1.5.2) 長期偏平クリープ剛性試験結果

試験は10,000時間にわたり一定荷重を保持した。得られた値を以下に示す。

初期垂直変位の異なる 2 条件を 4 種類の管種ごとにまとめ、経過時間と垂直変位の関係を図 1.5.6 ~図 1.5.9 に示す。

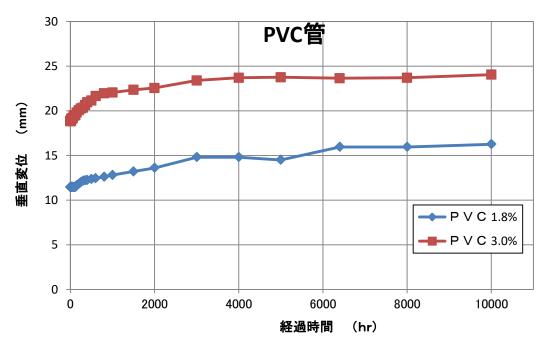


図 1.5.6 PVC の経過時間と垂直変位の関係

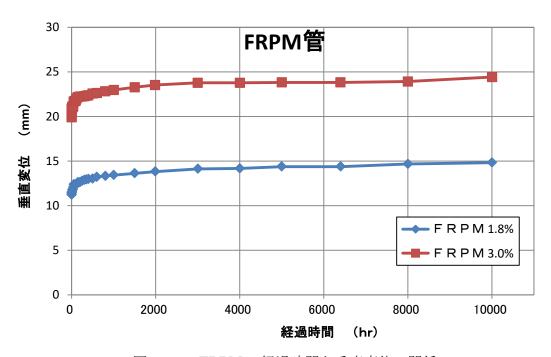


図 1.5.7 FRPM の経過時間と垂直変位の関係

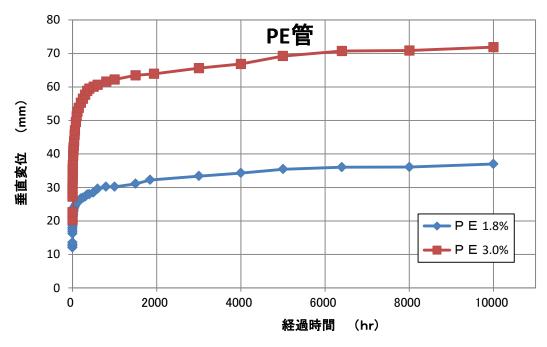


図 1.5.8 PE の経過時間と垂直変位の関係

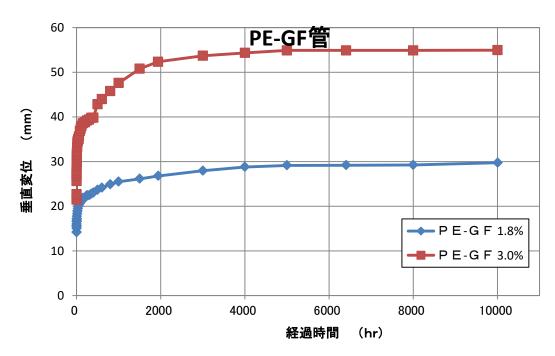


図 1.5.9 PE-GF の経過時間と垂直変位の関係

1.5.3) 供試管の発生ひずみ

初期垂直変位の異なる 2 条件を 4 種類の管種ごとにまとめ、経過時間と管頂・管底ひずみの関係を図 1.5.10 に、経過時間と管側ひずみの関係を図 1.5.11 に示す。

