長期性能評価のための技術マニュアル (案)

目 次

1. 目	的 ・・・・・・・・・・・・・・・・・・・・・ 1
2. 長	期特性試験と実施手順 ・・・・・・・・・・・・・・・・・ 2
2-1	既往資料
2-2	長期外圧強さ
2-3	長期内圧強さ
3. 長	期特性の再評価試験および促進試験の検討 ・・・・・・・・ 16
3-1	試験の位置付け
3-2	材料引張試験
3-3	ノルリング引張試験
4. 内	外圧繰り返し試験と実施手順 ・・・・・・・・・・・・ 21
4-1	既往資料
4-2	内圧繰り返し負荷
4-3	内外圧複合状態の再現
5. 試	験環境および試験体 ・・・・・・・・・・・・・・・・ 26
5-1	試験装置
5-2	試験体作製の留意点
6. 課	題の整理 ・・・・・・・・・・・・・・・・・ 32
7. 品	質管理 ・・・・・・・・・・・・・・・・・・・・・ 33

1. 目的

樹脂系材料の長期特性把握に必要な試験項目、方法、手順の標準化を図るとともに、品質管理 等の考え方について評価方法の検証を行う。

- (1) パイプラインの長期強度試験技術と品質管理
 - ・規格品の材料変更、仕様変更に伴う性能評価
 - ・規格品(新規参入メーカー製品)の性能評価
 - ・新たな製品規格のパイプ導入時の性能評価

(2) 管体強度の評価方法の検討

①既設管の安全性評価

経年管の突発事故のうち、材料に起因する不具合については、長期性能の変化を定量的に 予測することで、多様な履歴を持って供用されているパイプラインの安全性評価に役立てる。

②新設管の構造設計

現行の構造設計(設計照査式)にパイプの長期性能に基づく値を導入することで、適切な 長期安全性の確保、突発事故リスク低減、更新・補強対策の参考とする。

2. 長期特性試験と実施手順

2-1 既往資料

樹脂系パイプの長期特性試験について、本資料で参照する試験規格の一覧を表 2.1 に、関係する主な技術資料・文献リストを表 2.2 に示す。

表 2.1 関連試験規格

No.	規格名称	発行	出典/年次
1	JIS K 7020 ガラス強化熱硬化性プラスチック(GRP)管及び継手一回帰分析法及びその 使用	日本規格協会	2018年
2	JIS K 7032 プラスチック配管系ーガラス強化熱硬化性プラスチック(GRP)管ー管の初期 剛性の求め方	日本規格協会	2002年
3	JIS K 7035 ガラス強化熱硬化性プラスチック(GRP)管ー湿潤条件下での長期偏平クリープ剛性の求め方及び湿潤クリープファクタの計算法	日本規格協会	2018年
4	JIS K 7037 プラスチック配管系ーガラス強化熱硬化性プラスチック(GRP)管ー見掛けの 初期周方向引張強さの求め方	日本規格協会	2013年
5	ISO 7685(1998): Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes — Determination of initial specific ring stiffness (管の初期剛性)	ISO規格	1998年
6	ISO 10468(2003): Glass-reinforced thermosetting plastics (GRP) pipes — Determination of the long-term specific ring creep stiffness under wet conditions and calculation of the wet creep factor (長期偏平クリープ剛性、クリープ係数)	ISO規格	2003年
7	ISO 10928(2016): Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use (回帰分析)	ISO規格	2016年
8	ISO 9080 (2012): Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation (熱間内圧クリープ試験)	ISO規格	2012年
9	JIS K 6815 熱可塑性プラスチック管 引張特性の求め方	日本規格協会	2011年

