研究成果報告書

研究課題名	薄肉FRPM管による鞘管工法の研究開発
研究開発組合代表者名	栗本化成工業(株) 代表取締役社長 幡中 圓治

1.研究目的

農業用用排水施設は施工後数十年を経た施設が多く、いずれ老朽化の時期を迎え施設の補修・改修の困難さに直面するものと考えられる。非開削工法としての更生工法は自然流下(無圧管)である下水道分野で種々開発された工法が多く、農業用水の特長である圧送管などの諸条件に適合出来ない工法も見受けられる。

そこで,農業用管水路の開削工事で実績のある工場で製作した二次製品を既設管路に挿入し,間隙に中込材を充填して更生する鞘管工法を研究するものである。

本工法を確立することにより、安全で且つ工期短縮等により,管水路の効率的・経済的な更生を実現する。

2. 研究内容

研究開発は、主に基礎研究及び実用化研究に分かれ,中込材の選定、設計方法の確立、 管体性能の評価、施工性の確認等を行うべく、下図に示すような検討及び試験を行った。

平成17年度末には実証試験工事を実施し、1年間の機能監視を通じて長期安全性、設計方法の妥当性の確認等を行い、実用化を目指すものである。

本課題で実施した研究実施内容のフローを図2.1 に示す。

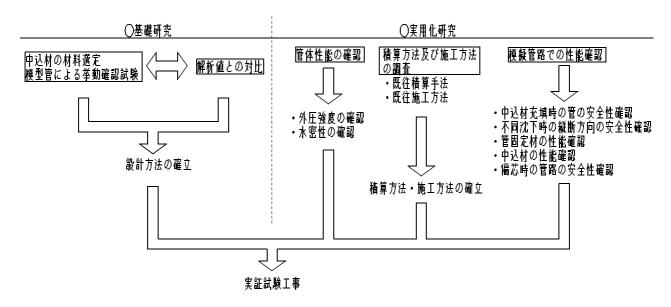


図2.1 研究内容

3.目標とする成果

3.1 基礎研究

これまでは、既設管や中込材がたわみやひずみの抑制にある程度効果があることは経験的に分かっていたが、それを設計に盛り込む方法が確立されておらず、更生管単体で設計を行う必要があり、過剰設計となっている可能性が高かった。

本研究においては、既設管及び中込材による保護効果(支持力)を定量的に表すことで、 合理的な設計手法を見いだすことを目標とする。

3.2 実用化研究

非開削工法としての更生工法は自然流下(無圧管)である下水道分野で種々開発された 工法が多く、農業用水の特長である圧送管などの諸条件に適合出来ない工法も見受けられ る。ここで、農業用水用として多くの実績のあるFRPM管を、更生工法用にさらに薄肉 化した薄肉FRPM管を用いて、製品性能、施工性から長期耐久性までを含めた課題につ いて検証し、工法として確立することを目標とする。

本研究により得られる効果としては、水路改修事業費のコスト縮減及び工期短縮が挙げられる。

4.研究成果の状況(現地適用の状況、普及活動状況等)

4.1 基礎研究

(a) 基礎研究の概要

基礎研究は本工法に適用するための構造設計方法を確立することを目標として行った。

具体的には、模型土槽を用いて様々な老朽化モデルに対する載荷試験を行い、その結果を解析により確認することで、既設管及び中込材による保護効果を明らかにして、それを定量的に表現する方法を確立することを目標とした。

(b) 基礎研究結果及び中込材の種別

基礎研究(模型土槽試験)の結果、既設管の強度が全くない(四つに割れた)場合でも、更生管にはひずみ抑制及びたわみ抑制効果が得られることが判明した。そしてそれは、地盤の相対密度が低くても、同様であることが判明した。

また、本工法に用いる中込材としては、**表4.1.1** の二種類を適用できることが判明した。

品名	強度	空気量	比重	滞水下	一般名
	(N/mm^2)	(%)		施工性	
K G -ライト	0.5以上	70程度	0.5程度	×	超軽量型エアミルク
K G - 1	1.0以上	35程度	1.2程度		滞水型エアミルク

表4.1.1 中込材の種別

滞水下施工性:既設管内に多少のたまり水があっても、中込材打設時に材料分離を発生 せず、かつ比重が大きいことからたまり水の下にもぐり込むことで水を 空気抜き穴から排除できる性能を指す。

(c) 設計方法の確立

以上のことから、設計方法については以下に示す方法をとることとした。

- ・発生ひずみが更生管単体の場合を下回ることから、現行の設計基準の通りモーメントの算定を行うことで、管路の安全性を評価する。
- ・地盤、既設管及び中込材の反力係数として、中込材の一軸圧縮試験結果を元に係数 (安全率)を考慮して決定する。
- ・既設管老朽状況がモデルと大幅に異なる場合には、数値解析を行ってその安全性を 評価することとする。