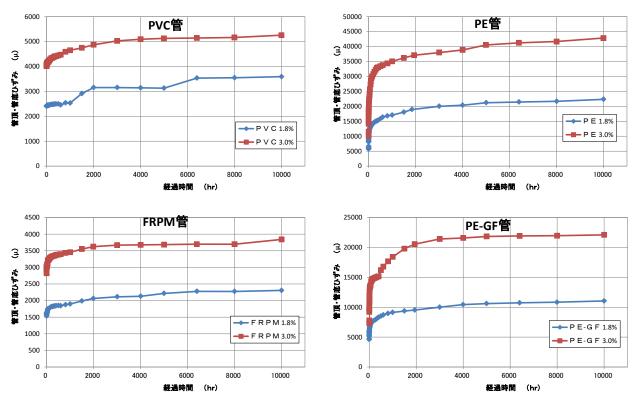


図 1.5.10 経過時間と管頂・管底ひずみ(4 点の平均値)の関係

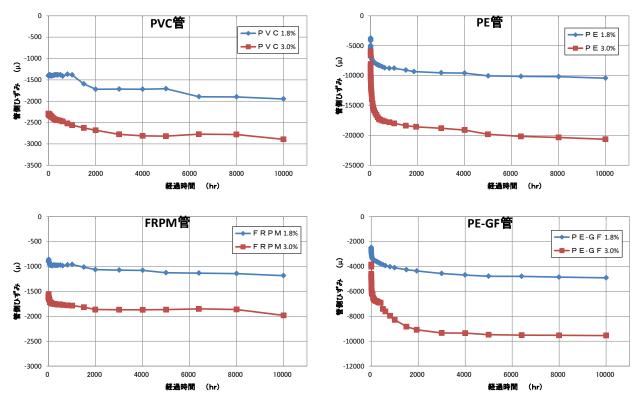


図 1.5.11 経過時間と管側ひずみ(2 点の平均値)の関係

初期垂直変位の異なる 2 条件を 4 種類の管種ごとにまとめ、経過時間と管側部から斜め 30° ひずみの関係を図 1.5.12 に、経過時間と管側部から斜め 60° ひずみの関係を図 1.5.13 に示す。

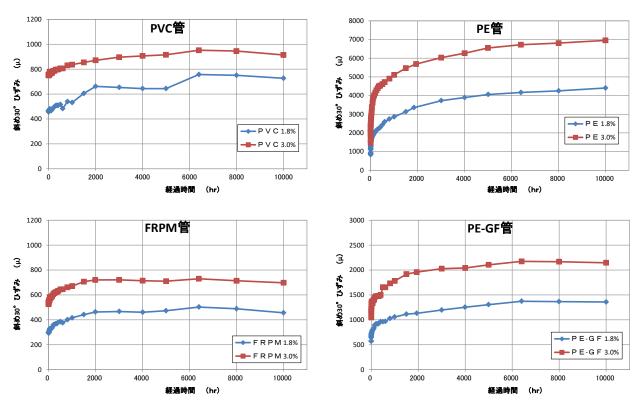


図 1.5.12 経過時間と管側部から斜め 30° ひずみ(2点の平均値)の関係

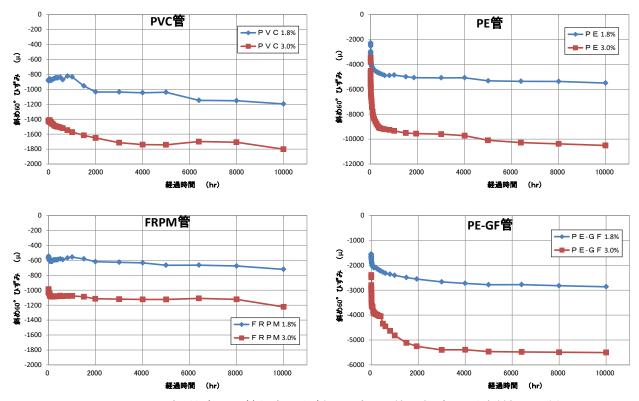
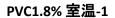
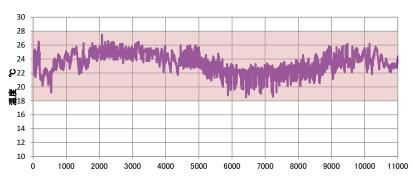
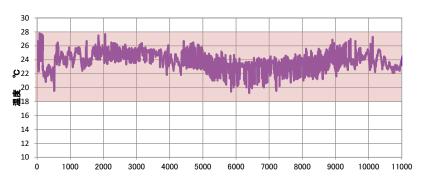
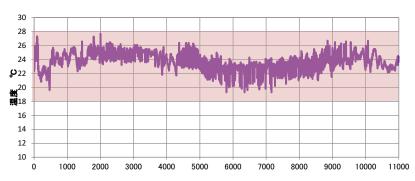




