1.6.5 ⑤多様な耐震性能照査手法の性能検証システムの確立

老朽ため池では一般に締固め度が低いことが多く、大規模地震の作用で堤体材料の過剰間隙が上昇し、液状化には至らなくてもせん断強度が低下する等の影響を受けやすい傾向にある。このような現象を表現できる多様な耐震性能照査手法が開発されている中で、それぞれの耐震診断技術の<u>適用性の検証と合理的で正確な評価・診断を行う</u>ためのシステムを構築することが重要と考えられる。

間隙水圧の上昇を考慮する耐震性能照査手法の適用では、一般的に要素シミュレーションを実施して液状化曲線や動的変形特性曲線(せん断剛性比、減衰比~せん断ひずみ関係)をキャリブレーションし、その当てはめたパラメータ値を用いて解析することが多い。しかしながら、要素シミュレーションの結果が良いパラメータ値を用いても必ずしも良好な解析結果が得られるとは限らないのが現状である(その理由については、(2)で述べる)。

そこで、要素シミュレーションによるパラメータのキャリブレーションの限界を補足するために、次のようなデータ群から構成されるコントロールモデルを適用し、①各種解析技術の適用性の検証および②合理的で正確な評価および診断が可能となる支援システムを考案した。

(1) コントロールモデル

コントロールモデルは,以下の 6 種類のモデルで、①解析モデル、②基本土質定数、③時・空間計測データ群で構成される(表-1.6.5.1(1),(2))。

表-1. 6. 1. 5. 1(1) コントロールモデルのケース一覧

1G場	実物より小型だが、多数 の計器によるダム全体の				
ケース名	詳細な挙動の				
1G-01-D-L	非湛水	ゆてきめ			
1G-02-S-L	道水 ゆる詰め				

60G場 (遠心場)	実物のダムに近い寸法(拘束場) の挙動を計測					
ケース名						
60G-01-D-L	4F2# 4V	ゆる詰め				
60G-02-D-D	非湛水	密詰め				
60G-03-S-L	2# alz	ゆる詰め				
60G-04-S-D	湛水	密詰め				

表-1.6.5.1(2) コントロールモデルの構成データ

項目	内容
コントロールモデル の諸元	①ケース名(全6ケース)②材料③条件(密度、水位)④模型形状⑤測定点座標⑥入力地震波形 等
基本土質定数	①基本物理特性、力学特性 ・含水比、粒度、単位体積重量、せん断強度定数(C、Φ) ②動的特性 ・動的変形特性試験、繰返し非排水試験
計測点の時、空間データ	①応答加速度 ②変位 ③間隙水圧 ④変形形状、すべり形状
解析のための基本データ及 び事例	①解析メッシュモデルデータ (節点座標、要素構成等) ②基本条件 (境界条件等) ③解析例 (パラメータ、解析結果)

(2) コントロールモデルを用いた適性判定・解析支援システム

コントロールモデルを用いて耐震診断技術の適用性の検証と合理的に正確な評価・ 診断を行うため、次のような支援システムを構築した。このシステムは、次の2つの 機能を持つ。

- ・6 種類のコントロールモデルによる各耐震性能照査技術のベンチマーテストを行い、全体モデルにおける解析精度を判定する。
- ・各耐震性能照査技術(解析コード)固有のパラメータの影響度(感度)の判定によるパラメータ値の変動幅を絞り込み、適用性の検証と解析精度の向上を支援する。

1) ベンチマーテスト支援システム

多様な耐震診断技術に対し、コントロールモデルをベンチマークテストに用い、 本事業で検証した各耐震診断技術の解析結果のサンプルデータを検証事例として 添付する。

2) 適用性判定・解析支援システム 耐震診断技術で用いる解析コードは、多数回の要素シミュレーションで得られ たパラメータ値を用いても必ずしも良好な解析結果が得られるとは限らない。その理由として次の要因が揚げられる。

