参考資料3-③

品目別地球温暖化適応策工程表

平成19年6月

農林水産省生産局

工程表について

- ●農業生産における地球温暖化適応策を計画的に検討・実施するため、主要品目別に、今後、技術開発が必要と考えられる研究課題、取り組む必要がある行政課題を短期・中期・長期に分けて、都道府県の意見も踏まえ、生産局において整理したものです。
- ●なお、短期・中期・長期の区分の考え方は以下の通りです。
- (1)短期(今後3年以内)
- (研究開発)生産現場で至急解決が求められ、今後3年間以内に一定の技術開発を期待する緊急研究課題 (行政取組)生産現場に至急導入・普及すべき対応策であり、今後3年間以内に国、県の行政部局で対応すべき緊急課題
- (2)中期(2030年頃までを目途)
- (研究開発)生産現場で解決が求められ、今後2030年までの間に一定の技術開発を期待する研究課題 (行政取組)生産現場に導入・普及すべき対応策であり、今後2030年間までの間に国、県の行政部局で対応すべき課題
- (3)長期(2030年以降)
- (研究開発)平均温度が3℃上昇するなど将来、生産現場で起こることが想定される影響や現象に対応し、研究開発を期待する研究課題
- (行政取組)平均温度が3℃上昇するなど将来、生産現場で起こることが想定される影響や現象に対応し、今から準備・検討を進めるべき課題
- ●今後、地球温暖化の進展、温暖化に関する知見や開発技術等に応じ、 適宜見直すこととします。

適応策工程表(水稲)

対策名			短期			中期			長期	
)		1	2	3	1	2	3	1	2	3
(1)高温障害対	技術開発	食味と品質の 両立のための 肥培管理、植 え付け法、土 壌管理法の確立	直播栽培によ る出穂遅延の 有効性を検証	等の地耐力向 上栽培技術導 入により収入 直前まで 可能な栽培法 の確立	高温時の期では、またのではでは、またのでは、またのでは、またのでは、またのではでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、	高夜温 原 高度 高度 高温すに 高温すに 表 一 は で 表 の は 対 に 、 が 、 耐 発 の い 対 に た い が 、 が 、 が 、 が 、 が 、 が 、 が 、 が 、 が 、 が		高温不稔に対 する耐性品種 の開発	高温、低日射 に対する適応 性品種の効率 的育種法の開 発	水不足が予想される地域において節水栽培法の確立
策	取組	は遅植えや晩生 の早期栽培は早 検討 ・適正なもみ数 ・適正耕起深度 期の早期落水防	植え及び極早生 を保つ施肥管理 の確保、有機物	音導, 西南暖地 E品種の導入を 配の指導 Mの施用、登熟	・新たな知見・	技術を踏まえた	技術指導	・新たな知見・	技術を踏まえた	·技術指導
(2)カメムシ対 策	技術開発	カメムシ発生 予察の高度化			フェロモンを 利用した個体 群抑制技術の 開発					
注:1,2,3の数	取 組		づいた的確な防	が除を指導	・新たな知見・	技術を踏まえた	技術指導	・新たな知見・	技術を踏まえ <i>た</i>	-技術指導

適応策工程表 (麦)

対策名			短期		中期]			長期	
刈泉石		1	2	3	1	2	3	1	2	3
(1)病害虫防除 対策	技術開発				抵抗性品種の開発					
71 %	取 組	①抵抗性品種へ 期播種の徹底、 乾燥の実施や調	の転換、②連作 ④適期防除の徹 関製の撤退等を指	は底、⑤仕分け	・新たに開発された抵抗 及	生品種の産	地への普	・新たな適応品	種の普及	
(2) 栽培環境の 変化に伴う生 育への影響対	技術開発				①早期に茎立ちしない品種、②耐倒伏性・赤かび 種、②耐倒伏性・赤かび 抵抗性・穂発芽抵抗性等 を強化した品種など各地 域の栽培環境に適応でき る新たな品種の開発					
策 1 2 3 0 **	取 組	選定、②排水対 踏圧や土入れの 量に応じた適正)実施、④生育ス	適期播種、③ 、テージや生育	・新たに開発された各地 できる品種の産地への普次		境に適応	・新たな適応品	種の普及	