(d) 基礎研究成果及び普及状況

模型土槽試験及び解析結果により、設計方法はほぼ確立した。実証試験工事によって確認したところ、平成18年9月末現在、設計に対して十分な安全性が得られている。

4.2 実用化研究

(a) 管体性能の確認

薄肉 F R P M 管が鞘管工法用管材としての性能を有しているかについての検証を行った。その結果、外圧強度、水密性ともに十分な性能を有していることが明らかとなった。

(b) 積算方法及び施工方法の確立

既往資料より、調査・診断方法、設計手法、積算手法、施工方法等についての調査を 行い、本工法の積算方法及び施工方法を確立した。

また、既設管路内に軌条を設置せずに施工を行う方法についても検証を行った。平成 17年度末実施予定の実証試験工事において採用し、十分な性能があることが検証でき た。

(c) 模擬管路での性能確認

実証試験に先立ち、模擬管路を構築し,本工法の施工性・安全性・性能等の評価試験を実施した。その結果、以下のそれぞれの項目に対して要求性能をほぼ満たしていることが判明した。

中込材充填時の管の安全性

中込材打設による発生ひずみの最大値は、円周方向破壊ひずみの約1/30以下、軸方向破壊ひずみの約1/5以下であった。また、発生たわみは最大約1%と小さく、更生管は十分に安全であることが判明した。

不同沈下時の縦断方向の安全性

不同沈下量が110mmの状況においても、発生ひずみの最大値は、破壊ひずみの約1/2倍以下であった。したがって、通常想定される大きな不同沈下時においても、十分な安全性を有することが判明した。

中込材の性能

本研究で開発した中込材を用いることにより十分な充填性が得られた。また、最高温度は60 をわずかに超える程度であり、更生管の耐熱温度(80)よりも低く、特に問題はなかった。

さらに、硬化後の中込材から採取したいずれのコアにおいても所定の強度を満たしており、管路全体に渡って均質な中込材充填がなされていることが判明した。

偏芯時の管路の安全性

既設管内に配管することにより更生管の安全性は向上し、それは偏芯していてもほとんど影響がないことが判明した。すなわち、既設管に対して更生管が偏芯しても、 更生管の安全性に何ら問題ないことが判明した。

(d) 実用化研究成果及び普及状況

以上の結果、薄肉FRPM管は鞘管工法用管材として十分な性能を有しており、本工法は実証試験を行うために必要な性能、安全性及び施工性を有していると判断する。

本研究成果は、平成18年度以降工事分として20数件の相談や引き合いをいただいており、工法のPR及び設計折り込みに向けて活動中である。

4.3 実証試験工事

発注者 :(独)水資源機構 豊川用水総合事業部殿

件 名 : 豊川用水(2期)大清水支線工事 配管時期: 平成18年1月~18年2月

工事概要: 既設RC管 1100内 薄肉FRPM管 800×682.24m

実証試験工事の結果、以下のような成果が得られた。

・無軌道による配管工、中込注入工その他全ての工種で問題無く施工は完了、水張り試験の結果も良好であった。

- ・歩掛かりの調査は完了し、設計積算の方法及び基準が明確になった。
- ・中込注入を初めとする本工事が薄肉FRPM管に与える影響は、非常に軽微であることが 判明した。

4.4 機能監視

4.3項における管路において、1年間の機能監視を行った。また、本管路上にトラック 等による荷重を載荷し、その影響を確認した。

- ・鉄板及びトラック載荷の影響は明確に現れた。今回の管路では、既設RC管のひずみに対して薄肉FRPM管のひずみはの約1/3となった。トラックの影響も明らかに低減できることが判明した。
- ・一年間の機能監視期間において、薄肉FRPM管はほとんど変動無く安定していることが 判明した。
- ・その他土圧、外水圧及び既設管ひずみのいずれも安定した範囲で推移していることが 判明した。
- ・以上より、本工法の長期安全性が確認できたと考える。

5.今後の課題

(1)事例の蓄積

既設管路の老朽度及び中込材の厚みが異なった場合に、実際の管路でどのような挙動を示すかについても検証する必要がある。

今後は、様々な呼び径、老朽度の既設管路に対して実績を重ね、実証的に多くの事例を蓄積していく。

(2)曲管部の対応

本工法では、曲点については通過検討の上で曲管を搬入する方法をとるが、大きな 曲点については通過が困難になる場合があると考えられる。その場合の対応方法につ いて今後検討してゆく必要がある。

(研究総括者による自己評価)