〈要素シミュレーションの限界〉

①パラメータ値の組み合わせ

要素シミュレーションで試行錯誤的に得られたパラメータ値の組み合わせは、 必ずしも一つの解ではなく、複数の解を持つ可能性がある。

②有効拘束圧

要素シミュレーションの元となる繰返し試験結果は、初期の有効拘束圧で除した応力比 $\tau_d/2\sigma_c$ 'を基準に整理されている。しかし,実際の盛土では有効拘束圧は位置や時間によって変化し、それがせん断変形、体積変化に影響することが分かっている。つまり、要素シミュレーションにより求めたパラメータは、実際の堤体挙動条件と必ずしも整合していないため、実際の挙動を予測できない場合がある。

③不規則波

繰返し載荷試験では通常、正弦波の規則波を載荷させる条件であるが、実際 には不規則波が堤体に作用する。この影響も無視できない。

(本事業で実施した震動実験によるコントロールモデルは、段階的に振幅を変えた規則波を用いたことから、この点の影響は少ないと推測される。)

④初期せん断応力

盛土法面近傍や斜面では、地震前から上載荷重による初期せん断応力が作用し、応力変形挙動や過剰間隙水圧上昇に対して大きく影響することが繰返し返し試験により報告されている。さらに、図-1.6.5.1~1.6.5.3 に示すように、中空ねじりせん断試験から、初期せん断応力方向とせん断波の SH 波の入力方向(水平)と角度の違いにより異なる挙動を示すことが指摘された(日下ら:2013)。

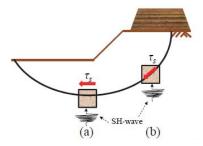
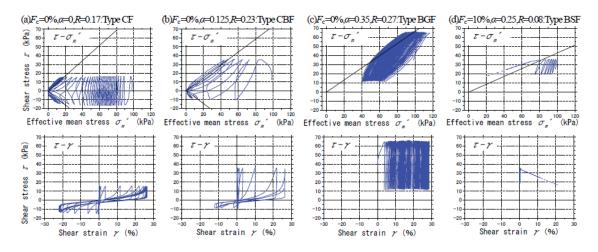
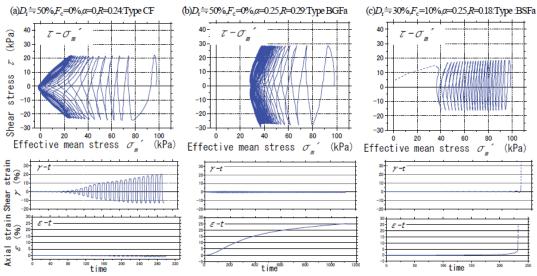



図-1.6.5.1 構造物・斜面の直下や近傍の応力状態 日下ら:2013) を引用

表-1.6.5.2 異なる初期せん断の比較表 目下ら: 2013)) を引用


Initial shear plain: θ_0	0°	45°		
Stress condition	$\sigma_{vc} = \sigma_{c}$ $\sigma_{hc} = \sigma_{c}$	σ_n σ_k σ_{hc}		
Initial shear stress ratio : $\alpha = \frac{\tau_s}{\sigma_n}$	$\frac{\tau_s}{\sigma_c}$	$\frac{\sigma_{vc} \cdot \sigma_{hc}}{2\sigma_{n}}$		

注)Fc: 細粒分含有率、 α : 初期せん断応力比、 θ_0 : 水平面との角度、R: 応力比

図-1.6.5.2 有効応力経路 (上)、せん断応力-ひずみ関係 (下) 流側円弧 $(\alpha=0$ 又は $\theta_0=0^\circ$ 、Dr=30%) Bres: 2013)) efilh

日下ら:2013)) を引用

注)Fc: 細粒分含有率、 α : 初期せん断応力比、R: 応力比、Dr: 相対密度

図-1.6.5.3 有効応力経路 (上)、せん断ひずみ (中) と軸ひずみ (下) の時刻歴 (α =0 又は θ ₀=45 $^{\circ}$) $^{\text{B} \text{T} \text{G}: 2013}$) $^{\text{E} \text{S} \text{I} \text{H}}$

