	<0.1	2,197	<0.9	分析值	761	24.4	3.39	3.69	
貯水池底泥土		6.1	0.04	153	25.4	15.6	4.35	3.81	16.5	9.97	70.8	11.4	4.34	0.17	637	1.17		363	95.9	2.10	2.93	
	単位	1	mS/cm	mg/100g	mg/100g	mg/100g	1	1		meq/100g	%	mg/100g	mg/100g	mg/100g	mg/100g	%	単位	mg/kg	mg/kg	mg/kg	mg/kg	
試料名称	分析項目	(O ² H)Hd	電気伝導率(EC)	交換性カルシウム(CaO)	交換性マグネシウム (MgO)	交換性カリウム(K2O)	Ca/Mg Lt	Mg/K比	Ca/K比	陽イオン交換容量(CEC)	塩基飽和度	可給態リン酸(P ₂ O ₅)	アンモニア態窒素(NH4-N)	硝酸態窒素(NO ₃ -N)	リン酸吸収係数	腐植	分析項目	可給態-鉄(Fe)	可給態-マンガン(Mn)	可給態-亜鉛(Zn)	可給態-銅(Cu)	
			, .=-		3	2	·····································		s -	<u>。</u> 計:		•-					1		. '- 酬 七			

既に述べたように、ネオ・イーキューブ工法によりため池泥土を農地土壌に適用できるように改質する際に、理化学特性については積極的に改善するわけではないが、改質することによって原泥の値がどう変化するか、また、改質後時間の経過とともにどう変わっていくかを確認した.

新潟貯水池底泥土の土壌理化学性は、交換性マグネシウムが不足しているため、Ca/Mg が過剰となった以外は適正であったのに対し、山口ため池の土壌理化学性は、交換性マグネシウムと可給態リン酸が不足し、交換性カリウムと陽イオン交換容量が適正だった以外は全て過剰という診断結果であった。これらの底泥土に改質主材として再生二水石膏($CaSO_4 \cdot 2H_2O$)を添加したことで、改質土の交換性カルシウムは千 mg/100g オーダーの値を示し、過剰となった。勿論、交換性カルシウムが高い値を示したのは、安定材として添加した消石灰($Ca(OH)_2$)も影響していると考えられる。

山口のため池底泥改質土は、室内配合試験時に交換性カルシウムが約 10 倍(771 \Rightarrow 7,974 mg/100g)になり、これに連動して電気伝導率も約 25 倍($0.31 \Rightarrow 7.92 mS/m$)に跳ね上がった。しかし、機能監視序盤には交換性カルシウムは室内改質土の約 1/3($7,974 \Rightarrow$ 2,798 mg/100g)になり、電気伝導率も約 1/7($7.92 \Rightarrow 1.09 mS/m$)に減少した。その後機能監視終盤には 交換性カルシウムが約 3 倍($2,798 \Rightarrow 8,510 mg/100g$)に、電気伝導率が約 7 倍($1.09 \Rightarrow 7.85 mS/m$)に増加している。

一方,新潟の貯水池底泥改質土は,室内配合試験時に交換性カルシウムが約37倍 (153 \Rightarrow 5,631mg/100g) になり、これに連動して電気伝導率も約56倍 (0.04 \Rightarrow 2.22mS/m) に跳ね上がった.機能監視序盤の交換性カルシウムは室内改質土の9割弱 (5,631 \Rightarrow 4,883mg/100g) で、電気伝導率はほどんど変わらなかった (2.22 \Rightarrow 2.21mS/m).機能監視期間中、終盤には序盤の8割弱 (4,883 \Rightarrow 3,801mg/100g) まで減少し、電気伝導率も9割強 (2.21 \Rightarrow 2.08mS/m) まで低下した.水溶性成分のカルシウムと交換性カルシウムは必ずしも対応していないが、交換性カルシウムと電気伝導率は対応することが確認された.