項目	評価結果	備考
研究計画の効率性・妥当性	А	当初予定した研究計画を、特に手戻りもなく 効率的に遂行している。
目標の達成度	Α	当初予定した研究目標を着実に遂行し、研究 期間内に問題なく完了する見込みである。
研究成果の普及可能性	А	老朽管路の更生工法として、大幅なコスト縮 減効果を発揮できる工法であり、既に多数の 引き合いをいただいている。
研究成果の出来栄え	А	基礎試験、実用化試験を経て現地実証試験を 実施し、本工法の実用化を進めている。

総合コメント

管更生工法としては、内圧に耐えうる工法として有用な工法を開発することができた。 今後は、本研究の成果が普及することでコスト縮減に貢献できるよう、必要資料の整備を引き続き進めていきたい。

注)評価結果欄は、A、B、Cのうち「A」を最高点、「C」を最低点として3段階で記入する。

薄肉FRPM管による鞘管工法の研究開発 成果概要

1.研究要旨

農業用用排水施設は施工後数十年を経た施設が多く、いずれ老朽化の時期を迎え施設の補修・ 改修の困難さに直面するものと考えられる。非開削工法としての更生工法は自然流下(無圧管) である下水道分野で種々開発された工法が多く、農業用水の特長である圧送管などの諸条件に適 合出来ない工法も見受けられる。

そこで,農業用管水路の開削工事で実績のある工場で製作した二次製品を既設管路に挿入し, 間隙に中込材を充填して更生する鞘管工法を研究するものである。

本工法を確立することにより、安全で且つ工期短縮等により,管水路の効率的・経済的な更生 を実現する。

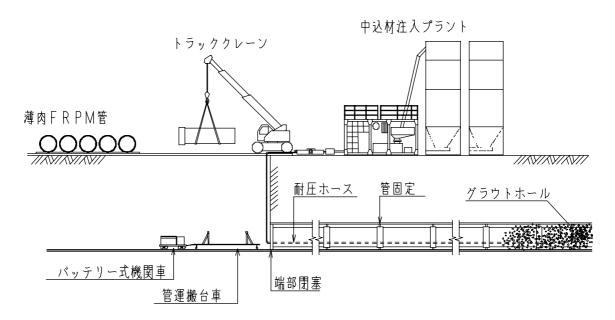


図1.1 工法の概念図

研究開発は,中込材の選定及び変形係数の評価,また既設管と更生管の強度分担率や更生管の 設計手法を確立するために,模型土槽試験及び数値解析を実施する。そして最終的には実証試験 及び機能監視を実施し,実用化を目指すものである。

表1.1 従来技術との比較

工法	新技術	従来工法		
/_	3/13/2113	────────────────────────────────────		反転工法
 工法概要	一 管搬λ立抗を構築し	管搬入立坑を構築し、		
11/41W.54			材となる硬質塩化ビ	
			二ル樹脂材等を嵌合	
	· ·	エアモルタル等を充		より管内に挿入し、
		すりてアンル するた 填して更生する工法	製管された樹脂パイ	
	次 0 0 0 0 1 2 2 2 3 1 1 2 1 2			圧や水圧等で管内面
			殊モルタル等を充填	
				脂を硬化させて、管
			た複合管を構築する	
			工法	を開発する上広
仕 ト かい 1 2 座 に	1 ~ 2 サイズダウン	2 サイズダウン	<u>土/5</u> 1 サイズダウン以内	1 サイズダウン以内
	1 ~ 2 り1 スタワフ 	Z リイスタリン 	「リイスタリン以内	T リイスタワン以内
面の縮径 強 度	再件答けのユブ耐え	再生答せのユズ耐え	既設管と更生材の複	再と答せのユズ耐え
独 反		全土自初のみで削え		
	る (m = 1 答 T - 2 x 中 ン ++		合構造	る。
	(既設管及び中込材	,	(金属補強仕様も可	(フイナー厚を調整)
CU * TIL	の反力を期待する)	る)	能)	入会的加州以西
1	影響されにくい	影響されにくい	影響されにくい	入念な処理必要
条件	4 55 My - 7 - 7 - 7 - 7 - 7	4 55 60 T + 1 T P		(シワ発生)
田線部施工	曲管継手を使用	曲管継手を使用	曲線用材料を使用	シワが発生するが、
1 44		(立坑設置も検討要)		連続施工可能
水替工			最大、管径の1/3程度	水替えが必要
	は排出可能 (KG-1)	リ水まで施工可能	の水深まで施工可能	
仮設条件等			MH,空気弁等の開口部	,
	必要	必要	から施工可能	より施工可能
			3×20m程度の地上ス	
	ペース必要	ペース必要	ペース必要	ペース必要
作業環境			製管とモルタル打設	
	が主工程のため、作	が主工程のため、作	が主工程のため、作	化工程があり、可燃
	業環境はよい	業環境はよい	業環境はよい	ガスや臭気の発生を
				伴う