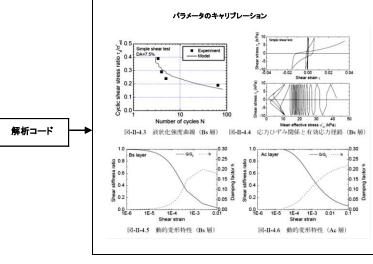
初期せん断応力の考慮については、下記の文献を引用した。

・日下拓哉、國生剛治、新井良太郎 (2013): 初期せん断応力を受ける細粒分 含有砂の液状化特性 -繰返し・単調載荷ねじりせん断試験による検討-、 土木学会論文集 C (地圏工学)、vol.69、No.1、80-90、 初期せん断応力が作用する条件で、特に片振り条件となる場合(図-1.6.5.2、

- (b)) では、過剰間隙水圧は初期の有効拘束圧まで達せず、頭打ちになることが分かる。また、初期せん断応力の角度によってせん断ひずみの進展もかなり違った結果となる。
- 一般に実施される繰返し三軸試験は、水平地盤を想定して等方状態^{注)}を設定しており、この場合、要素シミュレーションは実際に初期せん断応力が作用する堤体内部の状況とは異なる条件を想定してしまうことになる。
- 一方、コントロールモデルは、初期せん断応力が作用した状態で実施した震動実験結果(1G場、60G場)である。そこで、要素シミュレーションで初期応力を考慮していない部分を補足する意味で、コントロールモデルにより、解析パラメータをキャリブレーションすることの意味は大きいと考えられる。
- 注)初期せん断応力を考慮し、Ko条件で繰返し載荷試験を行う場合もある。しかし、初期せん断応力は、図-1.6.5.1 に示したように回転するため、これらの各方向の試験を実施して液状化強度曲線を作成することは、実務上、難しいと考えられる。

〈コントロールモデルの利点〉

コントロールモデルでは、要素シミュレーションで考慮することが難しい上記の条件を包括していることから、コントロールモデルを用いたキャリブレーションにより、①~④を考慮したパラメータ値を得ることが可能と考える。


(ここで言うパラメータは、土質試験などから直接得られない、耐震診断技術 の解析コードに固有のパラメータである。)

計測値(応答加速度、変位、間隙水圧)に対するキャリブレーションの過程において、各計測値にどのパラメータの影響が大きいか感度(影響度)分析を行い、パラメータの変動幅を絞り込むことができると考えられる。

コントロールモデルを用いたパラメータの影響度を事前に確認することにより、多様な条件の実ため池に対して、精度を上げた合理的な計算が可能となると考えられる。

また、計測値に対してキャリブレーションによる誤差が収束しないことがある場合は、そのキャリブレーション結果を解析コードの適用限界を明らかにし、改良すべき点を探る資料として供することができる。

コントロールモデルを用いた適用性判定・解析支援システムを図-1.6.5.4 に示す。

注) 要素シミュレーションの限界

解の組み合わせ

得られたパラメータ値の組み合わせは一つではなく、何通 りか存在する可能性がある。

・有効拘束圧

要素シミュレーションの元となる繰返し試験は、初期の 有効拘束圧は一定で、正弦波等の規則波を載荷させる条件. 一方、実際の盛土では有効拘束圧は位置や時間によって異 なる。

• 不規則波

実際の堤体には不規則波が作用する。(震動実験は規則波を用いたので、今回はこの影響は小さいと考えられる。)

