温室効果ガスの見える化の検討状況

みどりの食料システム法(国が講ずべき施策)

○ 食料システムの関係者だけでは解決し得ない課題に対処するため、特に国が講ずべき施策の方向性を明確化。

①食料システムの関係者の理解の増進

- ▶ 広報活動の充実
- ⑦環境負荷の低減に資する 農林水産物等の消費の促進

- > 消費者への適切な情報提供、食育の推進
- ⑥環境負荷の低減に資する 農林水産物等の流通の合理化の促進

▶ ICT化、モーダルシフト、集出荷拠点の集約化等

②技術の研究開発の促進

▶ 産学官連携の強化、研究者の養成等

⑧評価手法等の開発

③技術の普及の促進

- ▶ 栽培マニュアル等の情報提供や普及事業の展開
- ④環境負荷の低減に資する 生産活動の促進

- ▶ 地力増進、化学肥料・化学農薬の使用 低減、温室効果ガスの削減・吸収 など
- ⑤環境負荷の低減に資す る原材料の利用の促進

▶ 原材料の牛産等の状況に関する情報収集・提供

「見える」対象

温室効果ガス 生物多様性

森林破壊

土壌汚染

水質汚染

水使用量

一一万

第3者認証

自己宣言

(削減量、チェックリスト)

等

伝達方法

認証ラベル

ランク付け

数值表示

等

有機JASマーク

【これまでの取組】

2009~2011年度 カーボンフットプリント(CFP)試行事業(経済産業省・国土交通省・農林水産省・環境省

(農林水産分野の新規登録数 32件(2011年度)→5件(2020年度) (事業者数:最大46社→11社(2020年度))

【見える化の課題】

- サプライチェーン全体での取組対象とすべき
- 〇 生産者の脱炭素の努力・工夫が反映される必要
- 算定やデータ入手が困難
- 消費者にわかりやすい見える化とすべき

算定やデータ入手の困難性、コスト等が課題

【生産段階の脱炭素の課題】

- どの技術に取り組めばいいかわからない
- 脱炭素の程度や効果がわからない
- 生産段階の努力を流通、小売ヘアピー ルする手段がない

【令和2年度】

- ・脱炭素化技術の紹介資料の作成
- ・脱炭素技術の定量評価の検討

【令和3年度】

- ・農産物のGHG簡易算定シートを作成
- ・脱炭素技術紹介資料(対象を流通・製造にまで拡大)
- ・簡易算定シートを活用した見える化ガイド(案)を作成

今年度:見える化の実証

① 脱炭素化アクションによるGHG削減量・吸収量を定量化

農業生産における 脱炭素化アクション

脱炭素化アクションを実施

- ・稲作中干し・間断灌漑
- ・省エネ・再エネ活用
- ・化学肥料の削減/減農薬
- ・バイオ炭の施用

② 農業生産者等がGHG削減量・吸収量を把握するGHG簡易算定シートを作成

標準的なGHG排出量

算定シートによる 見える化

GHG排出量基礎データ (従来生産プロセス標準 モデル値)

個別のGHG削減・吸収量

- ① GHG削減・吸収量基礎データ (脱炭素化アクションの標準モデル値) and/or ②自ら生産する農産物等のGHG削減・吸収量データ (生産者ごとにGHG削減・吸収量データを収集)
- = GHG削減・吸収効果

③ ②を利用した製品の脱炭素の見える化ガイド(案)を作成(消費者にわかりやすい脱炭素の見える化)