機能監視期間中,山口のため池底泥改質土の陽イオン交換容量が減少して目標値を下回ったため,それまでの適正から不足に診断結果が変わった.しかし,目標値との差異は些少(分析値:9.8 meq/100g,目標値:10 meq/100g 以上)で,実質的な評価結果は変わらないとすると,機能監視序盤で不足と診断された新潟の交換性マグネシウム(12.2 mg/100g)が,機能監視期間中に減少($\Rightarrow 5.97 mg/g$)したことに伴い,序盤では適正(3.38>2.0)と診断された Mg/K が不足(1.55<2.0)に転じたことを除けば,機能監視期間中に診断結果は変わらないことが確認された.

この結果,交換性カルシウムが過剰な改質土は,時間が経過しても降雨等による流亡による低下は余り期待できず,塩類の拮抗作用によりカリウムの吸収が抑制されることが想定される.また,土壌中にアルカリの塩基であるカルシウムが増加したことで塩基飽和度が上昇し,pH 及び EC も増加した.このため,栄養分の不可給化や塩類濃度障害(肥料焼け)を起こすことが懸念される.したがって,改質土を農地土壌として適用する際には,クリーニングクロップ(土壌中の過剰な塩類や肥料成分を吸収する作物)の活用や,深耕による濃度低下等の検討が必要となる.

2) 土壤硬度

図1.8-29 (山口ため池)及び図1.8-30 (新潟貯水池)は、模擬畑の土壌硬度経時変化を示す。山口ため池改質土は時間経過とともに土壌硬度が大きくなった。一方、新潟貯水池底泥土は序盤から中盤にかけて土壌硬度が増加したが、中盤から終盤にかけて

は横ばいとなっている. いずれも機能監視期間中, 改良目標範囲内に収まっている.

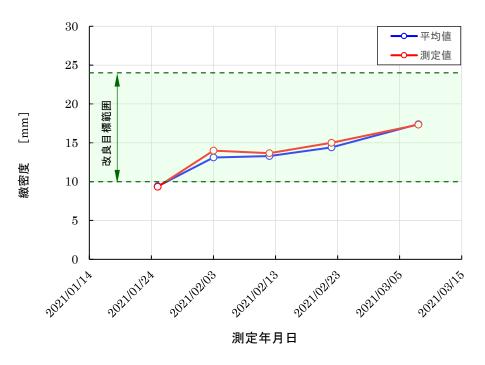


図1.8-29 模擬畑の土壌硬度経時変化(山口ため池)

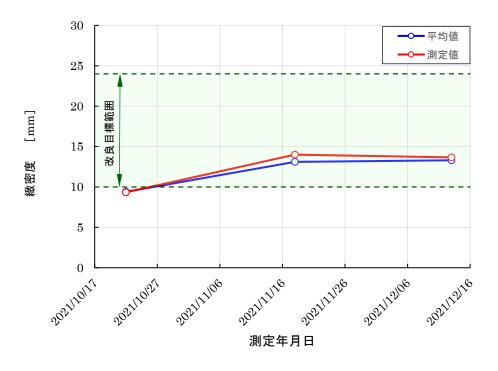


図1.8-30 模擬畑の土壌硬度経時変化(新潟貯水池)

3) 三相分布

図1. 8-31 (山口ため池)及び図1. 8-32 (新潟貯水池)は、コアカッター及び採土管で採取した試料の三相分布の経時変化を示す。1回に採取する試料の中で三相のバラツキがみられるが、山口は気相は減少、液相は増加、固相はほぼ一定となっており、新潟も回帰分析を行うと同様の傾向が見受けられ、時間経過に伴って、気相の一部が液相に変っていることがうかがえる。

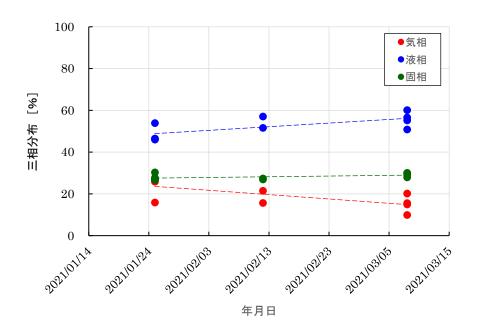


図1.8-31 模擬畑の三相分布経時変化(山口ため池)