・初期せん断応力

盛土法面近傍では、上載荷重による初期せん断応力が作用 し続ける。さらに初期せん断応力方向と入力方向との角度の 違いで、挙動が異なる。

一般に繰返し三軸試験は等方で実施され、実際の堤体内部 の状況と条件が合わないことになる。

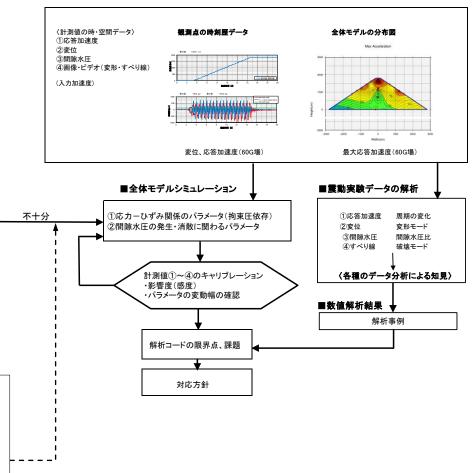


図-1.6.5.4 コントロールモデルを用いた適用性判定・解析支援システム

3) 想定地震動に応じたコントロールモデルの提示

設計において考慮する想定地震動に応じ、コントロールモデルを選択できるようにするため、本研究で実施したコントロールモデルの加速度レベルと地震時挙動について下表に整理した。また、各モデルに対して検証対象となる解析手法を選択できるように、合わせて整理した。

表-1.6.5.3 コントロールモデルの加速度レベルと地震時挙動及び対象となる解析手法一覧

コントロール モデル	拘束	湛水 条件	密度	加速度 レベル	変位レベル (ひずみ	主な 破壊	項目		検証対象となる 解析手法(推奨)※				
ケース名	場				レベル)	モード		1	2	3	4	5	
1G-01-D-L	1	非湛水	ゆる (Dr65)	100∼ 600gal	5cm (5~10%)	I クラック II 沈下 III 表層すべり IV 深いすべり	①応答加速度 ②沈下量 ③表層すべり量 ④深いすべり量	0	0				
1G-02-S-L	· 場	湛 水	ゆる (Dr65)	300gal	3cm (∼5%)	I クラック II 沈下 III表層すべり IV深いすべり	①応答加速度 ②沈下量 ③表層すべり量 ④深いすべり量 ⑤過剰間隙水圧			0	0	0	
60G-01-D-L		非	ゆる (Dr65)	100∼ 600gal	100cm (5~10%)	I クラック II 沈下 III表層すべり IV深いすべり	①応答加速度 ②沈下量 ③表層すべり量 ④深いすべり量	0	0				
60G-02-D-D	60 G 場	非 湛 水	密 (Dr95)	$100 \sim 600 ext{gal}$	95cm (5~10%)	I クラック II 沈下 III表層すべり IV深いすべり	①応答加速度 ②沈下量 ③表層すべり量 ④深いすべり量	0	0				
60G-03-S-L	遠心場	湛	ゆる (Dr65)	300~ 500gal	66cm (~5%)	I クラック II 沈下 III表層すべり	①応答加速度 ②沈下量 ③表層すべり量 ④過剰間隙水圧			0	0	0	
60G-04-S-D		水	密 (Dr95)	$300\sim$ 500gal	41cm (~5%)	I クラック II 沈下 III表層すべり (法先)	①応答加速度 ②沈下量 ③表層すべり量 ④過剰間隙水圧	0				0	

4) 実ため池の状況に応じたコントロールモデルの選択

実ため池の老朽度に応じ、想定する地震動のレベルごとに、適切な解析手法を選択し、その予測能力の検証と有効性などの特性を明らかにした上で、合理的な耐震性能の実施を可能とするため、図-1.6.5.5に示すフロー図を作成した。