消費者が脱炭素製品を選択する際の見える化の種類

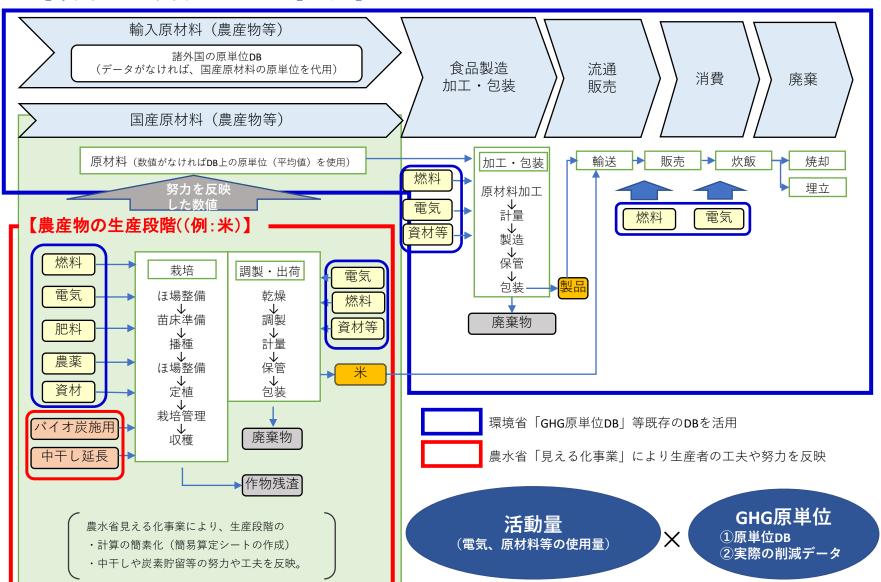
内容

- ・GHG排出量・削減量 (製品・事業者の排出量・削減量)
- ·GHG削減効果 (標準との比較、経年比、自社比)

方法

- ・数字による表示(●kg-CO2排出・削減)
- ·基準適合(●割以上削減)
- ・ランク表示、定性的な説明 (従来品に比べてGHGを削減、脱炭素を実施)

媒体


・商品(ラベリング、ORコード)

•他

- ・店頭(値札、POP・ポスター)
- ・ウェブ(スマホアプリ、ホームページ)

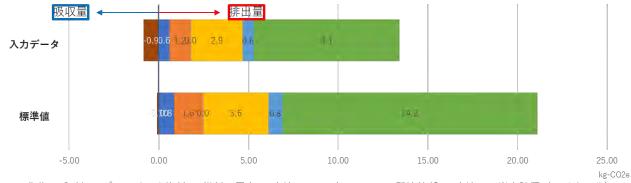
カーボンフットプリントの算定に当たっての考え方

【環境省「GHG原単位データベース」で対応】

農産物の温室効果ガス簡易算定シート:入力項目

- 農作物の種類、栽培都道府県等の基本情報、水田の水管理や土壌へのバイオ炭 施用等の情報を入力。
- 生産時の資材(農薬・肥料等)投入量、燃料・電力使用量を入力。
- 入力データが不明な場合は標準値データで代用可能。

本年度簡易算定ツールに組み込む選択項目候補

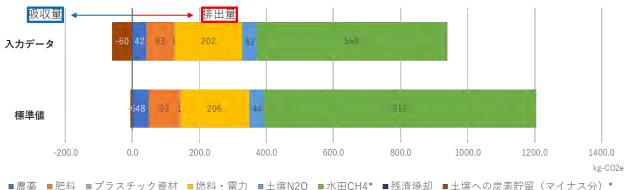

	選択項目	主な実施対象
1	水稲栽培における中干し期間延長・間断灌漑	コメ
2	堆肥	農業全般
3	バイオ炭の農地施用	農業全般
4	(残渣) すきこみ	農業全般
5	緑肥(カバークロップ)	農業全般
6	茶園土壌への硝化抑制剤入り化学肥料による 土壌N2O排出の削減	茶

農産物の温室効果ガス簡易算定シート: 出力イメージ①

- 慣行的な栽培を仮定した標準値と比較した削減量が算定可能
- GHG排出量の由来ごとに削減割合を定量的に把握可能

農産物10kgあたりの温室効果ガス排出削減量(CO₂換算値)

GHG削減量(対標準値)※	マイナス表記が削減分、プラス表記は増加	割合
合計	-8.45kg-CO₂e/10kg	-40.20%
農薬	-0.24kg-CO ₂ e/10kg	-28.9%
肥料	-0.45kg-CO ₂ e/10kg	-27.4%
プラスチック資材	-0.00kg-CO ₂ e/10kg	-18.4%
燃料・電力	-0.73kg-CO ₂ e/10kg	-20.3%
土壌N ₂ O	-0.16kg-CO ₂ e/10kg	-20.1%
水田CH ₄ *	-6.10kg-CO ₂ e/10kg	-42.9%
残渣焼却	0.00kg-CO ₂ e/10kg	0.0%
土壌への炭素貯留(マイナス 分)*	-0.76kg-CO ₂ e/10kg	-780.7%



^{*}水田由来CH4は米のみに反映される項目で、その他の農作物には計上されません。 *土壌への炭素貯留(マイナス分)には、バイオ炭、たい肥の施用による効果が含まれます。