表 2.2 既往の技術資料・文献

No.	·	著者	出典/年次		対象			
NO.	文献名	首 有	山典/年次	PVC	FRPM	PE	PE-GF	
1	ATV-DVWK-A 127 Statische Berechnung von Abwasserkanälen und -leitungen (下水路および下水パイプラインの静的計算)	DWA	2008年	•	•	•	_	
2	Handbook of PVC (塩ビ管ハンドブック)	PVC PIPE Association	2012年	•	_	ı	_	
3	下水道用硬質塩化ビニル管の道路下埋設に関する研究報告書	国土開発技術研究 センター	昭和55年	•		_	_	
4	硬質塩化ビニル管の長期寿命の評価について	塩化ビニル管・継手 協会	平成21年	•	_		_	
5	FW成形強化プラスチック複合管の長期性能試験	井戸本、宮崎、矢 野、中島	農業土木学会 誌/第75巻第 2号	_	•	ı	_	
6	長期極限曲げ歪み試験によるFRPM管の長期性能の評価	大塚、間宮、毛利、 有吉	H25農業農村 工学会大会講 演会	_	•	_	_	
7	FRPM管の長期性能評価に関する時間短縮の提案	大塚、間宮、毛利、 有吉	H26農業農村 工学会大会講 演会	_	•	I	_	
8	強化プラスチック複合管の長期性能評価	間宮、大塚、有吉、 毛利	H29農業農村 工学会大会講 演会	_	•	ı	_	
9	下水道用強化プラスチック複合管 道路埋設指針	国土開発技術研究 センター	平成元年	_	•	_	_	
10	NOLリング引張試験法の検討	植村、村田	昭和53年	_	•	_	_	
11	PE Pipe — Design and Installation (ポリエチレン管 設計と施工)	AWWA	2006年	_	_	•	_	
12	水道配水用ポリエチレン管・継手に関する調査報告書	日本水道協会	平成10年	_	_	•	_	
13	下水道用ポリエチレン管(JSWAS K-14-2010)	日本下水道協会	2010年	_	_	•	_	
14	水道配水用ポリエチレン管路の100年寿命の検証	配水用ポリエチレン パイプシステム協会	2014年	_	_	•	_	
15	下水道用ポリエチレン管 技術資料(PA-11-2015)	下水道用ポリエチレン管・継手協会	2015年	_	_	•	_	
16	給水用ポリエチレン管の耐久性評価 (破壊メカニズムの解析及び評価方法の紹介)	日本ポリエチレンパ イプシステム協会	2018年	_	_	•	_	
17	農業水路用高密度ポリエチレンパイプ(カタログ)	農水ポリエチレン管 協会	2017年	_	_	•	_	
18	泥炭性地盤で観測した大口径高密度ポリエチレン管の設計定数	田頭、秀島、小島、 鈴木	2007寒地土木 研究所月報	_	_	•	_	
19	ガラス繊維強化ポリエチレン管に関するデータ集	高耐圧ポリエチレン 管協会	2018年	_	_		•	
20	ガラス繊維強化ポリエチレン管システムの開発	時吉、日野林、加 後、花山、栗山、河 端	H29農業農村 工学会大会講 演会	_	_	_	•	
21	ガラス繊維強化ポリエチレン管の長期性能検証(環剛性試験)	時吉、高原、井手 元、日野林、栗山	2019農業農村 工学会大会講 演会	_	_	-	•	

2-2 長期外圧強さ

2-2-1 試験実施に必要な装置類

1) 恒温室

長期特性試験の実施に必要な温度環境に制御できる恒温室(空調設備等)を整備する。恒温室内には、必要な台数の外圧試験装置を設置する。

農研機構 農村工学研究部門の 3 次元振動実験棟内の砂乾燥室 (室内寸法 6.55m×3.75m)を改装し、恒温室として空調施設等を整備した状況を図 2.1 に、室内の試験装置の配置例を図 2.2 に示す。