また、照査における検証項目と、各解析手法とコントロールモデルの適用性について、表-1.6.5.4 の一覧表を作成した。

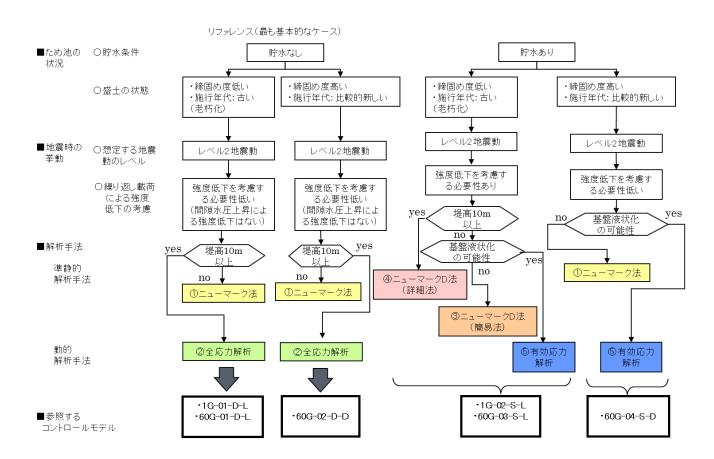


図-1.6.5.3 実ため池の状況に応じた解析手法、コントロールモデル選定のフロー

表-1.6.5.4 耐震性能照査における検証項目と解析手法、コントロールモデルの適用

検証項目			耐震性能照査手法		コントロールモデル					
	塑性すべり		有効応力法	有効応力法	1G 場 遠心場					
	計算	車法	弾塑性モデル	弾塑性モデル	ゆる詰め (Dr65%)		ゆる	詰め	密詰め (Dr95%)	
			(微少変形理論)	(大ひずみ+すべり			(Dr	65%)		
				線発生、破壊)						
	準静的	動的+	FLIP	NONSOLAN	非湛水	湛水	非湛水	湛水	非湛水	湛水
	簡易にニュー	ニューマーク D	LIQCA		1G-01-D-L	1G-02-S-L	60G-01-D-L	60G-02-S-L	60G-03-D-D	60G-04-S-L
	マーク D 法	法	SOILPLUS							
地震時の変形モード										
・せん断すべり (すべり円弧)	0	0			0	0	0	0	0	0
・局所的なせん断変形、ゆすり込み(弾			0		0	0	0	0	0	0
塑性)						-				
・局所的なせん断変形、ゆすり込み+				0	0	0	0	0	0	0
せん断すべりの進展(せん断帯)										
対象ひずみ域 (0.1%以下)	0	0	0	0	0	0	0	0	0	0
対象ひずみ域		0		0	0	0	0	0	0	0
(0.1%以上の大ひずみ域)		U		U	O	U	U	U	U	U
過剰間隙水圧の上昇、消散		0	0	0		0		0		0
残留変位 (照査点の時刻歴)	0	0	0	0	0	0	0	0	0	0
応答加速度 (照査点の時刻歴)	0	0	0	0	0	0	0	0	0	0
天端の沈下量	0	0	0	0	0	0	0	0	0	0
全体変形 (動画)	0	0	0	0	0	0	0	0	0	0
備考					・コントロール	Eデルによるパラッ	⊀ータのキャリブL	ソーション		

- 1.7 実証試験(現場適用)の概要、結果、課題等 (本研究では該当無し)
- 1.8 機能監視の概要、結果、課題等 (本研究では該当無し)

2 事業の成果

2. 1 成果の内容

- ・老朽ため池の状況に応じた基本的な特徴を再現する高精度のコントロールモデル (振動実験)を構築した。
- ・ 高精度の震動実験によって得られたコントロールモデルを比較対象として、耐震性 能照査手法の予測能力の検証と有効性などの特性を明らかにする手順を確立した。
- ・ニューマークD法(簡易法)における最も重要な標準劣化モデルの考え方とプロトタイプモデルを構築した。

2.2 目標の達成度

- (1) 成果から得られる効果
 - ・本研究で実施された一連の高精度 1G 場震動台実験及び 60G 場 (遠心場) 震動 実験により、コントロールモデルを整備し、性能照査用のモデルを確立したこ とにより、ため池堤体を代表する地震時挙動を提示することができ、耐震性能 照査手法の検証が可能となる。
 - ・コントロールモデルを整備することで、提案する耐震性能照査手法の検証ツールとして、本事業で検討した解析法の予測能力や限界などの特性が正確に把握できる。
 - ・過剰間隙水圧や塑性すべりを評価することにより合理的に耐震性能を照査する ことができる。

(2) 従来技術との比較

- 1) 比較する従来技術
 - ・従来の一般的なため池の耐震性能照査作業

2) 従来技術に対する優位性

本研究におけるコントロールモデルを用いことにより、従来の耐震性照査作業と比較して、適用する解析法(準静的解析手法を含む)の予測能力や限界などの特性をより正確に把握した上で、照査を実施することが可能となる。このとき、簡易な準静的解析手法(ニューマークD法)の適用条件を適切に評価し、適用することにより、より合理的で経済的な耐震照査が実現可能となる。