2. 実施内容

研究開発は、主に基礎研究及び実用化研究に分かれ,中込材の選定、設計方法の確立、管体性能の評価、施工性の確認等を行うべく、下図に示すような検討及び試験を行った。

平成17年度末には実証試験工事を実施した。さらに平成18年度には1年間の機能監視を通じて長期安全性、設計方法の妥当性の確認等を行った。

本課題で実施した研究実施内容のフローを図2.1 に、個別研究の要約を次ページ以降に示す。

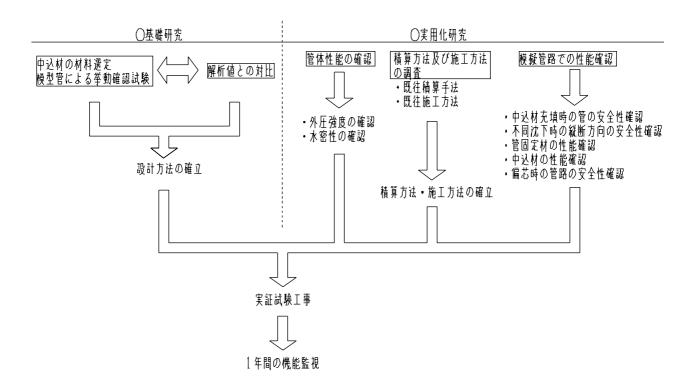


図2.1 研究内容フロー

個別研究テーマ	基礎研究
サブテーマ	中込材の材料選定及び模型管による挙動確認(1)
実施年度	平成 1 6 年度

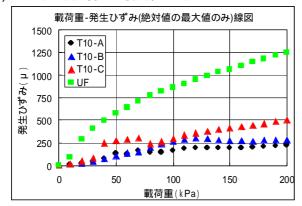
既設管及び中込材による保護効果を明らかにする。

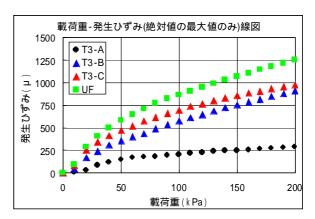
空気量35% 強度1 0MPaの中込材と呼び径150のFRP製模型管を用いて 模型土槽により

空気	■ 35%、	強度1.0	MPaの中込材と呼	乎び径150のFRP製模型管を用いて、模型土槽により、		
地盤の	相対密度 9	0%にお	ける様々な老朽化モ	デルの載荷試験を行い、その挙動を確認した。		
No	中込材	既設管	 			
	厚み(mm)	老朽度	中込材	クラック(スキマ1mm) クラック(スキマ1 mm)		
T10-A		健全	薄肉F	RPM管 天北左右 4 個所		
T10-B	10	老朽度				
T10-C		老朽度	<u> </u>	{ { { } }} {{ { } }}		
T3-A		健全				
Т3-В	3	老朽度				
T3-C		老朽度	健全(クラックなし) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	老朽度 I (クラック 1 個所) 老朽度 II (クラック 4 個所) 強度保持率 = 0~1 0 0% 強度保持率 = 0%		
UF	更生管	管単体				
	載荷重200k	Pa時の発生ひず 1	み分布(μ)	載荷重200kPa時の発生ひずみ分布(μ)		
	2015	90 72	3	201500 2		
	18	50	4	18 4		
	17		5 T10-A	17		
1	6		↑ T10-B ↑ T10-C	16 T3-C		
	15		7 L-WF	15 7		
	14		√ 8	14 8		
	13 12	10 9	,	13 12 10 9		
	· -	11		11		
2.0	載荷重 - 水平たわみ量線図					
2.0	—— T10-A ——— T10-B			- ← -T3-A		
<u>⊊</u> 1.5	T10-C			1.5 ★ T3-C		
水平たわみ量(mm) 1.0 2.0 2.0 2.0	_ = _ UF			(a) T3-C (b) T3-C (c) T3-C (c		
1.0 1.0				है 1.0 £		
) 				B 0.5		

0.0	0 50) 100	150 200	0.0		
		載荷重(kF		0 50 100 150 200 載荷重 (kPa)		
	載荷重 - 側土圧線図 載荷重 - 側土圧線図					
200				200		
150				150		
K P a)			—T10-A —T10-B	— T3-A — T3-B		
画士压(kPa)			—T10-C	□ T3-A □ T3-B □ T3-C □ UF		
■ 50			UT OF	■ 50		
	,					
	0 50	100 载英素(IdDa)	150 200	0 50 100 150 200 載荷重(kPa)		
		載荷重(kPa)		キルリ ≇ (N □)		