注:1,2,3の数字については、優先順位です。

滴応策工程表 (大豆)

<u> </u>	()(1)		 短期			————— 中期			 長期	
対策名		1	2	3	1	2	3	1	2	3
(1)温暖化に対 応した土壌水	技術開発	地下灌漑システム(FOEAS)を利用した生育状況に応じた土壌水分管理技術の開発								
分管理対策	取 組	・開発された技術 ・技術指導通知等 策の徹底を指導	により畦間かん		・開発された技術	の普及推進		・新たな知見・	技術を踏まえた	技術指導
(2)温暖化に対 応した病害 虫・雑草防除 技術等の生産	技術開発	等の害虫発生に 対するフェロモ ン剤の利用によ る予察及び防除 技術の開発	カバークロッ プ等を活用し た新たな除草 体系の構築		高温や土壌水分 の変動が大豆の 品質や加工適性 に及ぼす影響の 解明及び対応策 技術					
技術の構築	取 組	・開発された新た ・技術指導通知等 術の徹底指導			・開発された技術	体系の普及推議	進	・新たな知見・	技術を踏まえた	技術指導
(3)温暖化に対 応した品種開 発	技術開発	耐病虫性や耐倒 伏性に加え、い 温条件において 減収や品質の低 下が少ない品 種・系統の評価 及び選抜			耐病虫性や耐倒 伏性に加え、耐 湿性が強化し高 温条件において 減収や品質の低 下しない品種の 開発					
光 注:1,2,3の数	取 組	・育成段階から実 各地域の栽培環境			・育成段階から実 各地域の栽培環境			・新たな適応品	種の普及	

適応策工程表(みかん)

四心水工性权	(0) 10 10 /									
対策名			短期			中期			長期	
为來也		1	2	3	1	2	3	1	2	3
(1)浮皮対策	技術開発	の解明と栽培 管理手法との 関係解明	剤の活用によ る栽培管理技 術の確立	管理による貯 蔵技術の確立	結実管理等に よる栽培管理 技術の確立	高温下でも浮 皮が発生しに くい品種の育 成・導入		の育成・導入	高精度栽培適 地予測モデル の確立	
	取 組		術の実証・普及		• 浮皮耐性品種	技術の実証・普及 値の普及		見直し ・予測モデルに	基づく地域に適	
(2)日焼け果対	技術開発	の解明と栽培 管理手法との	結実管理、遮 光資材の活用 等による栽培 管理技術の確 立		栽培管理技術 の改良				高精度栽培適 地予測モデル の確立	
策	取 組	・温暖化適応技	術の実証・普及			技術の実証・普及		見直し	の普及 ・基づく地域に遊 ・基づく品目転換	
(3) 着色不良対策	++ 4:188 2%	管理手法との 関係解明	日射及び水分 管理、植物成 長調整剤等の 活用による栽 培管理技術の 確立		栽培管理技術 の改良	高温下でも着 色良好な品種 の育成・導入		の育成・導入	高精度栽培適 地予測モデル の確立	
*	取 組	・温暖化適応技	術の実証・普及		・温暖化適応技 ・優良着色品種	技術の実証・普及 値の普及		見直し	の普及 を基づく地域に途 を基づく品目転換	

適応策工程表 (りんご)

地位名			短期			中期			長期	
対策名		1	2	3	1	2	3	1	2	3
(1)凍霜害対策	技術開発	良による、効 果的・経済的 防霜技術の確	開花等予測モ デルと気象予 報を組合せた 凍霜害発生予 測法の確立		凍霜害発生予 測法の高精度 化	品種別安全限 界温度の解明		耐凍性品種の 育成・導入		
	取 組	・温暖化適応技 ・凍霜害警戒体	₹術の実証・普及 本制の整備		・温暖化適応技 ・凍霜害警戒体			・耐凍性品種の ・地域に適した		
(2)着色不良対	技術開発	おけるりんご 系統の着色能 力の解明・評 価	の選抜・導入	おける着色抑 制機構の解明	着色能力の解明・評価に基づき優良着色 系統を効率的に選抜・導入			の育成・導入	高精度栽培適 地予測モデル の確立	
策	取 組	・優良着色系統	・品種の実証・	普及	・優良着色系統	の普及		直し	の普及 を基づく地域に遙 を基づく品目転換	