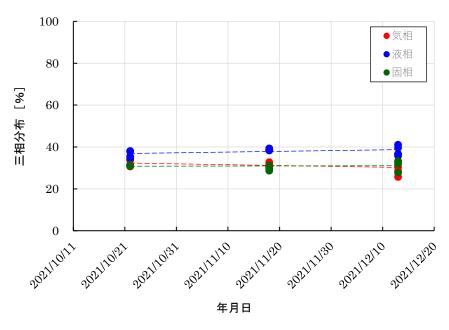


図1.8-32 模擬畑の三相分布経時変化 (新潟貯水池)

4) 団粒分析

表1.8-11(山口ため池)及び表1.8-12(新潟貯水池)は、模擬畑から対角線採土法によって採取した試料の団粒分析結果を示す。改質により細粒分が減少し、粗粒分が増加したことがわかる。また、機能監視期間中、粒度組成に大きな変化がなかったことから、改質によって整形された団粒は耐水性を有することが示唆された.

表1.8-11 土壌用改質土の団粒分析結果(山口ため池)

	項 目		事前	試験	機能	監視
	垻 日		ため池底泥土	室内改質土⑤	序盤	終盤
最大粒径	$D_{ m max}$	mm	2.00	2.00	2.00	2.00
砂分	2 ~ 0.02mm	%	27.0	78.5	80.7	80.5
シルト分	0.02~0.002mm	%	47.9	13.0	10.3	9.6
粘土分	0.002mm 未満	%	25.1	8.5	9.0	9.9
土性区分			シルト質埴土 SiC	砂壌土 SL	砂壌土 SL	砂壌土 SL

[※]ため池底泥土の試験法は JIS A 1204

表1.8-12 土壌用改質土の団粒分析結果(新潟貯水池)

	項目		事前	試験	機能	監視
	块 口		貯水池底泥土	室内改質土⑤	序盤	終盤
最大粒径	$D_{ m max}$	mm	2.00	2.00	2.00	2.00
砂分	2 ~ 0.02mm	%	30.4	61.9	64.8	59.4
シルト分	0.02~0.002mm	%	49.4	27.3	25.1	30.9
粘土分	0.002mm 未満	%	20.2	10.8	10.1	9.7
土性区分			シルト質埴壌土 SiCL	壌土 L	壌土 L	壌土 L

[※]貯水池底泥土の試験法は JIS A 1204

模擬畑からの採取試料の粒径加積曲線を**図1**.8-33(山口ため池)及び**図1**.8-34(新潟貯水池)に示す.

山口は実機処理土の粒度分布は室内改質土よりやや粗くなり、機能監視期間中粒度分布 はほとんど変わらなかった.一方、新潟は機能監視期間中の粒度は室内改質土をまたぐよ うな分布であり、序盤より終盤の方が粒度分布が細かくなり、粗粒分が減少した.

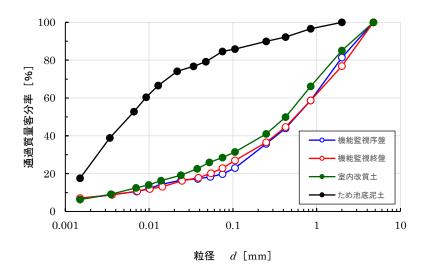


図1.8-33 模擬畑の粒径加積曲線(山口ため池)

図1.8-34 模擬畑の粒径加積曲線(新潟貯水池)

土性三角図表を**図1**. **8**-**35** (山口ため池) 及び**図1**. **8**-**36** (新潟貯水池) に示す. 実機処理土の組成比は室内改質土とやや違うが土性区分は同じであり, また, 機能監視期間中土性区分が変わることはなかった.