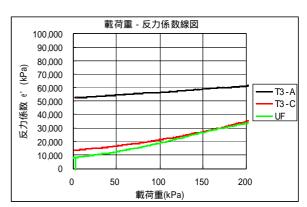
- ・既設管の強度が全くない(四つに割れた)場合でも、更生管にはひずみ抑制及びたわみ抑制効果が得られることが判明した。
- ・老朽部(亀裂部分)にひずみがやや集中する場合があるが、全体としては更生管単体と同等程度 かそれ以下であることが判明した。
- ・側土圧は、低荷重の範囲ではほとんど発生しないが、荷重が増加すると、中込材と更生管の界面で剥離が発生し、急激に側土圧が増加する。すなわち、更生管の性質(とう性管)が現れていることが判明した。
- ・中込材は、空気量35%、強度1.0MPaのもので問題ないことが判明した。


個別研究テーマ	基礎研究
サブテーマ	設計方法への展開
実施年度	平成16年度


既設管及び中込材による保護効果 (支持力)を定量的に表すことで、合理的な設計手法を見いだす。

内容概略

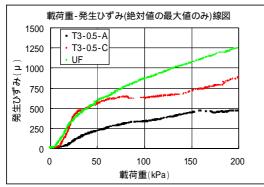
前項の各データを加工したものをもとに、設計への展開方法を検討した。

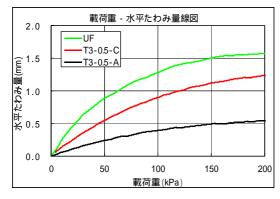

a) ひずみ:絶対値の最大値のみプロット

b) たわみ: e に換算

- ・中込材と更生管の界面で剥離が発生している(発生ひずみが急激に変化する点がある(T10-C))ことから、設計は更生管単体で行うことが妥当であることがわかった。
- ・発生ひずみが更生管単体の場合を下回ることから、現行の設計基準の通りモーメントの算定を行うことで、管路の安全性を評価できることが判明した。
- ・地盤、既設管及び中込材の反力係数は、試験結果を基に、中込材の一軸圧縮試験結果から係数(安全率)を考慮して決定することで管路の安全性を確保できることが判明した。

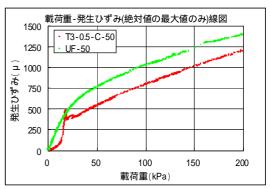
個別研究テーマ	基礎研究
サブテーマ	中込材の材料選定及び模型管による挙動確認(2)
実施年度	平成17年度

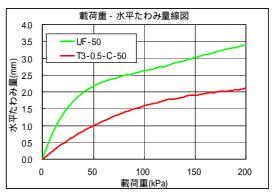

コスト面を考慮し、高空気量かつ低強度の中込材による保護効果を明らかにする。 地盤の相対密度が低い場合に、保護効果がどの程度得られるかを確認する。


内容概略

コスト面を考慮し、**空気量70%、強度0**. **5 M P a の中込材**を用いて、模型管による載 行い、その挙動を確認した。

荷試験を行い、その挙動を確認した。


٠	3 H-V-371 - 13		23 C 11 F F 6	
	No	中込材	中込材	既設管
		厚み(mm)	強度	老朽度
	T3-0.5-A	3	0.5	健全
	T3-0.5-C	3	0.5	老朽度
	UF		更生管単体	



地盤の相対密度50%で模型管による載荷試験を

No	中込材	中込材	既設管	地盤の
	厚み	強度	老朽度	相対密度
T3-0.5-C-50	3	0.5	老朽度	50%
UF-50	更生管単体			30%

実施成果

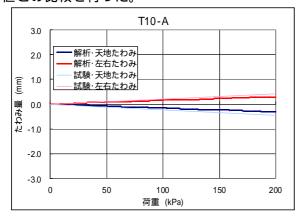
中込材の強度が低くても、強度が高い場合 果が得られることが判明した。

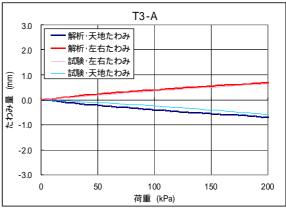
すなわち、中込材の強度は、0.5MPaあ した。

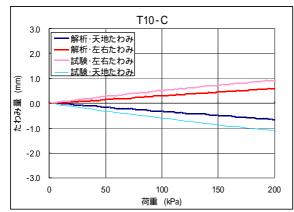
実施成果

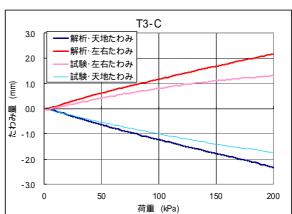
地盤の相対密度が低くても、既設管と中込材によ に準ずる程度のひずみ抑制及びたわみ抑制効力を必ずみ抑制及びたわみ抑制効果が得られることが 判明した。