適応策工程表・(なし)

対策名	<u> </u>		短期			中期			長期	
以 東石		1	2	3	1	2	3	1	2	3
(1) 凍霜害対策	技術開発	良による、効 果的・経済的 防霜技術の確	開花等予測モ デルと気象予 報を組合せた 凍霜害発生予 測法の確立			品種別安全限 界温度の解明		耐凍性品種の 育成・導入		
(1) 宋相古刈 朿(取 組	・温暖化適応技 ・凍霜害警戒体	術の実証・普及 制の整備		・温暖化適応技 ・凍霜害警戒体			・耐凍性品種の・地域に適した		
(2)みつ症等果	技術開発	の解明と栽培 管理手法との 関係解明	植物成長調整 剤、遮光資材 の活用等によ る栽培管理技 術の確立		栽培管理技術 の改良			の育成・導入	高精度栽培適 地予測モデル の確立	
実の生理障害 対策	取 組	・温暖化適応技	術の実証・普及		・温暖化適応技	術の実証・普及	Ź	直し	での普及 を基づく地域に適 に基づく品目転換	
(3)加温施設栽培における休	技術開発	積算気温によ る休眠・開花 予測モデルの 高精度化			明	物理的・化学 的休眠打破技 術の確立		低い品種の育 成・導入	高精度栽培適 地予測モデル の確立	
眠覚醒遅延対 策	取 組	· 適期加温指導	『の実施		·温暖化適応技	術の実証・普及	ż.	・予測モデルを 直し	が低い品種の普及 基づく地域に選 基づく品目転換	した品種の見

適応策工程表(ぶどう)

<u> </u>		l	L— 44n		l	1 449			= 40	1
対策名			短期			中期			長期	
)		1	2	3	1	2	3	1	2	3
(1) 凍霜害対策	技術開発	良による、効果的・経済的 防霜技術の確立	発芽予測モデルと気象予報 ルと気象予報 を組合せた凍 霜害発生予測 法の確立		凍霜害発生予 測法の高精度 化	品種別安全限 界温度の解明		耐凍性品種の 育成・導入		
(1) 冰相古为水	取 組	・凍霜害警戒体			・温暖化適応技 ・凍霜害警戒体			・耐凍性品種の ・地域に適した	品種の見直し	
(2) 着色不良対象	技術開発	る着色抑制機 構の解明	着色改善技術 の確立		高温条件下で も着色良好で 安定生産可能 な品種の育成			の育成・導入	高精度栽培適 地予測モデル の確立	
(2) 眉巴小及对牙	取 組	·温暖化適応技	:術の実証・普及	<u>.</u>	・適応品種の普	·及		直し	極の普及 −基づく地域に違 −基づく品目転換	
(3)加温施設栽培における休	技術開発	積算気温によ る休眠・開花 予測モデルの 高精度化			休眠生理の解 明	物理的・化学 的休眠打破技 術の確立			地予測モデル の確立	
眠覚醒遅延対 策	取 組	・適期加温指導	の実施		・温暖化適応技	術の実証・普及		・予測モデルを 直し	が低い品種の普及 基づく地域に違 基づく品目転換	した品種の見

適応策工程表(トマト)