図 1.5.13 経過時間と管側部から斜め 60° ひずみ(2点の平均値)の関係


1.5.4) 試験室内の温度変化

試験実施期間を通して、恒温室内の温度を試験装置近傍の4箇所で計測した。結果を図1.5.14に示す。



FRPM3.0% 室温-6

PE3.0% 室温-7

PEGF1.8% 室温-4

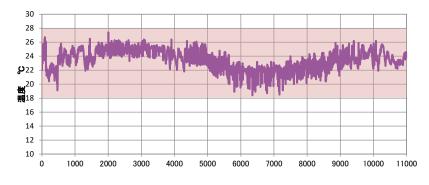


図 1.5.14 経過時間と恒温室内温度の関係

1.6) 回帰分析

長期偏平クリープ剛性の回帰分析方法は、JIS K 7020-1998 (2018 確認)「ガラス強化熱硬化性プラスチック (GRP) 管及び継手-回帰分析及びその使用」(ISO10928) に示された方法 B (直線回帰)、方法 C (2 次曲線回帰) ならびに 2 直線を用いた回帰 (以下、方法 B'という)、の 3 案が提示され、それぞれの方法により算出した結果を併記する。

回帰分析のイメージは図 1.6.1 に示すとおりであり、10,000 時間までの計測データから 50 年後 (438,000 時間後)を推定する。

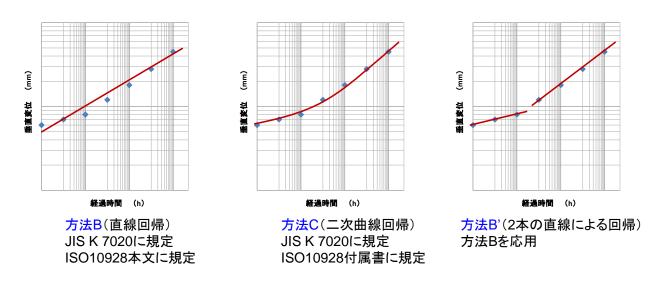


図 1.6.1 経過時間~垂直変位の回帰分析 (3 案) のイメージ

1.6.1) 関数関係を求める手順

(1) 方法Bおよび方法B'

回帰式は、次の一次多項式とする。

なお、方法B'については2つの回帰式のうち後半の直線を用いて評価する。

$$y = a + b \times x$$
 · · · (1 式)

$$\log_{10} \delta = a + b \times \log_{10} T$$

ここに、 y:観察特性値(垂直変位 δ)の対数 (\log)

a:y軸の切片

b: 直線の傾き (xの一次の係数)

x:時間 Tの対数 (log)

(2) 方法C

回帰式は、次の二次多項式とする。

$$y = c + d \times x + e \times x^2 \qquad \qquad \cdot \cdot \cdot (2 \pm)$$

$$\log_{10} \delta = c + d \times \log_{10} T + e \times (\log_{10} T)^2$$

ここに、 y: 観察特性値(垂直変位δ)の対数(log)

c:y軸の切片

d, e: x の一次および二次の係数

x:時間 Tの対数 (log)

1.6.2) 回帰式

回帰式は1.6.1)の(1式)または(2式)で与えられる。

10,000 時間までの計測データから 8 ケースの経過時間 T と垂直変位 δ の関係を表す係数 $\lceil c, d, e
floor$ または $\lceil a, b
floor$ を算出し、表 1.6.1 に示す。

管種		条件	а	b	備考	
PVC	1	1.8%	1.03798	0.02719		
	2	3.0%	1.26193	0.02437		
FRPM	1	1.8%	1.04898	0.02589	回帰式:	
	2	3.0%	1.30612	0.01797	$\log_{10} \delta = a + b \times \log_{10} T$	
PE	1	1.8%	1.22326	0.08709	δ:垂直変位(mm)	
	2	3.0%	1.46346	0.10850	7:経過時間(hr)	
PE-GF	1	1.8%	1.18742	0.07015	1 . 小土加品 4.7 [月] (1117)	
	2	3.0%	1.41832	0.08191		