地盤の相対密度が小さいことで、発生ひずみやた れば鞘管工法用として使用できることが判明わみはやや大きくなっているが、相対密度の違いに よる異常な挙動は発生しないことが判明した。


上記2項目の結果から、前年度の設計方法を変更する必要はないことが判明した。


個別研究テーマ	基礎研究
サブテーマ	解析との対比
実施年度	平成16~17年度


実験結果と数値解析とを比較し、モデル条件とは異なる老朽状況における安全性確認に使用できるかを検討する。


内容概略

解析ソフト「Nonsolan」を用いて、既設管ひび割れ部に弱要素を導入する等の処理を行い、実験値との比較を行った。

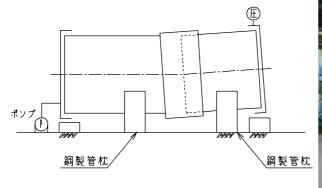
実施成果

いずれのモデルにおいても、実験値と数値解析の結果はおおむね一致することが判明した。すなわち、既設管老朽状況がモデル条件とは異なる老朽状況における安全性確認に用いることができることがわかった。

個別研究テーマ	実用化研究
サブテーマ	管体性能の確認
実施年度	平成 1 6 年度

薄肉FRPM管が鞘管工法用管材としての性能を有しているかについての検証を行う。

内容概略

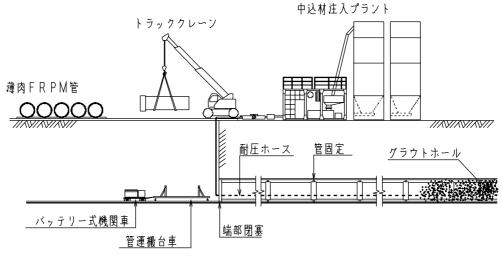

a)外圧試験: JISを参考に、製品規格に基づき外圧試験を行った。

		基準たわみ外圧		試験外圧		破壊外圧(参考)		
呼び径		試験体	換算	試験体	換算	試験体	換算	
管種	Νo	荷重	荷重	荷重	荷重	荷重	荷重	判定
		(kN)	(kN/m)	(kN)	(kN/m)	(kN)	(kN/m)	
8 0 0	規格値	1.41	4.7	6.24	20.8	7.8	26.0	
内圧4種	1	4.30	14.2	-	-	15.6	51.7	合 格
	2	4.70	15.7	-	-	15.9	53.0	合 格

b)内水圧試験:JISを参考に、継手部で2.5度曲げた状態で内水圧試験を行った。

水圧×	诗間	結	果	規	格	判	定	備	考
0.7 M P a x 3	分間保持	異常な	なし	漏れな	どの異	合	格	内圧3種	設計水圧
1.4MPa×3	分間保持	異常	なし	常がなり	いこと	合	格	内圧3種	試験水圧

実施成果


外圧強度、水密性ともに十分な性能を有していることが明らかとなった。

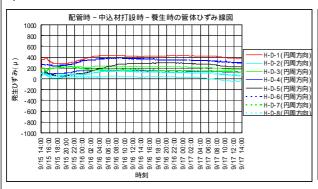
個別研究テーマ	実用化研究
サブテーマ	積算方法及び施工方法の確立
実施年度	平成16~17年度

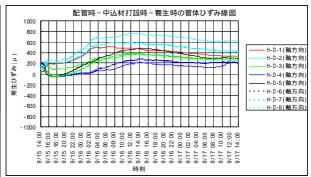
過去の実績及び既往資料から、本工法の積算方法及び施工方法を確立する。

内容概略

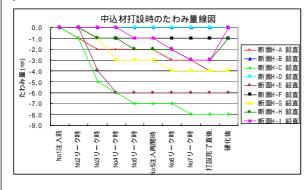
既往資料より、調査・診断方法、設計手法、積算手法、施工方法等についての調査を行った。 また、無軌道台車の走行及び運用試験を行い、検証を行った。

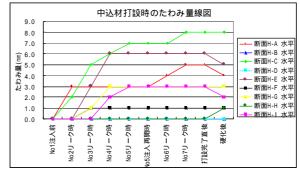
- ・本工法の積算方法及び施工方法をほぼ確立した。
- ・無軌道台車は実用可能であることが判明した。


