

フードサプライチェーンにおける脱炭素化の実践と その可視化のあり方等検討会御中

脱炭素社会の実現に向けた取り組みについて

2020年9月16日
イオン株式会社
環境社会貢献部マネージャー
椛島 裕美枝

基本方針

イオンサステナビリティ基本方針

私たちイオンは、「お客さまを原点に平和を追求し、人間を尊重し、 地域社会に貢献する」という基本理念のもと、「持続可能な社会の実現」 と「グループの成長」の両立を目指します。

取り組みにあたっては、「環境」「社会」の両側面で、グローバルに考え、 それぞれの地域に根ざした活動を、多くのステークホルダーの皆さまとともに 積極的に推進してまいります。

環境面の重点課題

- ・脱素社会の実現
- ・生物多様性の保全
- ・資源循環の促進

社会面の重点課題

- ・社会の期待に応える商品・店舗づくり
- ・人権を尊重した公正な事業活動の 実践
- ・コミュニティとの協働

気候変動による経営への影響

- ・豪雨、台風よる被害が重なり、2018年度の特別損失は78億円に。
- ・被災後も、地域の拠点、生活インフラとして、店舗への期待は年々、増加。

TCFDによる方針・シナリオ分析の公表手順

Step1 ガバナンス体制の整備

Step2 リスク項目の特定と重要度の評価

最重要2分野(店舗操業と商品調達)と重要リスク6項目

Step3 シナリオ検討

2℃の世界と4℃の世界

Step4 事業インパクト評価

定量評価(2020年さらに精査の予定)と定性評価

Step5 対応策の検討

中期経営計画への組み込み(2020年)

Step6 文書化と情報開示

リスク項目の特定と重要度の評価

イオンの事業活動に関連する気候リスク項目の洗い出し

	リスクの種類	イオンとの関連分野	気候リスク項目を洗い出すための分析データ(一例)	
	政策 法規制	政府·政策	 各国のGHG削減目標 グローバルでの炭素税、排出量取引 エネルギー基本計画 原発再稼働動向 / CCS・CCU、水素技術の開発動向 フロン規制 / 省エネ規制 	
移行リスク	技術	エネルギー・ 施設サプライヤー	 原油・天然ガス価格 再エネ価格の2030年見込み エネルギー需要推移(先進国・途上国) ZEB技術、防災技術の進展(新店) 自然冷媒機器の普及 / EV・EVインフラの普及 	
えク	市場	食料品・ 日用品サプライヤー	主要事業所所在国における水リスク人口増加率 / 世界のエリア別(国別)食料需給見通し温暖化による日本の農水畜産物の収量変化原材料調達にかかわる調達地域の変化主要穀物の世界平均収量の推移	
	評判	お客さま・NGO	温暖化が進むことによる消費行動の変化途上国の経済成長に伴う消費行動の変化シェアリングエコノミーの動向 / 健康被害エシカル消費の動向 / NGOの動向	
物理	急性		CO2濃度の上昇に伴う気温の時系列推移CO2濃度の上昇に伴う海面水位の時系列推移	
物理リスク	慢性	店舗	降雨・降水パターンの変化災害強度・エリア・頻度の推移気象災害による物理損害	

リスク項目の特定と重要度の評価

前項目の中から、イオンにとって重要な6つのリスク項目を特定「店舗操業」「商品調達」の観点から各リスクの重要度を評価

	イオンにとってのリスク項目(6項目)			影響評価		
リスク(機会)の種類		最終抽出項目	店舗操業	商品調達	重要度	
	政策·法規制	炭素の価格付け	0	0	中	
程	政策•法規制	省エネ規制・代替フロン規制	0		中	
移行リスク	市場	エネルギー価格(電力価格)	0	0	中	
ク	市場•技術	食料品・原材料の需給バランス		0	大	
	市場・評判	お客さまの変化	0	0	大	
物理リスク	急性	田坐左名によっか中	0	0	大	
	慢性	異常気象による被害	0	0	大	

サプライチェーン上のデュー・デリジェンス

サプライチェーン上のデュー・デリジェンス

《2020年度》人権分野で導入したプロセスを気候変動対策にも流用

3次サプライヤー

2次サプライヤー

1 次サプライヤー

小売

お客さま

セルフアセスメント

- ✓利害関係者別課題洗い出し
- ✓取引関係による影響評価

リスクの特定

- ∨有識者からの指摘・助言
- ✓重要課題の特定

対策・計画の検討

✓2030年までの取り組み計画策定

対策の実施

- ✓食品関連取引先さまとの課題共有
- ✓原材料生産者さまとの課題共有

	種別	品目	原産国 地域	人権課題	国×産品	監査	一次 評価
	農産物	バナナ	A、B	児童労働	×	×	×
١		たまねぎ	С		0	×	Δ
		にんにく かぼちゃ	D, E	労働時間 強制労働	×	×	×
		えのき	F	労働時間 技能実習生、他	×	×	×
	畜産物	牛肉	С	_	0	×	Δ
I		豚肉	F	労働時間 技能実習生、他	×	×	×
		鶏肉	F	労働時間 技能実習生、他	×	×	×
-		牛肉	F	労働時間 技能実習生、他	×	×	×
	水産物	まぐろ(天然)	G、D、H、 F	児童労働 強制労働、他	×	×	×
		さけ(天然)	I	強制労働 児童労働、他	×	×	×
		さば(天然)	J		0	×	Δ
			F	強制労働 児童労働、他	×	×	×

