意欲ある経営体を支援する農地土壌情報モニタリングキットの開発

研究成果報告書

研究開発課題名	意欲ある経営体を支援する農地土壌情報モニタリングキットの
	開発-フィールド用無線LANインターフェイスアダプタの開発-
研究開発組合代表者名	株式会社イーラボ・エクスペリエンス
	代表取締役社長 島村 博

1. 研究目的

農地の土壌水分は場所によって異なる。水や肥料の抜け易さなど、均一にみえる農地も 部分的には不均一であり、そのことが小麦や大豆、イネなどの農産物の品質を不揃いにす る要因になっている。篤農家はこれまで勘や経験を頼りに土作りを実践してきたが、若い 農家の担い手にとっては、客観的なデータに基づいたより効率的な農地管理手法があると 便利である。そこで本研究では、既存の土壌センサに装着するだけで農地の土壌水分量を 容易にモニタリングできる装置を開発する。

2. 研究内容

本研究は、遠隔地にある農地に設置した複数の土壌水分センサのデータをリアルタイムに収集する「無線 LAN インターフェース アダプタ」(以下「無線アダプタ」;Wireless Adapter, WLA)の基盤技術の開発である。(図-1)



図-1 農地土壌情報モニタリングキットの研究開発事業の概要

3. 目標とする成果

3. 1 目標とする成果

- (1)低価格の小型 WiFi「アダプタ」を開発する。
- (2)土壌水分センサと開発したアダプタを農地の任意の位置に設置し、遠隔地の農地の土壌水分情報を知ることができるようにする。

3.2 従来技術との比較

従来の土壌水分測定では、現地に土壌水分センサとデータロガーを設置した後、データ回収ために毎回現地に赴き、PCをロガーに繋いでデータをダウンロードしなければならなかった。この問題を解決するためにアメリカの土壌水分センサのメーカがラジオ波でデータを送信するロガーを販売しているが、国際的な通信規格が異なるため日本国内では利用できない状況にある。また、Zigbee 技術を用いた類似の通信キットも開発されているが、通信距離が短いことや TCP/IP とは異なるプロトコルを用いているために直接インターネットにデータを送信できないなど、結局はトータルコストが高くなってしまっている。本事業で開発した「アダプタ」は、世界的に認可されている WiFi 通信に対応することで低価格を実現しているのが最大の特長である。

4. 研究成果

4. 1 研究成果概要(目標とする成果との検証等)

(1)小型 WiFi「アダプタ」の開発

NOE(Network Offload Engine)技術を用いて、低価格の小型 WiFi アダプタ (Wireless Adapter, WLA) の基盤を開発した。これにより、同等の機能を有する従来のシステム価格を 1/8 程度(量産価格見込み)に圧縮できた。

(2) 遠隔農地の土壌水分情報モニタリング

土壌水分センサと WLA を遠隔地にある農地に設置し、既存のインターネット技術と組み合わせて、各農地の土壌水分情報を自動回収するシステムを構築した。

4. 2 実験施設における概要、結果、課題等

4.2.1 小型 WiFi アダプタ (Wireless Adapter, WLA)

写真-1が、開発したWiFiアダプタである。

通常、センサで測定される土壌水分データは、センサに付属のデータロガーやリーダーによって PC に取り込まれる。これをリモートで行うためには、現地に PC を設置し、ネットワーク内のホストシステムに別途その PC にアクセスするためのプログラムを書かねばならなった。しかし、本研究開発では NOE(Network Offload Engine)の技術を応用することで、この手間を省くことを可能にした。

NOE はセンサに直結したアダプタ上に、ホストシステ

写真-1 WiFi アダプタ

ムに代わってネットワーク処理を行う専用サブシステムである。高負荷なネットワーク用 プロトコルをサブシステムに分担させる(=オフロードする)ことにより、ホストシステ ムの負荷を軽減し、高速かつ安定した通信を実現できる。

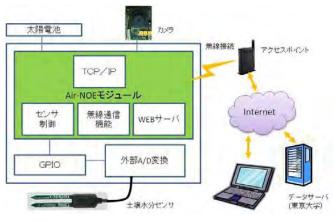


図-2 WLA システムの構成

4.2.2 無線アダプタシステムの構成 (図-2)