①経済性

適用する解析手法として本研究で開発、検証した準静的解析手法(ニューマークD法(詳細法、簡易法))を選択した場合、動的応答解析(有効応力解析)と比較して安価な解析、照査作業が可能となる。

②工程

上記と同様に、準静的解析手法の適用により、動的応答解析(有効応力解析)と比較して、短時間での解析、照査作業が可能となる。

③品質

各解析手法の適用性をより正確に把握した上で、耐震照査を実施することにより、信頼性の高い解析結果が得られ、成果品の品質向上に寄与する。

2. 3 成果の利用に当たっての適用範囲・留意点

本研究で構築したコントロールモデルを用いて、解析手法の検証を行う際は、 震動実験の条件(入力地震動、土質定数、境界条件)を適切に設定することが 重要である。

本研究成果を利用する際は、その旨を謝辞等に明記するとともに、それによる成果の内容を報告するものとする。

- 3 普及活動計画
 - 3. 1 想定される利用者
 - ・ため池の耐震性能照査に関する業務を担当する以下の技術者
 - 発注者
 - ・受注者(建設コンサルタント) 等
 - ・ため池の耐震性能照査手法を開発する研究者、技術者
 - 3. 2 利用者への普及啓発等の方法
 - ・技術講演会、シンポジウム等における成果の周知
 - ・学会等における発表(論文、口頭発表等)
 - 3. 3 利用者に対するサポート体制、参考資料等
 - ・本研究成果に対する問い合わせへの対応 (電話、メール等)
 - 3. 4 特許・実用新案等の申請予定
 - (1) 申請者予定者 (予定なし)
 - (2)申請予定時期(予定なし)

4 研究総括者による自己評価

項目	自己評価	自己評価の理由
研究計画の効率性・妥当性		解析における要素試験の再現性と振動
	В	実験の挙動の再現性が必ずしも一致せ
		ず、その評価、検討に時間を要した。
目標の達成度		1 G 場、60G場(遠心場)を対象とした
	A	、一連のコントロールモデル(振動実験
)を工期内で構築することができた。
研究成果の普及可能性		本研究において構築した振動実験のデ
	A	ータは、耐震性能照査を実施する技術者
		にとって極めて利用価値の高い基礎デ
		ータである。

総合コメント

- ・ため池の耐震性能照査技術の確立は喫緊の課題となっており、その解析技術の向上、高 精度化において、本研究において構築した振動実験のデータは極めて重要であり、利用 価値の高いものであると考える。
- ・本研究開発により、標準劣化モデルの基本形状を構築したことは大きな成果と考える。
- 注)評価結果欄は、A、B、Cのうち「A」を最高点、「C」を最低点として3段階で記入する。

5 今後の課題及び改善方針

(1)標準劣化モデルの精度向上について

標準劣化モデルに関して、今後の更なる精度向上へ向けた展開として、東北地方、北陸地方、関東・東海地方、中国・四国地方、九州地方での地域性を考慮し、更には、砂、シルト、粘性土の三種類の土質ごとのデータ蓄積(統計的に20~30のデータ数の蓄積が必要)を行うことが必要である。

それと併せて地域独自のモデルを構築するなどの具体的な取り組みを進めていくことが期待される。

ため池の簡易耐震性能照査技術の開発は、喫緊の課題であることから、それを政府の研究開発プログラム等における重点課題と位置づけ、上記の取り組みを全国的に推し進めるとともに、照査システムの開発を推進していくことが望まれる。

その際、標準モデル (試験を行わない) を用いた場合の信頼性に留意し、十分な検証 を行うことが重要である。

(2) コントロールモデルの今後の活用と発展について

本研究において構築したコントロールモデルについては、学術論文や技術講習会での 発表等の活動を通して広く周知、普及を図る。

本モデルは、ため池の耐震性能照査検証のための一つの標準データベースと位置づけ、 今後はその公開を検討する。