シナリオ検討・分析~4℃の世界観~

4℃の世界観~現在の延長による物理リスク増大シナリオ~

規制リスク影響小(移行リスク中~大)・物理リスク影響大

リスク エネルギー価格 (電力価格) 食料品・原材料の需給バランス 高 ・化石燃料価格の変動予測が困難 ・生産適地・生産量の減少 ・長期的には上昇傾向 異常気象による店舗の被害 ・事業継続に必要な適応・対策コストが高騰 お客さまの変化 中 ・気象災害の激甚化に伴う、消費マインド低下 省エネ・代替フロン規制 ・既存商圏の変化・消滅、購買チャネル変化 時間の経過とともに リスクが上がり社会が混乱 低

時間

2020年 2025年 2030年以降

シナリオ検討・分析~2℃の世界観~

2℃の世界観~脱炭素に向かって早期の対策に取り組むシナリオ~

規制・移行リスク(機会)影響大・物理リスク影響小~中

リスク

高

炭素の価格付け

- ・炭素排出コストの事業費活動組み込み
- ・再エネ移行期には一時的にコスト増

省(再)エネ規制・代替フロン規制

・ノンフロン・省(再)エネ設備投資の増大 ⇒投資回収が可能 時間の経過とともに リスクが下がり社会が安定

異常気象による店舗の被害・イオンBCM(適応策)が十分機能

中

再エネ切替により 長期では低減・安定

エネルギー価格 (電力価格)
・再エネ電力調達コストの一時的な増大

低

お客さまの変化

・ライフスタイル(消費傾向)の大転換 脱炭素、脱プラ、3R…

⇒新たなビジネスモデル開発の機会

食料品・原材料の需給バランス・生産地・生産量に変化は軽微

時間

2020年 2025年 2030年以降

イオン 脱炭素ビジョン2050

イオンは、3つの視点で温室効果ガス(以下CO₂等) 排出削減に取り組み、脱炭素社会の実現に貢献します。

店舗

店舗で排出するCO2等を2050年までに 総量でゼロにします。

商品·物流

事業の過程で発生するCO₂等をゼロにする 努力を続けます。

お客さまと ともに すべてのお客さまとともに、脱炭素社会の実現に努めます。

2030年までにCO2排出量35%削減 (2010年比)

《達成手段の考え方》

イオンのCO2排出量の約9割が電力由来

店舗使用電力の削減と再工ネ転換

省エネ

再エネ

2030年目標達成に向けて

省エネ推進	省エネ設備の導入、IoTによる運用改善等 (照明・空調・冷ケース等)	年1%以上 の削減	14.8億kWh (削減分)	
再エネ	再エネの自社調達太陽光発電設備の導入	大型店 + 小型店導入	4億kWh (自家発電)	
転換	● 再エネ電力の契約	2018年度~	13.6億kWh	
	● 再エネ電力証書の活用	_	(調達分)	

- 次世代スマートイオンの開発
- イオンディライト(株)による電力事業の展開

パートナーやお客さまへCO2削減の協力を働きかけるなど、 サプライチェーン全体で脱炭素社会の実現を目指す

- 委託先様との取り組み
- PB商品の製造委託先企業へ CO2削減目標の設定を要請
- CO₂削減貢献商品の開発等

トップバリュ機能性インナー「ピースフィット」

- モーダルシフトの推進
- メーカー 7 社と共同で専用列車を運行、運行数の拡大等
- 内航船の活用等

モーダルシフト研究会 専用列車

プロジェクトベースでの СО 2削減の取り組みを推進

消費期限延長によるCO2削減

真空パック包装により消費期限を延長し、食品廃棄とCO2を削減 クレジットをダウを通じてIOCに提供

バイオマスの利用によるCO2削減

ボイラーにバイオマス燃料を活用し、 年間150トンのCO2を削減 Jクレジット制度にプロジェクト登録

- ・ステップアップ方式での見える化ツールの提供
- ・目的に適い、小規模生産者でも実行可能な計算方法の確立
- ・脱炭素化に向けて長期スパンで根付く制度設計

ベース:脱炭素化のための技術・手法