WLAは、通信、センサ制御、WEBサーバ機能を内蔵したAir-NOEモジュールとセンサ接続用IFおよびバッテリ(単3乾電池6本;太陽電池パネルの利用可)で構成される。TCP/IPおよびIEEE802.11b/g無線通信規格を採用したことにより、市販のアクセスポイント機器、および既存のインターネット接続環境が利用できる。今回の試作品には、土壌水分センサ(EC-5; mV 出力)とWebカメラを標準装備した。

図-3 WLAのデータ流れ図

4.2.3 データの流れ(図-3)

図-3は今回試作したプログラムのフローチャートである。WLAは、タイマー初期化後、土壌水分値と現地画像を取得し内部メモリに書込み、その後、一定時間(今回は1時間に設定)休止状態になる。これを 24 回繰り返した後、インターネット上のデータサーバに FTP 送信する。この方式により、WLA の消費電力を大幅に抑えることができる。

4. 3 実証試験(現場適用)の概要、結果、課題等

開発した WiFi アダプタ (WLA) の性能を評価するために、土壌水分センサと WLA を水田、キャベツ畑、大豆畑に設置し、既存のインターネット技術と組み合わせて、各農地の土壌水分情報を自動回収するための実証試験を実施した。ここでは、水田での実証試験の結果についてのみ述べる。(キャベツ畑と大豆畑での試験結果については、添付資料参照)

4.3.1 水田における WiFi アダプタの実証試験

(1) 実証試験の概要

SRI はイネの大幅な単収増加が期待される低投入持続的稲作技術(System of Rice Intensification)で、現在東南アジアを中心に普及し始めている技術である。この技術のポイントは、1本の乳苗を広い間隔で田植えし、間断灌漑を行うことにあり、そのための土壌水分モニターが重要である。将来的に土壌水分量を監視しながら灌漑タイミングを制御する新しいニーズ需要が期待できるので、この技術を日本で初めて導入した農家の協力を得て、WLAの実証実験を実施した。

(2) 試験の方法

2009 年 6 月 9 日に愛知県新城市の山間部にある SRI 水田に WLA を設置した。この水田に 土壌水分センサ (Decagon 社製: EC-5) を地表から 5cm の深さに水平方向に埋設した。

現地風景を写真-2に示す。性能試験には既存のインターネットが必要なので、インターネット使える農家の母屋から納屋の外のルータまでを有線の LAN ケーブルでつなぎ、そのルータに向かって約 100m 離れた場所にある WLA を介して土壌水分データを送信した。

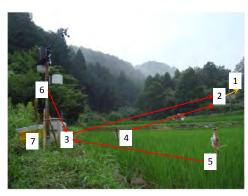


写真-2 SRI 水田の実証 試験サイトに設置された機 器の配置図と設置直後の WLA. 1: 農家の母屋 (ケーブル TV インターネット), 2: ルータ 1 (WiFi アクセスポイント1) ー母屋と LAN ケーブル接続, 3: ルータ 2 (WiFi アクセスポイン

ト2) ールータ1と無線 LAN 接続, 4: WLA(本開発機器) ーWiFi でルータ1に無線 LAN 接続, 5: 既存のデータロガー(本開発機器の対象機器:性能比較用)ー有線でルータ2に接続, 6:気象計(現地の気象条件観測用)ー有線でルータ2に接続, 7:太陽電池パネル(ルータ2用電源)

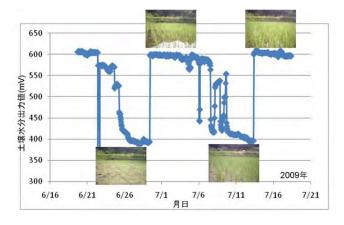


図-4 WLAのデータサーバのWeb画面(左)と土壌水分の変化(右)

(3) 試験の結果

図-4 (左) は、WLA 経由で送信された土壌水分データが保存されているサーバの Web 画面である。WLA の NOE 機能により、1 時間間隔で土壌水分データがサーバに送信され、 CSV 形式で保存される。図-4 (右) は、イネの分けつ期における SRI 水田の土壌水分変 化である。縦軸は土壌水分センサの出力値 (mV) である。使用した土壌水分センサの出力値と土壌水分量は直線関係にあることが知られており、現地で田面が湛水している状態が 600mV に相当する。(現地の水田土壌を用いたキャリブレーション結果よると、600mV および 400mV がそれぞれ体積含水率 59.2%と 41.7%に相当する)図-4の結果から、農家がほぼ1週間周期で間断灌漑を実践していたことがわかる。同様に、WLA のカメラ画像から、土壌水分に対応して乾燥期には土壌表面に亀裂が生じていること、逆に湛水期には土壌表面に水が入っていることが確認できる。(図-4中の写真および参考資料の写真-3)