個別研究テーマ	実用化研究
サブテーマ	模擬管路での性能確認
	中込材充填時の管の安全性
実施年度	平成17年度


実証試験に先立ち、模擬管路を構築し,本工法の施工性・安全性・性能等の評価を行う。 そのうち、中込材打設時の管の安全性を確認する。

内容概略


摸擬管路(更生管呼び径800×28m)に中込材を打設した後、48時間における発生ひずみ及びたわみを測定した。


a)発生ひずみ

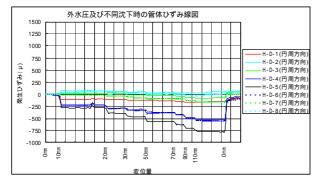
b)発生たわみ

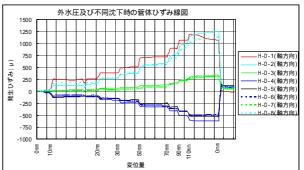
- ・中込材打設後48時間における発生ひずみの最大値は、円周方向破壊ひずみの約1/30以下、軸方向破壊ひずみの約1/5以下であり、更生管は十分に安全であることが判明した。
- ・発生たわみは最大約1%と小さく、更生管は十分に安全であることが判明した。
- ・管長が6mの場合でも特に異常は見られなかった。

個別研究テーマ	実用化研究
サブテーマ	模擬管路での性能確認
	不同沈下時の縦断方向の安全性
実施年度	平成17年度

実証試験に先立ち、模擬管路を構築し,本工法の施工性・安全性・性能等の評価を行う。 そのうち、不同沈下時の縦断方向の安全性を確認する。

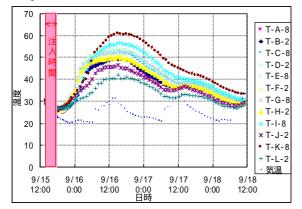
内容概略

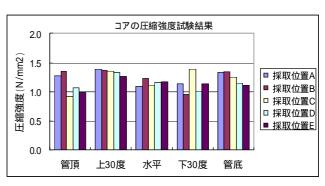

地震等による変位の影響を確認するため、管路の一部をクレーンにより吊り上げて大きく変位させた場合の管の挙動を確認した。既設管と更生管の継手位置が千鳥になっている部分(H-D部)と、継ぎ手位置が一致している部分(H-A部)で既設管を変位させ、それぞれの部位に発生するひずみを測定した。

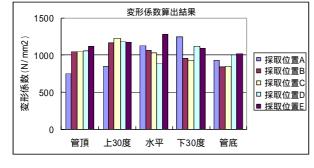


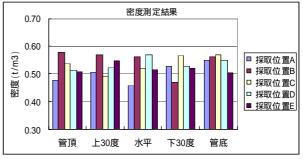
ひずみゲージ取付位置 注)上流から下流を見たときの断面図

実施成果


不同沈下量が 1 1 0 mmの状況においても、発生ひずみの最大値は、破壊ひずみの約 1 / 2 以下であった。したがって、通常想定される大きな不同沈下時においても、十分な安全性を有することが判明した。


個別研究テーマ	実用化研究
サブテーマ	模擬管路での性能確認
	中込材の性能
実施年度	平成17年度


実証試験に先立ち、模擬管路を構築し,本工法の施工性・安全性・性能等の評価を行う。 そのうち、中込材の性能を確認する。


内容概略

中込材打設後48時間における温度を測定した。また、中込材の硬化後にコアを採取し、材齢28日で一軸圧縮強度、変形係数、及び密度の測定を行い、高さ方向、及び管路縦断方向の品質を確認した。

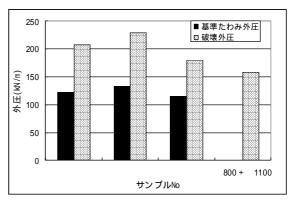
- ・本研究で開発した中込材を用いることにより十分な充填性が得られた。
- ・硬化時の最高温度は60 をわずかに超える程度であり、更生管の耐熱温度(80)よりも低く、 問題ないことが判明した。
- ・硬化後の中込材から採取したいずれのコアにおいても所定の強度・変形係数及び密度を有しており、管路全体に渡って均質な中込材充填がなされていることが判明した。

個別研究テーマ	実用化研究	
サブテーマ	模擬管路での性能確認	
	偏芯時の管路の安全性	
実施年度	平成17年度	

実証試験に先立ち、模擬管路を構築し,本工法の施工性・安全性・性能等の評価を行う。 そのうち、偏芯時の管路の安全性の確認を行う。

内容概略

既設管+中込材+更生管の複合体を作成し、外圧試験を行うものとした。ここで、既設管が設計通りに直線性を保っていない場合を想定し、既設管と更生管とが上下方向または左右方向に偏芯している状態で外圧試験を行った。


パターン (同心円)

パターン (上下偏芯)

パターン (左右偏芯)

実施成果

既設管内に配管することにより更生管の安全性は向上し、それは偏芯していてもほとんど影響がないことがわかった。すなわち、既設管に対して更生管が偏芯しても、更生管の安全性に何ら問題ないことが判明した。