農作物10kgあたり

農地面積10aあたりの温室効果ガス排出削減量(CO₂換算値)

GHG削減量(対標準値)※	割合		
合計	-320.19kg-CO₂e/10a	-26.69%	
農薬	-6.18kg-CO ₂ e/10a	-12.8%	
肥料	-10.17kg-CO ₂ e/10a	-10.9%	
プラスチック資材	0.00kg-CO ₂ e/10a	0.0%	
燃料・電力	-4.80kg-CO₂e/10a	-2.3%	
土壌N2O	-0.92kg-CO ₂ e/10a	-2.1%	
水田CH ₄ *	-243.60kg-CO ₂ e/10a	-30.0%	
残渣焼却	0.00kg-CO ₂ e/10a	0.0%	
土壌への炭素貯留(マイナス 分)*	-54.53kg-CO ₂ e/10a	-979.6%	

^{*}水田由来CH4は米のみに反映される項目で、その他の農作物には計上されません。

[■]農薬 ■肥料 ■プラスチック資材 ■燃料・電力 ■土壌N2O ■水田CH4* ■残渣焼却 ■土壌への炭素貯留(マイナス分)*

たい肥の施用による土壌への炭素貯留の算定式は、簡易に試算するため、圃場場所等について特定の条件を仮定しています。

^{*}土壌への炭素貯留(マイナス分)には、バイオ炭、たい肥の施用による効果が含まれます。 たい肥の施用による土壌への炭素貯留の算定式は、簡易に試算するため、圃場場所等について特定の条件を仮定しています。

農産物の温室効果ガス簡易算定シート: 出力イメージ②

- GHG排出量の絶対値が算定可能
- GHG排出量の由来ごとに定量的に把握可能
- 農産物10kgあたりまたは10アールあたりでの算定のいずれも可能

入力したデータに基づくGHG排出量(農作物10kgあたり)			標準値(農作物10kgあたり)	
10kgあたりGHG排出量	14.09 kg-CO ₂ e/10kg	割合	21.02 kg-CO ₂ e/10kg	割合
農薬	0.41 kg-CO ₂ e/10kg	2.7%	0.82 kg-CO ₂ e/10kg	3.9%
肥料	0.83 kg-CO ₂ e/10kg	5.5%	1.67 kg-CO ₂ e/10kg	7.9%
プラスチック資材	0.01 kg-CO ₂ e/10kg	0.1%	0.01 kg-CO ₂ e/10kg	0.0%
燃料・電力	2.87 kg-CO ₂ e/10kg	18.9%	2.87 kg-CO ₂ e/10kg	13.6%
土壌N ₂ O	0.54 kg-CO ₂ e/10kg	3.6%	0.76 kg-CO ₂ e/10kg	3.6%
水田CH ₄ *	10.49 kg-CO ₂ e/10kg	69.3%	14.98 kg-CO ₂ e/10kg	71.0%
残渣焼却	0.00 kg-CO ₂ e/10kg	0.0%	0.00 kg-CO ₂ e/10kg	0.0%
土壌への炭素貯留(マイナス分)*	-1.05 kg-CO ₂ e/10kg	-7.0%	-0.09 kg-CO ₂ e/10kg	-0.4%

^{*}水田由来CH4は米のみに反映される項目で、その他の農作物では「O」になります。

たい肥の施用による土壌への炭素貯留の算定式は、簡易に試算するため、圃場場所等について特定の条件を仮定しています。

^{*}土壌への炭素貯留(マイナス分)には、バイオ炭、たい肥の施用による効果が含まれます。

温室効果ガス見える化実証

3月1日時点で、のべ100店舗以上で見える化ラベルを付けた農産物の販売実証を実施中。

イオンモール幕張新都心店(イオンアグリ創造) 木質ボイラー使用トマト、冬期暖房不使用キュウリ

無印良品京都山科、ビオラル靭店(日本農業株式会社) 栽培期間中農薬不使用、大幅減肥料のコメ

株式会社 東急ストア たい肥使用、化学肥料 不使用のトマト

スーパーマーケット サンプラザ(Kawabata Farm) 冬期暖房不使用、減農薬減肥料トマト

オイシックス・ラ・大地株式会社

栽培期間中化学肥料不使用キュウリ (信州バイオファーム有限会社)(長野県) バイオ炭を使用したコメ(有限会社米の里)(山形県) ほか、株式会社宮本農園(熊本県)のトマト、 有限会社三扇商事(福島県)のキュウリ