(4) 実証試験に対する考察

開発した WiFi アダプタ (WLA) によって、実際の現場からインターネット経由で土壌水分データと画像データが自動回収できることが実証できた。農家が最も知りたい情報は土壌水分量の絶対値ではなく、農地(水田)に水を出し入れするタイミングであることが多い。図-4の結果は、出力電圧で土壌水分量の変化を明確に示しており、灌漑排水のタイミングを的確に観測できている。

4. 4 普及活動状況等

- ・溝口勝・石渡一嘉・小野寺政勝・三石正一, NOE を用いた土壌水分モニタリングキットの開発, 2009 年度土壌物理学会, pp.82-83 (2009)
- Virgilio Julius P. MANZANO, Jr, Masaru MIZOGUCHI, Shoichi MITSUISHI, Tetso ITO: IT Field Monitoring in a Japanese System of Rice Intensification (J-SRI), PAWEES, Bogor(2009)
- •アグリビジネス創出フェア (2009 年 11 月 25-27 日, 幕張メッセ, http://agribiz-fair.jp/) で成果の一部を紹介。

5. 今後の課題

WLAは、小型で通信ノード間をケーブルで接続する必要がないため農地における設置の自由度が高い。これを本事業により低価格で製品化できる目途がつき、遠隔農地にある土壌水分センサの出力値をから自動回収するモデルシステムができたことの意義は大きい。

今後は、土壌水分センサを複数農地に配備し、畑全体での土壌水分の変動性を知るツールとして利用できることを実証することが必要である。(参考資料)

マーケティング調査によると、農業試験場や研究所の若い研究者および一部の施設農家 が本開発機器に興味を示している。これらの方に今回の実証試験の結果を踏まえて改良し た20台のWLAを配布して、評価してもらう予定である。(2010年1月現在)

意欲ある経営体を支援する農地土壌情報モニタリングキットの開発

参考資料

1. SRI 水田における実証試験(愛知県新城市)

写真-1 SRI 水田の実証試験サイト (2009年6月9日) 左から水田、納屋、母屋

写真-2 土壌水分センサの設置作業風景と設置直後の WLA

写真-3 WLAのカメラによって得られた水田の様子

2. キャベツ畑における実証試験(群馬県嬬恋村)

【実験の目的】

高品質の野菜を生産するためには、畑全体の適切な土壌水分管理、施肥管理、および防除管理が重要である。畑全体の土壌水分状態を監視する目的で、高原キャベツの農家の協力を得てWLAの実証実験を行った。

【実験の方法】

2009 年 7 月 9 日に群馬県嬬恋村のキャベツ畑の畝間に WLA システム 2 台を設置した。 各 WLA は約 50m 離れている。(図-1, 写真-4) 1 台の WLA に 2m 間隔で 5 本の土壌水分センサ(EC-5)を 1 つの畝間に一直線上に、地表から 4-9 cm の深さに鉛直方向に挿入した。

データは、土壌水分センサ**→WLA→**ルータ 1 **→**ルータ 2 **→ISDN→**インターネット**→**研究室サーバの順に転送される。ルータ 1 とルータ 2 は約 500m 離れており、アンテナを使って WiFi 通信を行った。ルータ 1 には太陽電池によって電源が供給されている。また、ルータ 1 には気象計が接続されている。

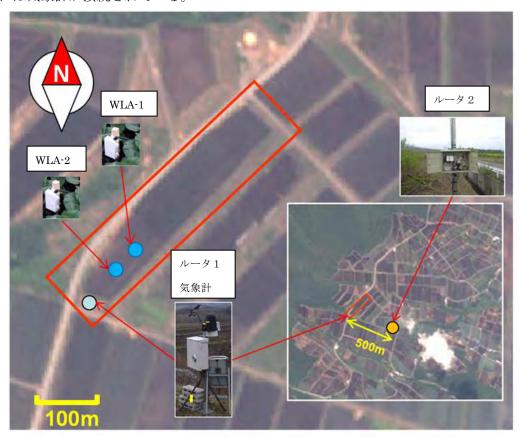


図-1 キャベツ畑に設置された WLA システムの配置図

写真-4 キャベツ畑に設置された WLA システム (2009 年 7 月 9 日)