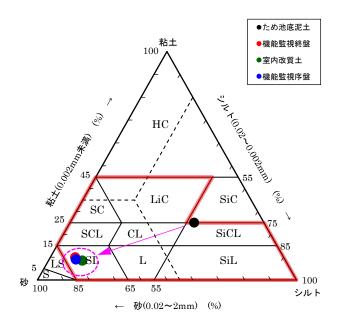


図1.8-35 模擬畑の土性三角図表(山口ため池)

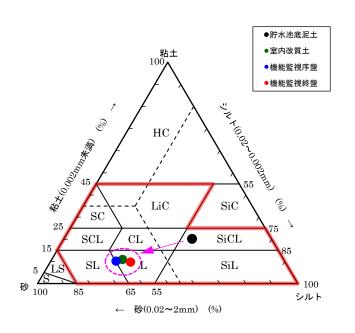


図1.8-36 模擬畑の土性三角図表 (新潟貯水池)

(5) 環境安全性

1) 山口ため池

溶出試験方法は、ため池底泥土及び室内改質土は環境庁告示第 46 号 (JLT-46)、機能 監視期間中の実機処理土はタンクリーチング試験 (TL) 溶媒水を検液として実施した.

土木用改質土の重金属等の溶出試験結果を**表 1**. **8 - 1 3**に示す. ため池底泥土に対して室内改質土のふっ素溶出量が約 2 倍になっているのに対し,実機処理土の機能監視中のふっ素溶出量は 1/5 以下となっている. ふっ素を含めていずれの項目も基準値以内となっている.

表 1. 8-13 実機処理土 (土木用改質土)の機能監視期間中 における溶出試験結果 (山口ため池)

計量の対象	単位	ため池底泥土	室内改質土	機能監視(タンク	リーチング試験)	判定
計里の対象	単 単 世	計量結果	計量結果	計量結果	基準値 ^{注)}	刊化
カドミウム	mg/L	< 0. 001	< 0.001	< 0.0003	≦ 0. 003	0. K.
鉛	mg/L	< 0. 005	< 0.005	< 0.005	≦ 0.01	0. K.
六価クロム	mg/L	<0.01	0.02	<0.01	≦ 0.05	0. K.
ひ素	mg/L	0.005	0. 007	< 0.005	≦ 0. 01	0. K.
総水銀	mg/L	< 0.0005	< 0.0005	< 0.0005	≦ 0.0005	0. K.
セレン	mg/L	<0.002	< 0.002	< 0. 002	≦ 0. 01	0. K.
ふっ素	mg/L	0. 25	0. 47	< 0.05	≦ 0.8	0. K.
ほう素	mg/L	<0.02	0.04	<0.02	≦1	0. K.

注) 平成9年環境庁告示第10号, 地下水の水質汚濁に係る環境基準について

表1.8-14は、土壌用改質土の重金属等の溶出試験結果を示す.ふっ素の溶出量が 基準値を超過した.

表 1. 8-14 実機処理土 (土壌用改質土)の機能監視期間中における溶出試験結果 (山口ため池)

計量の対象	単位	ため池底泥土	室内改質土	機能監視(タンク	リーチング試験)	判定
計里の対象	甲世	計量結果	計量結果	計量結果	基準値 ^{注)}	刊止
カドミウム	mg/L	< 0. 001	< 0.001	< 0.0003	≦ 0.003	0. K.
鉛	mg/L	< 0. 005	< 0.005	< 0.005	≦ 0. 01	0. K.
六価クロム	mg/L	<0.01	< 0.01	<0.01	≦ 0.05	0. K.
ひ素	mg/L	0. 005	0. 010	0. 009	≦ 0.01	0. K.
総水銀	mg/L	< 0.0005	< 0.0005	<0.0005	≦ 0. 0005	0. K.
セレン	mg/L	<0.002	< 0.002	0. 002	≦ 0. 01	0. K.
ふっ素	mg/L	0. 25	< 0.08	1.0	≦ 0.8	N. G.
ほう素	mg/L	<0.02	< 0.02	< 0.02	≦1	0. K.

注) 平成9年環境庁告示第10号, 地下水の水質汚濁に係る環境基準について

環境庁告示第 46 号(JLT-46)に基づいて行った、室内における土壌用改質土のふっ素溶出量は、ため池底泥土の 1/3 以下だった。これに対し、タンクリーチング試験(TL)の溶媒水を検液として行った実機処理土の機能監視期間中のふっ素溶出量は、ため池底泥土のふっ素溶出量の 4 倍になっており基準値を超過した。両者の違いの原因として試験法の違いが考えられる。