JAみやぎ登米×TARO TOKYO ONIGIRI (RICE REPUBLIC株式会社) 栽培期間中化学肥料・化学農薬5割減のコメ使用おにぎり

<関東>

TARO TOKYO ONIGIRI

9月19日(月)~27日(火)、10月31日(月)~11月11日(金)

トマト キュウリ

イオンスタイル幕張新都心店 9月17日(土)~27日(火)、11月17日(木)

あふ食堂 11月14日(月)~

トマト

東急ストア中目黒本店 12月12日(月)~

GOHANYA'GOHAN 1月23日(月)~2月16日(木)

おだむすび本店 ほか2店舗 2月21日(火)~

<東北>

道の駅米沢

令和5年2月1日(水)~2月28日(火)

〈オンライン〉

コメートマト

キュウリ

オイシックス・ラ・大地株式会社 9月17日(土)~27日(火)

<近畿>

JAレーク滋賀グリーンファーム石山店 販売中(10月26日(水)時点)

トマト キュウリ

スーパーマーケットサンプラザ堺東駅前店 ほか6店舗

10月26日(水)~

無印良品 京都山科 9月17日(土)~18日(日)

ビオラル靭店 9月24日(土)~25日(日) 10月28日(金)、29日(土)、30日(日) 11月11日(金)、12日(土)、13日(日)

JA兵庫みらいかさい愛菜館 11月21日(月)~

soraかさい 11月21日(月)~

〈宅配〉

O2Farm

ヤマダストアー花田店 ほか2店舗

11月21日(月)~

ながさわ道の駅みき観光センター 11月21日(月)~

ナナ・ファーム須磨 11月21日(月)~

<北陸>

道の駅あがの 12月25日(日)~3月31日(金)

あがの食堂にぎりまんま 12月29日(木)~3月31日(金)

<九州>

キュウリ

コープみやざき佐土原店

ほか9店舗

1月4日(水)~

キュウリ

野菜屋 宮丸商店

1月31日(火)~

フードサプライチェーンにおける脱炭素化の実践とその可視化の在り方検討会

令和 4 年度 検討会委員名簿

氏名	所属・役職
安 東赫	国立研究開発法人農業・食品産業技術総合研究機構 野菜 花き研究部門 施設生産システム研究領域 施設野菜花き生 育制御 グループ長
荻野 映史	国立研究開発法人農業・食品産業技術総合研究機構 畜産研究部門 高度飼養技術研究領域 スマート畜産施設グループ上級研究員
椛島 祐美枝	イオン株式会社 グループ環境社会貢献部 マネージャー
齋藤雅典	東北大学名誉教授
鈴木 貴博	(株) 鈴生 代表取締役社長 ((公財) 日本農業法人協会)
中野勝行	立命館大 政策科学部 准教授
鳴海 洋一	日本ハム株式会社サステナビリティ部 プロモーター
西尾チヅル	気波大学 ビジネスサイエンス系 教授
綿田 圭一	カゴメ株式会社 品質保証部 環境システムグループ
夫馬 賢治	株式会社 ニューラル代表取締役CEO 国立大学法人信州大学グリーン社会協創機構特任教授

(オブザーバー)

環境省地球環境局地球温暖化対策課脱炭素ビジネス推進室

消費者庁食品表示規格課

(※令和5年3月時点)

これまでの開催実績

<令和2年度>

開催年月: R2.9、R3.2、R3.3 計3回

主な議題:

- 1. TCFD (気候関連財務情報開示)について
- 2. 脱炭素化技術について
- 3. カーボンフットプリントについて

<令和3年度>

開催年月: R3.10、R4.1、R4.3 計3回

主な議題:

- 1. 農産物のGHG簡易算定ツールの作成
- 2. 農産物のGHG簡易算定ツールを利用した脱炭素の見える化について(「見える化ガイド」作成)
- 3.食料・農林水産業の気候関連リスク・機会に関する情報開示 (実践編)について

<令和4年度>

開催年月: R4.11、R5.2、R5.3 計3回 (※R5.3は今後開催予定) 主な議題:

- 1. 農産物のGHG簡易算定ツールの改定 (対象品目拡大、GHG低減技術の追加)
- 2. 「見える化ガイド」の改定
- 3. 畜産物の算定に係る要件整理

計9回