官民連携新技術研究開発事業 新技術概要書

			本概要書作	F成年月	平成 30年 3	月 31日		
1. 新技術名	泥炭地等超軟弱地盤における農業用パイプラインの安全性向上技術に関する研究開発							
2. 開発会社	大日本プラスチックス株式会社							
	会社名 大日本プラスチックス株式会社							
	住所	千葉県松戸市稔台5-1-1						
3. 資料請求先	担当課	開発本部		担当者	日野林譲二			
	電話	047-361-0255		FAX	047-366-4402			
	ホームページ	http://www.daipla.co.jp/company/com 06.html						
	大分類			小分類				
4. 工種区分	管水路(/		_					
4. 工性区分 	材料·製品							
5. 新技術の概要	じ、継手部の抜けや大変形による破損が発生している。その対策としてポリエチレン管の持つ地盤追従性が注目されており、ガス管を中心にφ100程度の小口径が全国的に普及している。施工方法としては、電気融着(EF融着)が用いられることで一体管路化されている。しかし、農業用パイプラインに求められるΦ600以上の中大口径では口径増加により管厚が厚くなることで自重変形などにより管周形状の保持が難しいのが現状である。本事業では、管周方向にガラス繊維を配向させることで管周方向の強度を強化しながら管軸方向にはポリエチレンの特徴である柔軟性を維持させたガラス繊維強化ポリエチレン管の管軸方向の性能を実物大(φ600)を用いて評価し曲率半径を明らかにすることで安全な設計・施工方法を開発した。また継手部に関しては、性能を直胴部と比較することで安全な設計を実施できることを検証した。さらに、北海道など寒冷地において外気温の影響を考慮した施工方法を確立した。現場検証では、冬季における実施工や長期測定などで実証試験を行った。							
6. 適用範囲(留意点)	管種:「ガラス繊維強化ポリエチレン管」のみ 口径: $\phi300 \sim \phi1500$ 許容応力度:13.3MPa 埋戻し深さ:0.6~5.0m 設計内圧:1.4MPa以内(1種管) 外気温:-20℃以上 許容ひずみ:3%以下 曲率半径:60D以内 地盤条件:泥炭性軟弱地盤における地盤条件に関しては施工現地の土質調査の 結果を反映させること							

	- W+H/ELOUHH -									
7	7. 従来技術との比較		新技術		比較する従来技術 (当初の工法・標準案)		比較の根拠			
	概要図 工法名 経済性(直接工事費)		PE-GF管		FRPM管 直管継手 を屈曲 「おの角度」 は対象が内容 合計角度 ー の		今検証の対象口径であるφ 300〜φ2000における現状使 用されている代表管種			
				EF継手	ゴム輪接合		-			
			(600千円 ϕ 600 10m)	300千円 (<i>ф</i> 600 100m)		自社比較 φ600 10mでの部材費と工事費			
	工程		PE-GF管 振削 設置 接合 FRPM管 振削 設置 ゴム輪				EFと冷却工程の2工程増			
	品質 曲率半径]率半径∶60D	曲率半径:153D(4m管) 210D(6m管)		FRPM管の許容曲げ角度 (2°30')で試算				
	安全性 一体		一体管距	洛により漏水"O"	不同沈下により継手部か ら 漏水		今テーマの課題である水密性 にて評価 一体管路化による 漏水"O"			
	施工性 比重が 優位性		RPM管の約半分 が高い より大型の重)重機が必要	_				
	周辺環境~]辺環境への影響 特になし		特になし		_				
8	. 特許		特になり	特になし						
9	. 実用新案		特になし							
	O. 実績 -	農水省	年度	機関			工事·業務名等			
			平成29年	北海道開発局札幌開発設計部 🗘 60						
			平成28年	北海道開発局札幌開発設計部 ϕ 600 美唄茶志成		内地区 71工区用排水路外一連工事				
1										
	○.	その他	平成29年	中 北海道空知総合振興局 工事名 経営体			越前東地区 61 工区 ϕ 800			
			平成29年	北海道空知総合振興局 工事名 経営体			進徳一心第1一期地区 61 工区 ϕ 800			
			平成29年	北海道空知総合	合振興局	工事名 経営体 大富第3地区 62 工区 $\phi 600$				
			平成29年	北海道空知総合振興局		工事名 中幌向一期地区61工区 φ1000				
			平成29年	北海道空知総合振興局 工事名 峰頭		工事名 峰延第1-	第1一期地区61工区 φ700			
1	1. 備考		本検証の成果より、設計・施エマニュアルを作成し、広く普及させる。							