<u> </u>	(1 1 1 7		短期			中期			長期	
対策名		1	2	3	1	2	3	1	2	3
(1) 高温対策	技術開発	の高い低コス ト遮光資材の 開発	低コスト冷 房・環境制御 技術の開発	等換気効率の 高い低コスト 耐候性ハウス の開発	高温期でも着 果が安定が を を を を を を を を を を を を を を を を を を を	管理作業の自動化・ロボット技術の開発	温度自動調節 機能を持つ新 素材フィルム の開発	大規模蓄冷施 設や新エネル ギー和設内閉 る施房シス 型冷房シス ムの開発		
	取 組	設内環境制御技 (20年度まで ・単為結果性品	加工場成果重視事 技術及び冷房技術 を) 及び成果の普 は種の普及	ず等の導入実証	導等の実施 ・換気効率の高	環境制御技術に		利用エネルギー	近にも資する自 -供給体制構築の 技術を踏まえた	検討
(2) 障害果対策	技術開発	障害果発生抑制のための効果的遮光技術 等の開発			赤外線吸収機 能を持つ新素 材フィルムの 開発					
	取 組	- 障害果発生抑	『制のための技術	括導	・新たな知見・	技術を踏まえた	·技術指導	・新たな知見・持	技術を踏まえた打	技術指導
(3)病害虫対策	技術開発	巻病抵抗性品 種の開発	天敵・静電ス クリーン等を 利用したIPM技 術の開発	殺菌装置及び 土壌殺菌技術 の開発	低コストな施 設内湿度制御 技術の開発			複合病害虫抵 抗性品種の開 発		
	取 組	・タバココナジ	ジラミ類防除に関	する技術指導	・新たな知見・ ・IPM対応園	技術を踏まえた I芸施設の普及	·技術指導	・新たな知見・持	技術を踏まえた!	技術指導

適応策工程表(イチゴ)

<u> </u>	<u> </u>				T			T		
対策名			短期			中期			長期	
对 束石		1	2	3	1	2	3	1	2	3
(1)高温による 花芽分化遅 延・生育不	技術開発	日夜冷育苗技	局部冷却によ る高温下での 花芽分化促 進・高品質化 技術の開発		四季成り性品 種によるイチ ゴ周年栽培技 術の開発				果実の成熟制 御技術の開発	
逆・生育が 良・品質低下 対策	取 組	設内環境制御技	7工場成果重視事 (術及び冷房技術 (新) 及び成果の普	ずの導入実証		技術に基づく技	術指導	・新たな知見・	技術に基づく技	術指導
(2)病害虫対策	技術開発	効果的な遮光 資材の開発	低コスト雨よ け灌水装置の 開発		天敵や非農薬 資材を利用し たIPM技術 の開発	炭疽病抵抗性 品種の開発		複合病害虫抵 抗性品種の開 発		
	取組		ための技術指導		・新たな知見・	技術に基づく技	術指導	・新たな知見・	技術に基づく技	術指導

適応策工程表(花き)

<u>週心束丄程表</u>	(1LC)										
対策名			短期				中期			長期	
刈泉石		1	2	3	4	1	2	3	1	2	3
(1)開花期の前 進又は遅延対 策	技術開発	生育開花調節技 術が確立されて いない品目・出 種における当該 技術の早期確立	確立			温度反応特性 に基づく高度 な生育開花調 節技術の開発					
	取 組	• 開花調節管理(の徹底指導			・新しく確立さ	れた技術の習	音 及	・新しく確立さ	れた技術の普	·及
(2)耐暑性向上	技術開発					耐暑性に優れ た品種の開発					
(4/侧)有江門工	取 組		た品種の導入指導			・新しく開発さ		及	・新しく開発さ	れた品種の普	及
(3)病害虫対策	技術開発	発生予察の高度 化に資する技術 の開発				よる施設内総 合害虫管理技 術の開発	病害抵抗性 品種の開発				
	取 組	・適正防除の徹原	茋 指導			・新しく開発さ	れた技術・品	品種の普及	・新しく開発さ	れた技術・品	種の普及
(4) 昇温抑制	技術開発	利用した低コス ト夜間冷房技術	雪冷房等地域の 冷熱資源を利用 した冷房技術の 開発	効果的な 遮光・遮 熱資材の 開発	換気効率 の高い構 造の施設 の開発	複合環境制御 による施設内 の昇温抑制技 術の開発					
	取 組	・温度管理の徹原	氏 指導			・新しく開発さ	れた技術の普	音 及	・新しく開発さ	れた技術の普	及
(5) 栽培品目・ 既存作型の見 直し	技術開発	既存作型の技術 的な見直し				地域の気象条 件に適した栽 培品目の見直 しの検討(適 応試験の実 施)			熱帯・亜熱帯 性新規花き導 入の検討(適 応試験の実 施)		
	取 組										