個別研究テーマ	実用化研究
サブテーマ	実証試験
実施年度	平成17年度

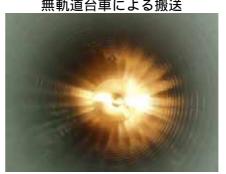
実管路での経時的な内圧に対する安全性、長期安定性及び地盤変動等による挙動を確認すること で、本工法の施工性・安全性・性能等の評価を行う。また、施工時の歩掛かり調査を実施する。

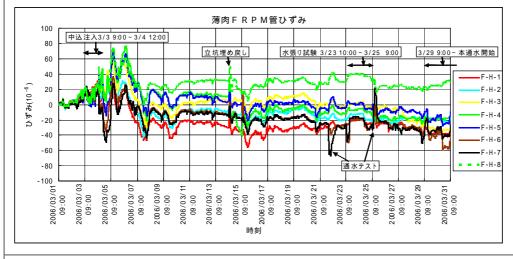
内容概略

件 名 : 豊川用水(2期)大清水支線工事 ((独)水資源機構 豊川用水総合事業部殿御発注)

配管時期:平成18年1月~18年2月

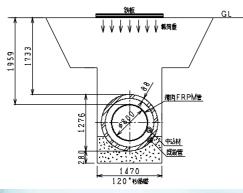
工事概要: 既設RC管 1100内 薄肉FRPM管 800×682.24m

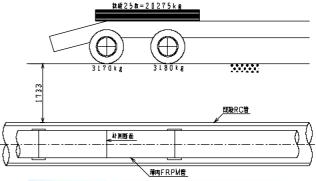

管の吊りおろし


無軌道台車による搬送

接合・固定完了

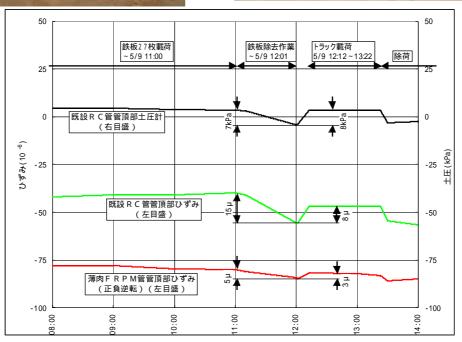
更生後


- ・無軌道による配管工、中込注入工その他全ての工種で問題無く施工は完了、水張り試験の結果 も良好であった。
- ・歩掛かりの調査は完了し、設計積算の方法及び基準が明確になった。
- ・中込注入を初めとする本工事が薄肉FRPM管に与える影響は、非常に軽微であることが判明した。


個別研究テーマ	実用化研究
サブテーマ	実証試験管路における載荷試験
実施年度	平成18年度

実管路でのトラック荷重の影響を確認することで、本工法の安全性評価を行う。

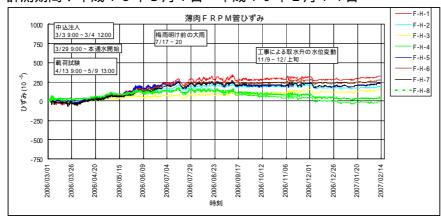
内容概略


管路概要:既設RC管 1100内 薄肉FRPM管 800

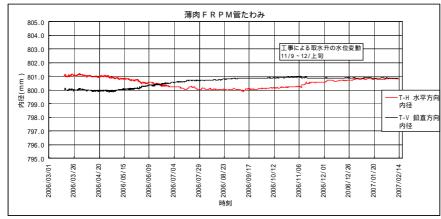
実施成果

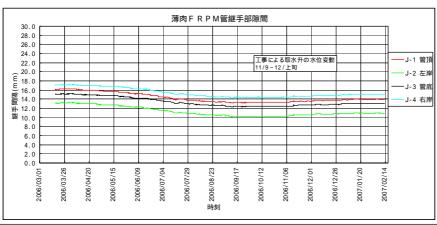
・今回の管路では、薄肉 F R P M 管のひずみは既設 R C 管のひずみの約 1/3 となった。トラックの影響も明らかに低減できることが判明した。

個別研究テーマ	実用化研究
サブテーマ	実証試験管路におけ
	る機能監視
実施年度	平成18年度


実管路での長期間にわたる挙動を確認することで、本工法の安全性評価を行う。

内容概略


件 名 : 豊川用水(2期)大清水支線工事 ((独)水資源機構 豊川用水総合事業部殿御発注)


工事概要: 既設RC管 1100内 薄肉FRPM管 800×682.24m

計測期間:平成18年3月1日~平成19年2月14日

- ・機能監視期間において、薄肉FRPM管はほとんど変動無く安定していることが判明した。
- ・その他土圧、外水圧及び既設管ひずみのいずれも安定した範囲で推移していることが判明した。
- ・以上より、本工法の長期安全性が確認できたと考える。