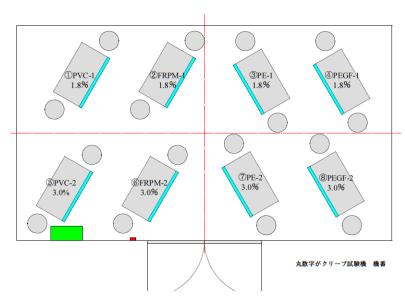


図 2.1 恒温室内の状況

図 2.2 恒温室内の試験装置の配置例

2) 試験装置

外圧試験装置を準備する。構造の詳細は5-1を参照。

また、重鍾で供試管に常に一定の荷重を載荷し、垂直変位と経過時間の関係を記録するためのデータロガーやセンサーなどの計測機器類も併せて準備する。

2-2-2 外圧クリープ試験

(1) 試験の概要

JIS K 7032 および JIS K 7035 に準じた外圧クリープ試験について、種々の管種を統一的に実施できる内容を検討し、以下のように実施する。

①初期剛性の確認

試験を行う管から一定長さ(300mm)に切り出した供試管にたわみ率(相対変位)5%に達するまで一定の比率で荷重を負荷し、変位と荷重の関係を記録する。

載荷初期の載荷板と供試管の"なじみ"の影響を除去するため、たわみ率(相対変位)1%と3%の間の勾配から初期剛性を求める。

②長期偏平クリープ剛性の確認

一定長さ(300mm)に切断した供試管を水中(水温 23 ± 5 °C)に設置し、10,000 時間にわたり一定の垂直荷重を保持して直径方向に変形させる。試験期間中には所定の時間間隔で垂直変位を測定する。

10,000 時間経過後の垂直変位をもとに、外挿法により 50 年後の長期偏平クリープ剛性を求める。

試験体の個数は2個とし、荷重レベルの異なる2条件(たわみ率1.8%および3.0%)で試験を実施する。

③クリープ係数の確認

初期剛性①と長期偏平クリープ剛性②の比率(②/①)をクリープ係数として求める。

外圧クリープ試験の実施フローを図2.3に示す。

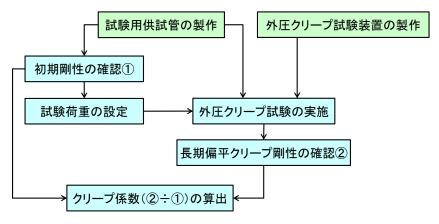


図 2.3 外圧クリープ試験の実施フロー

(2) 初期剛性

恒温室内に設置した載荷試験機を用いて、原管から切り出した初期剛性確認用供試管に荷重を加えて偏平させ、たわみ率 5%まで載荷して垂直荷重とたわみ率の関係を記録する。 供試管は試験前日には室内温度 23℃の恒温室内に搬入し、静置して一定温度になるよう養生する。

4 管種 (PVC 管、FRPM 管、PE 管、PE-GF 管)の試験状況を図 2.4.1~図 2.4.4 に示す。 試験速度については、強化プラスチック複合管(JIS A 5350)と一般用ポリエチレン管(JIS K 6761)の試験方法には定めがないが、"硬質ポリ塩化ビニル管(JIS K 6741)の偏平試験"ならびに "ガラス繊維強化ポリエチレン管(JIS K 6799)のたわみ荷重試験方法"にはそれぞれ 10 ±2mm/min の規定があることから、4 管種とも 10mm/min とする。

垂直荷重とたわみの関係から、たわみ率 1.8%と 3.0%のときの荷重を読み取り、この試験で得られた 2つの荷重を長期偏平クリープ剛性試験の載荷荷重とする。

また、載荷初期の載荷板と供試管の"なじみ"の影響を除去するため、たわみ率(相対変位)1%と3%の間の勾配から初期剛性を求める。

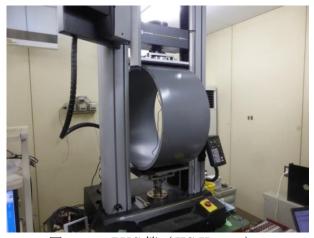


図 2.4.1 PVC 管 (JIS K 6741)

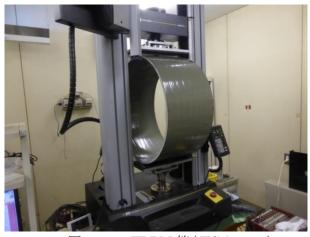


図 2.4.2 FRPM 管 (JIS A 5350)

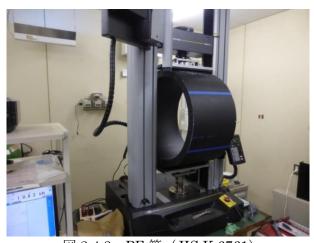


図 2.4.3 PE 管 (JIS K 6761)