適応策工程表(茶)

迎心宋二往衣	(7)(7)		短期			中期			長期	
対策名		1	2	3	1	2	3	1	2	3
(1)凍霜害対策	技術開発	茶樹の生育パ ターン等の基 礎的な情報の 収集と蓄積	ための整枝剪 定技術の確立		凍霜害に強い 茶品種系統の 選抜及び育成					
	取 組	・省電力防霜フ 術の高度化	7ァンシステム 等	等による防霜技		、の高度対策技術	析の普及		占種・技術の普及	Ż
(2)干害・生育 障害対策	技術開発				干ばつ、高温 適応性の高い 茶品種系統の 選抜及び育成	環境ストレス 耐性を向上さ せる薬剤の開 発		温暖化高度適 応品種の開発		
阵百列来	取 組	・点滴かん水に	よる適正生育技	技術の普及	・地球温暖化~	の高度対策技術	析の普及	・新たな適応品	基種・技術の普及	Ż
(3)病害虫対策	技術開発				天敵等の生物的除素材の開発を持った。 開発性の発生体の発生体をはい新たなない。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	新たな交信撹 乱剤等の開発	病害虫抵抗性 品種の育成			
	取組		三予察技術の高度	度化、省力化	・地球温暖化へ	、の高度対策技術	析の普及	・新たな適応品	占種・技術の普及	ż.

注:1,2,3の数字については、優先順位です。

適応策工程表(肉用牛・乳用牛)

対策名		76/13 1 /	短期			中期			長期	
刈 束石		1	2	3	1	2	3	1	2	3
(1)夏期暑熱に よる繁殖性低	技術開発		栄養管理法改善による繁殖機能改善の評価		種畜の夏期不 妊対策技術		人工授精時の 適正体温指標 の作成			
下対策	取 組	・開発された技	5術の普及指導		・開発された技	技術の普及指導		・開発された技	5術の普及指導	
(2)夏期暑熱による生産性低	技術開発	解析から暑熱	暑熱ストレス マーカーの探 索と簡易評価 法や対処技術 の確立		アルボウイル スの早期摘 発、発病抑制 技術の開発、 温暖化対策 舎の開発			種雄牛などを 対象に、家畜 への耐暑性を 付与する育種 改良実施		
下対策	取組	・開発された技	術の普及指導		・開発された技	技術の普及指導		・開発され <i>た</i> 技	術の普及指導	

適応策工程表 (飼料作物)

<u>週心束丄程表</u>	(則料作物)								
対策名		短期			中期			長期		
		1	2	3	1	2	3	1	2	3
(1)夏期暑熱等 による生産性 低下対策	技術開発	優れる、高品 質な品種育成	暖冬条件にお けるエンバク の冬枯れに対 しての栽培条 件の検討	入による暖地	ルに基づく作付け適地マップの作成等	アントシアニ ンを高濃度で 含むトウモロ コシ育成		暖地型牧草の 栄養価を高め るための品種 改良		
	取 組	・開発された技	5術の普及指導			5術の普及指導		・開発された技	6術の普及指導	
(2)病虫害対策	技術開発	病害抵抗性品 種の育成				病原菌や害虫 の生態解明		耐病性系統の 遺伝資源収集		
	取 組	・開発された技	術の普及指導		・開発された技	術の普及指導		・開発された技	術の普及指導	
(3)飼料調製、貯蔵対策	技術開発	カビ毒の簡易 検出法の開発			高温条件下で も機能する乳 酸菌添加剤の 開発			糖含量や繊維 成分含量のバ ランスを加味 した品種育成		
	取組なっしては	・開発された技	(術の普及指導		・開発された技	術の普及指導		・開発された技	術の普及指導	