土壌用改質土に関して、ふっ素溶出濃度が高い二水石膏を添加したにもかかわらず、室内改質土のふっ素溶出量がため池底泥土より小さくなったのは、安定材として添加した消石灰の重金属等溶出抑制効果が考えられるが、実機処理土に対しては抑制効果が機能しなかった理由についてはよくわからない。

表 1. 8-15 に土壌用改質土の農用地特定有害物質の試験結果を示す. ひ素については機能監視の序盤・終盤とも基準値以内ではあるが、終盤(14mg/kg)には序盤(1.6mg/kg)の約9 倍の値を示している. 分析に際してはバラツキを少なくするため、

試料採取に際しては工夫(対角線採土法)を凝らし、採取した試料をポリ袋内で混合して均質化を図るなどしている。その上で、ため池底泥土のひ素含有量が8mg/kg(表 1. 6 -36 参照)であったこと、農地土壌に使用した改質材のひ素含有量が再生二水石膏 1.9mg/kg、消石灰 0.4mg/kg 未満(表 1. 6-45 参照)であることから、改質及び機能監視期間にひ素含有量が急増することは考えにくいこと、室内改質土のひ素含有量が12mg/kg(表 1. 6-77 参照)であったことを踏まえると、終盤の分析値は概ね妥当で、序盤の分析値が過少に評価されていると考えられるが、原因の特定には至っていない.

表 1. 8-15 実機処理土 (土壌用改質土)の機能監視期間中 における特定有害物質 (山口ため池)

農用地土壌汚染防止法

	東 単位	分析值					
計量の対象		ため池 底泥土	室内 改質土	機能監視序盤	機能監視 終盤	基準値	判定
ひ素	mg/kg	8. 0	12	1.6	14	15	0. K.
銅	mg/kg	4. 7	<0.5	1. 2	1.5	25	0. K.

表 1. 8 - 16は、機能監視期間中における硫化水素ガス発生ポテンシャルの変化を示す。 改質土には有機分や硫黄分、水分が十分あるが、pH がアルカリ性であることや、温度が低いこと等から、硫化水素ガスの発生は認められず定量下限値以下であった。

表 1. 8-16 実機処理土 (土壌用改質土)の機能監視期間中に おける硫化水素ガス発生ポテンシャル (山口ため池)

		分析値					
分析項目	単位	ため池 底泥土	室内 改質土	機能監視 序盤	機能監視 終盤		
硫化水素ガス濃度	ppm	< 0.3	< 0.3	< 0.3	< 0.3		
pН	_	9.1	12.6	12.9	12.6		
EC	mS/m	26.8	794	702	674		
ORP	mV	308	142	154	160		
強熱減量	mass%	8.8	_	13.4	10.0		
有機炭素含有量	mass%	2.5	_	2.7	1.7		

2) 新潟貯水池

土木用改質土の重金属等溶出量について、機能監視期間の序盤と終盤の分析結果を表1.8-17に示す。同表には、貯水池底泥土、室内改質土の結果も併記している.

表 1. 8-17 実機処理土 (土木用改質土)の機能監視期間中における溶出試験結果 (新潟貯水池)

※平成3年環境庁告示第46号

							告示第46号
	単位						
計量の対象		貯水池底泥土	土木用改質土 室内配合試験	土木用改質土 実機処理土 機能監視序盤	土木用改質土 実機処理土 機能監視終盤	基準値	判定
カドミウム	mg/L	< 0.0003	0. 0003	< 0.0003	< 0.0003	≦0.003 [*]	0. K.
鉛	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	≦ 0.01	0. K.
六価クロム	mg/L	< 0.01	0. 03	0. 01	<0.01	≦ 0.05	0. K.
ひ素	mg/L	< 0.005	0.008	< 0.005	0.005	≦ 0.01	0. K.
総水銀	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	≦ 0.0005	0. K.
セレン	mg/L	<0.002	0. 002	0. 002	0. 002	≦ 0.01	0. K.
ふっ素	mg/L	< 0.05	0. 30	0. 10	0. 10	≦ 0.8	0. K.
ほう素	mg/L	0. 02	0.05	< 0.02	<0.02	≦1	0. K.