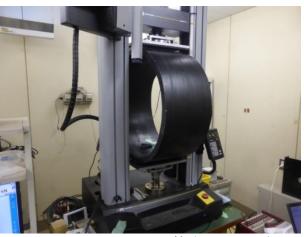


図 2.4.4 PE-GF 管 (JIS K 6799)

垂直荷重~たわみ量の関係より、初期剛性 S_0 を算出する。 計算には(1 式)を用い、たわみ率1%と3%の間の勾配(増分)を考える。

$$S_0 = \frac{f \times F}{L \times y} \qquad \qquad \cdots \quad (1 \ \vec{\Xi})$$

ここに、

So: 初期剛性 (N/m²)

f : 変位係数(=1860×10⁻⁵) L: 供試管の平均長さ (m)

F: たわみ率 $1\%\sim3\%間の垂直荷重増分値 (N)$ y: たわみ率 $1\%\sim3\%間の垂直変位増分値 (m)$

(3) 長期偏平クリープ剛性

図 2.5.1 および図 2.5.2 に示すように試験装置内に供試管を設置し、水を満たした状態で水温を 23 ± 5 \mathbb{C} に維持する。

供試管は PVC 管、FRPM 管、PE 管、PE-GF 管の 4 管種とし、それぞれ荷重条件の異なる 2 条件を設定する。試験開始時のたわみ率が 1.8%、3.0%となる垂直荷重を重錘により載荷する。

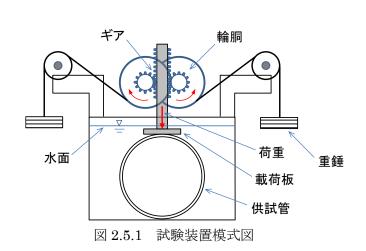


図 2.5.2 試験装置

外圧クリープ試験の実施手順は下記のとおりである。

①供試管の設置

- (1) 外圧クリープ試験装置(載荷板は最上部で固定・重錘なし)を恒温室の所定の位置へ設置。
- (2) 供試管を試験装置内に設置、ゴム製キャンバーにより固定。
- (3) 熱電対、変位計等計測器を配置。
- (4) 前面扉パッキンに防水用のシリコングリースを塗布後、扉を密閉(トルク管理 15N·m)。
- (5) 規定の重錘を用意し、試験装置の近傍へ配置。
- (6) 注水し、漏れがないことを確認。
- (7) 規定の水温 (23℃) になったら荷重を載荷する。

②荷重の載荷

- (1) 載荷板を吊り上げて固定する門型治具を試験機に設置。載荷ストッパー(丸鋼)を外す。
- (2) 左右の重錘をレバーブロックにより吊り上げる。
- (3) このとき重錘は載荷用ワイヤーとはつながず、無負荷状態とする。
- (4) 載荷板を慎重に下降させ、供試管にタッチさせる(管頂・管底のひずみ増加で判断)。
- (5) 供試管が回転・移動しないように支持し、ゴム製キャンバーを撤去。
- (6) 鋼尺等により供試管の鉛直方向外径を測定(載荷直前)。

- (7) 変位計およびひずみゲージのゼロ点を確認。計測を開始する。
- (8) 載荷板(約90kg)を垂直に下降させ、全重量が供試管に載荷された時点で門型治具を撤去。
- (9) レバーブロックで吊り上げた状態で重錘をワイヤーにセットする。
- (10)左右の重錘のバランスを見ながら、レバーブロックを徐々に操作してワイヤーに載荷する。
- (11)完全に重鍾重量がワイヤーに作用したら、レバーブロックを撤去。
- (12)鋼尺等により供試管の鉛直方向外径を測定(載荷直後)。
- (13)所定の荷重が負荷された時刻を記録し、計測を開始する。

③計測間隔

垂直変位ならびに管のひずみを計測する時間間隔は、対数時間目盛表示を考慮しておおむね表 2.3 のとおりとする。

表 2.3 計測間隔

Step	経過時間	インターバル	測定回数
1	0~ 30 分	1 分ごと	30 回
2	30~ 60 分	5 分ごと	6 回
3	60~120分	10 分ごと	6 回
4	120~300 分	30 分ごと	6 回
5	300 分~100 時間	60 分ごと	95 回
6	100 時間~	24 時間ごと	10,000 時間まで