表 1.6.1a 方法 B (直線) による回帰式の係数

表 1.6.1b 方法 C (二次多項式) による回帰式の係数

管種		条件	С	d	e	備考
DVC	1	1.8%	1.04757	-0.01091	0.01181	
PVC	2	3.0%	1.26804	-0.00033	0.00767	
FRPM	1	1.8%	1.05313	0.00939	0.00511	回帰式:
FRPM	2	3.0%	1.30791	0.01058	0.00230	$\log_{10} \delta = c + d \times \log_{10} T + e \times (\log_{10} T)$
PE	1	1.8%	1.22325	0.08706	0.00001	δ : 垂直変位 (mm)
PE	2	3.0%	1.45945	0.12472	-0.00504	7: 経過時間(hr)
PE-GF	1	1.8%	1.19214	0.05103	0.00594	1 - 作工,地里,以 [日] (1111)
re-Gr	2	3.0%	1.42168	0.06837	0.00421	

表 1.6.1c 2 直線 (後半の直線) による回帰式の係数

管種		条件	а	b	備考
PVC	1	1.8%	0.878708	0.080815	
	2	3.0%	1.194773	0.048228	□ 4 ·
FRPM	1	1.8%	1.022059	0.036084	回帰式:
	2	3.0%	1.297738	0.021292	$\log_{10} \delta = a + b \times \log_{10} T$
PE	1	1.8%		_	δ : 垂直変位 (mm)
	2	3.0%	_	_	
PE-GF	1	1.8%	1.170616	0.077183	1 · 心主见时寸[11] (1111)
	2	3.0%	1.629263	0.028651	

1.6.3) 外圧クリープ試験の結果分析

10,000 時間経過後までのデータをもとに、3 通りの回帰分析による管種ごとのクリープ係数、相関係数をまとめて表 1.6.2 に示す。

方法 C 注1) 注 2) 方法 B 方法B' 管種 条件 クリープ係数 クリープ係数 クリープ係数 相関係数 相関係数 相関係数 lpha 50 r lpha 50 lpha 50 r 0.5533(剛性比) 1.8% 0.73760.78150.95830.9766 0.51850.5303(たわみ比) **PVC** 0.6771(剛性比) 3.0% 0.75180.87790.6140 0.98610.98570.6317(たわみ比) 0.6614(剛性比) 1.8% 0.7167 0.9479 0.5989 0.9957 0.9908 0.6532(たわみ比) **FRPM** 0.7194(剛性比) 3.0% 0.7798 0.9954 0.97420.68270.98320.7483(たわみ比) 1.8% 0.23230.9986 0.25180.9986 方法 B による PE3.0% 同上 0.13590.9889 0.19580.9917 1.8% 0.3708 0.9860 0.2698 0.9953 0.3119 0.9962 **PEGF** 3.0% 0.26750.9899 0.23030.99340.32560.9941回帰式 2次曲線回帰 直線回帰 2直線による回帰 勾配変化のあるデータを方 JIS K 7020(ISO10928本 JIS K 7020(ISO10928付 文)に示された方法 属書)に示された方法。 法 B より精度よく推定。 備考 (担当:積水) 観測値との相関は方法Bよ (担当:栗本)PVC、FRPM り高い。 (担当:ダイプラ)PEGF (担当:クボタ)

表 1.6.2 クリープ係数と相関係数のまとめ

注1) JIS K 7020:1998 (2018 確認) ガラス強化熱硬化性プラスチック (GRP) 管及び継手 – 回帰分析法及びその使用

注 2) 方法 B'のクリープ係数および相関係数は、管種ごとに下記の区間を対象として求めている。

PVC: $100hr\sim10,000hr$ FRPM: $50hr\sim10,000hr$ PEGF1.8: $14.95hr\sim10,000hr$ PEGF3.0: $1,500hr\sim10,000hr$