※カドミウムは2021年4月1日より0.003mg/Lに基準値が見直された(本分析は2021年4月以降に実施)

改質土は貯水池底泥土に再生半水石膏と高炉セメントB種を添加しているため、室内改質土では六価クロム、ふっ素の溶出量が増加したが、実機処理土では室内改質土ほど増加せず、また、機能監視期間中ほとんど変化していない.

表1.8-18は、土壌用改質土の重金属等の溶出試験結果を示す.ふっ素溶出量が機能監視序盤に比べて終盤で3倍程度となっているが、これを含めて全項目基準値以内である.

表 1. 8-18 実機処理土 (土壌用改質土)の機能監視期間中における溶出試験結果 (新潟貯水池)

※平成3年環境庁告示第46号

	単位		X 1 X 0 + X 5 L 1 1				
計量の対象		貯水池底泥土	土壌用改質土 室内配合試験	土壌用改質土 実機処理土 機能監視序盤	土壌用改質土 実機処理土 機能監視終盤	基準値	判定
カドミウム	mg/L	< 0.0003	0.0003	< 0.0003	0.0003	≦ 0.003 [*]	0. K.
鉛	mg/L	< 0.005	< 0. 005	< 0.005	< 0.005	≦ 0.01	0. K.
六価クロム	mg/L	<0.01	<0.01	<0.01	<0.01	≦ 0.05	0. K.
ひ素	mg/L	< 0.005	0.005	0.005	< 0.005	≦ 0.01	0. K.
総水銀	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	≦ 0.0005	0. K.
セレン	mg/L	<0.002	0. 002	<0.002	<0.002	≦ 0.01	0. K.
ふっ素	mg/L	< 0.05	0. 18	0.08	0. 25	≦ 0.8	0. K.
ほう素	mg/L	0. 02	< 0.02	< 0.02	< 0.02	≦1	0. K.

※カドミウムは2021年4月1日より0.003mg/Lに基準値が見直された(本分析は2021年4月以降に実施)

表1.8-19に土壌用改質土の農用地特定有害物質の試験結果を示す. ひ素含有量は 改質により貯水池底泥土の2倍程度となったが,室内改質土と実機処理土とはほぼ同じで, 機能監視期間中の変化もわずかであり,各ステージとも基準値以内であった.

表 1. 8-19 実機処理土 (土壌用改質土)の機能監視期間中における特定有害物質 (新潟貯水池)

農用地土壌汚染防止法

計量の対象	単位	分析值				及刊起工家	
		貯水池 底泥土	室内 改質土	機能監視序盤	機能監視終盤	基準値	判定
ひ素	mg/kg	2. 4	5. 4	4. 9	5. 1	15	0. K.
銅	mg/kg	9. 4	0. 6	<0.5	<0.5	25	0. K.

表 1. 8-20は、機能監視期間中における硫化水素ガス発生ポテンシャルの変化を示す. 改質土には有機分や硫黄分、水分が十分あるが、pH がアルカリ性であることや、温度が低いこと等から、硫化水素ガスの発生は認められず定量下限値以下であった.

表 1. 8-20 実機処理土 (土壌用改質土)の機能監視期間中に おける硫化水素ガス発生ポテンシャル (新潟貯水池)

		分析値					
分析項目	単位	貯水池 底泥土	室内 改質土	機能監視 序盤	機能監視 終盤		
硫化水素ガス濃度	ppm	*	< 0.3	< 0.3	< 0.3		
pН	_	6.9	11.8	10.5	9.9		
EC	mS/m	8.5	153.0	127.0	115.0		
ORP	mV	-20	276.0	181.0	201.0		
強熱減量	mass%	5.3	8.0	6.8	6.9		
有機炭素含有量	mass%	1.2	1.4	1.2	1.0		

^{※3} 検体の分析値はそれぞれ<0.3 (n=1), 0.7 (n=2), 0.8 (n=3) ppm

(6) 発芽試験

発芽試験は新潟(今年度採取)の貯水池底泥土及び山口(昨年度採取)のため池底泥土を原土とし、それぞれ未改質土(原土)、改質土(アルカリ性)及び改質土(酸度調整)の6区画を設けて実施した.

写真1.8-20は、セルトレイによる発芽試験結果を示す.