【実験の結果】

図-2は、WLA による土壌水分の出力値(mV)である。参考値として気象計によって観測された時間降雨量を図中に示した。センサ間あるいは場所による絶対値のばらつきはあるが、降雨に対して良好に土壌水分が応答している。(たとえば、9月8日前後の雨に応答して土壌水分が増加している)また、降雨がなかった8月中旬以降、同じ畝間であっても8mの距離間で土壌の乾燥の仕方が異なることがわかる。さらには、生育に伴いWLAがキャベツに覆われていく様子もわかる。(写真-5)

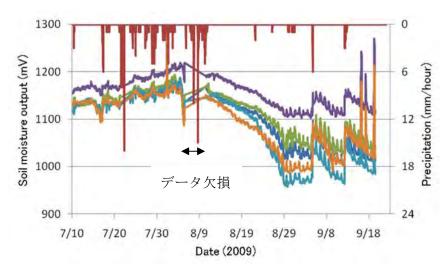


図-2 WLA を用いて観測された土壌水分の変化

写真-5 WLA のカメラから見たキャベツの成長の様子(2009 年 7 月 19 日) 写真-6 収穫後に現地に取り残された太陽電池パネル付の WLA(2009 年 9 月 26 日)

WLA の電池が約1ヶ月で消耗したため、8月上旬ではデータ欠損が見られた(図中ではこの間の土壌水分量を直線で結んである)。そこで、8月10日に WLA に小型の太陽電池パネルを装着した。(写真-8)その結果、しばらくは WLA から安定的にデータが届いていたが、9月以降キャベツに完全に WLA が覆われると再度データ通信が途絶えた。

【考察】

無線アダプタは、通信ノード間をケーブルで接続する必要がないため設置の自由度が高く、 農地での利用に向いている。しかし、キャベツ畑では防除作業の関係で、地表面上 30cm よりも高い位置に WLA を設置することができない。そのため、キャベツが結球し WLA が完全にキャベツに覆われてしまうと、作物(障害物)による電波の反射や遮断など、通信の安定性や信頼性が低下する。設置も含めた利用法の検討が必要である。

3. 大豆畑における実証試験(三重県津市)

【実験の目的】

将来的な WLA の応用を想定して、既存の手法を用いて畑土壌水分の平面的な空間的変動を長期モニタリングした。

【実験の方法】

2009 年 7 月 4 日に三重県津市にある三重大学農場の大豆畑(広さ:45.5m x 30.9m, 播 種 5 日後)に土壌水分センサ 45 本とデータロガー(Em5b) 9 台を設置した。(写真 - 7) この畑には 70cm 間隔で高さ 11cm の畝が 44 本立てられている。畑の畝上と畝間で土壌水分の変化パターンが異なることが予想されるので、畝間に設置したデータロガーから 5 本の土壌水分センサ(EC-5)を図 - 3 のように畝間・畝上・畝間・畝上・畝間の順に鉛直方向(4-9cm 深さ)に挿入した。

土壌水分は1時間間隔でデータロガーに記録され、1週間ごとに手動回収された。

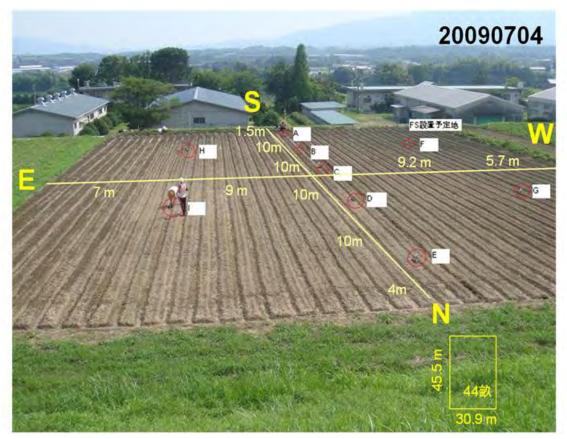


写真-7 データロガーの設置場所(2009年7月4日) 西から 8-9 畝間に FG の#1, 21-22 畝間に A-E の#1, 34-35 畝間に HI の#1

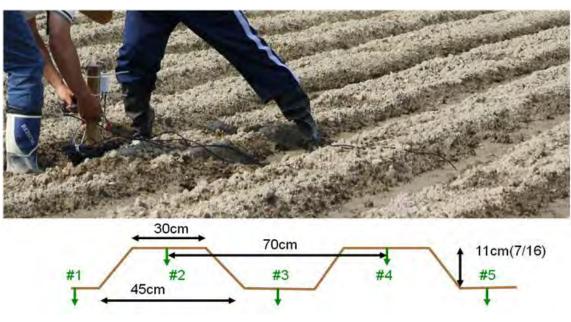


図-3 データロガーと土壌水分センサの設置 (2009年7月4日)

写真-8 土壌水分センサとデータロガーの位置関係 (2009年7月16日)

【実験の結果】

写真-9は、大豆畑の全景と大豆の成長の経時変化である。1 ヶ月ごとのデータを示した。 8月21日と9月25日の畑の全景写真の色から、大豆の成長が場所によって異なることが わかる。

図-7は、畝間の土壌水分データ(27点)と畝上の土壌水分データ(18点)それぞれの平均値と標準偏差の変化である。この図から、畝間の方が畝上よりも土壌水分量が3%程度高いことがわかる。また、全期間を通して畑全体の土壌水分量の標準偏差(測定点数27点と18点)は5%程度とバラツキが大きい。

図-4は、写真に対応した日の畑の土壌水分分布である販のコンタ作成ソフト(Surfer; クリッギング法)を用いて、畝間の土壌水分データと畝上の土壌水分データに分けて作成した分布図である。厳密には、畝の上下で交互に土壌水分が変化している点に注意する必要がある。図の座標は、写真左下を原点とし、右方向に 30m, 上方向に 45m として表示してある。全体的に左下から右上に向かって土壌水分量が高くなっていることがわかる。

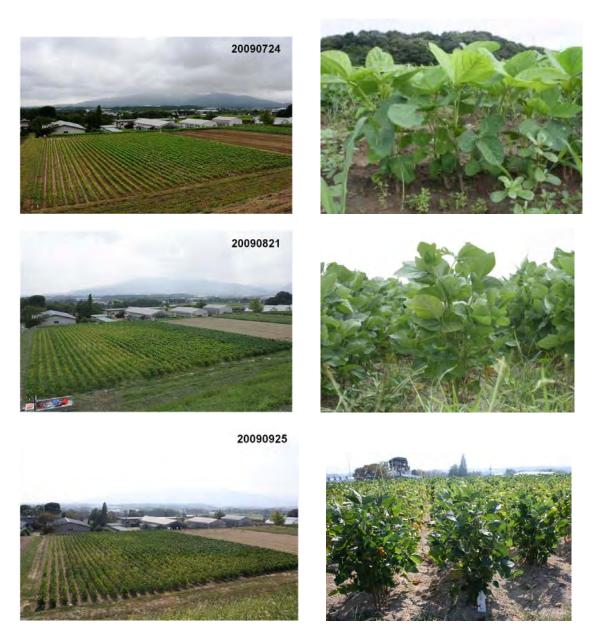


写真-9 大豆畑の全景と大豆の成長の様子

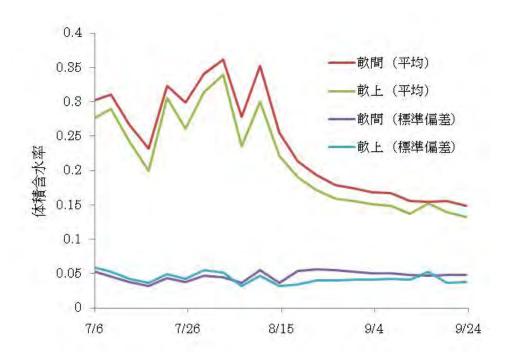
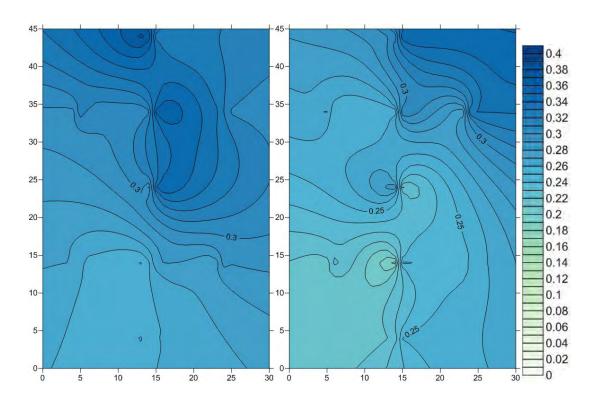
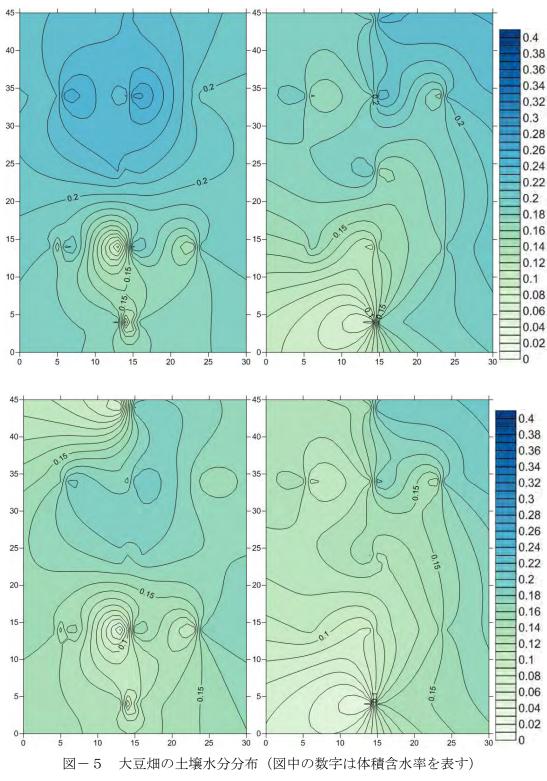




図-4 大豆畑全体の土壌水分量の平均値と標準偏差の経時変化

5 大豆畑の土壌水分分布(図中の数字は体積含水率を表す 畝間の体積含水率(左)と畝上の体積含水率(右)上から2009年7月25日,8月22日,9月23日

【考察】

この実験では 45本の土壌水分センサに対する 1 時間ごとのデータが 9 台のデータロガーに記録され、そのデータを 1 週間に 1 回の頻度で手動回収された。現地に向かい PC を持ちながら 1 台ごとのデータロガーからデータを回収する労力には多大なものがある。こうした現状のデータ回収システムを今回開発した WLA に置き換えると、45本の土壌水分センサから自動的にデータが送信されてくるので、データ回収にかかる労力を大幅に節減できることになる。

その一方で、大量のデータ処理を効率的に行うことが必要になってくる。図-5には、各月のある1日の特定の時刻の土壌水分分布のみを示したが、実際には観測期間にわたって1時間ごとに変化する土壌水分分布が得られている。この中から本当に必要な情報は何か。今後はWLAによるデータ回収と共に、大量のデータを処理し、必要な情報を瞬時に見つけ出すシステムも同時に開発することが必要である。(2010年1月時点で、文科省の主導する DIAS; Data Integration Analysis System でそれを可能とする Web ツールが開発されているので、今回手動で作成した図 5 は、サーバ上にデータを集めるだけで瞬時に図になって表示されるようになるであろう)

いずれにせよ、今後に向けていくつかの課題はあるものの、今回の実証実験でWLAの利用可能性を示すと共に畑全体で土壌水分のバラツキを実証できたことの意義は大きい。

4. 土壌水分センサの現状

土壌は地形や地域など場所ごとに密度(詰まり方)、組成、成分(肥料分)などが異なる。 したがって、土壌水分量の正確な値を知りたい場合には、土壌水分量とセンサ出力の関係 式を対象とする土壌ごとに求める必要がある。しかし、農家にとって最も知りたい情報は 土壌水分量の絶対値ではなく、作物栽培のための水分制御をするタイミングであることが 多い。この点を考慮してより安価な土壌水分センサを開発すれば、今回開発した WLA が普 及する可能性が増大することになる。

5. 今後の展望

報告書の本文の最初でも述べたように、農地の土壌水分は場所によって異なる。水田農業を中心に発展してきたわが国では、これまでこうした農地内の土壌水分量の空間的なばらつきはほとんど問題とされてこなかった。しかし、より高品質な農産物を生産しようとする意欲的な畑作農家にとって、農地内の土壌水分の不均一性を瞬時に診断し、それに合わせた水管理や施肥管理ができるようになればさらに高品質な農作物生産が可能になる。

アメリカやオーストラリアでは、土壌センサと GIS の手法を用いて広大な農地における DSM(Digital Soil Mapping)の研究が精力的に行われている。今回開発した WiFi アダプタは、小さい装置ながらこうした世界の流れにも合致する日本発の技術である。