令和2年度

気候変動等に対応した 海外遺伝資源の保全・利用促進委託事業 報告書

付属資料 (別冊)

第3章:海外遺伝資源関連勉強会・一般向け遺伝資源関連セミナーの開催 発表資料

令和3年3月

アイ・シー・ネット株式会社

付属資料 (別冊)

第3章: 海外遺伝資源関連勉強会・一般向け遺伝資源関連セミナーの開催 発表資料

目次

3-1-1	デジタル	ル塩基配	列情報(DS	I)関する勉強会	<u>수</u>		1
务	E表資料	1 - 1 :	デジタル塩	基配列の議論.			1
				2030プロジ			
3-1-2	遺伝資源	原関連勉	強会(タジ	キスタン)			16
				Biodiversity of			
				Conservation and			
				ikistan			
务	E 表資料	2 - 3 :	Collection,	Conservation and	l Access to Ger	netic Resources	of Fruit
			Crop in Tajil	xistan			45
务	養資料	2 - 4:		ework for the Exc			
			Genetic Rese	ources in Japan			61
3-1-3	遺伝資流	原関連勉	強会(ウズ〜	ベキスタン)			67
				c Diversity and l			
				mework and its			
			_	n	-	-	
2.0	加出けよ	, s. 4.					0.1
				 対する農林水産			
				の開発と植物遺			
争	论表資料	4 - 3:		もたらす影響と			
			関する展望				108

3-1-1デジタル塩基配列情報 (DSI) 関する勉強会

発表資料 1-1:デジタル塩基配列の議論

スライド 1

デジタル塩基配列情報の議論

2020年6月

農林水産省環境政策室

※本資料は、産業界との意見交換用に現状認識を便宜的にまとめたもので、日本政府の公式見解を示すものではございません。 記載内容についても、今後の意見交換等によって得られた知見・示唆等を踏まえて修正されていく可能性がございます。

C

スライド 2

デジタル塩基配列情報の議論

<本日の概要>

- I. 国際条約とデジタル塩基配列情報 (DSI)
- 2. これまでのDSIに関する議論
- 3. 今後の議論

ı

|-|:主な生物多様性に関する国際条約・議定書

生物多様性条約(CBD)

生物多様性の保全、持続可能な利用、遺伝資源の利用から生ずる利益の公正かつ衡平な配分

カルタヘナ議定書

遺伝子組換え生物が生物多様性の保全及び持続可能な利用に及ぼす可能性 のある悪影響を防止

名古屋・クアラルンプール補足議定書

遺伝子組換え生物による損害に対する責任と救済に関して締約国が講ず べき措置を規定

名古屋議定書(NP)

遺伝資源の利用から生ずる利益の公正・衡平な配分がなされるよう、遺伝資源の提供国及び利用国がとるべき措置を規定

食料・農業植物遺伝資源条約(ITPGR)

持続可能な農業及び食糧安全保障のための、食料・農業植物遺伝資源の保全及び持続可能な利用並びにその利用から生ずる利益の公正かつ衡平な配分

2

スライド 4

I-2:生物多様性条約、名古屋議定書と食料・農業植物遺伝資源条約におけるABS

途上国を中心に存在する遺伝資源

利益配分

夕士层議定書

利益配分

7

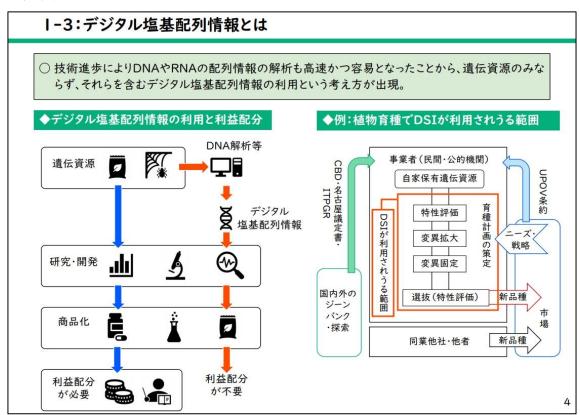
生物多様性条約、名古屋議定書

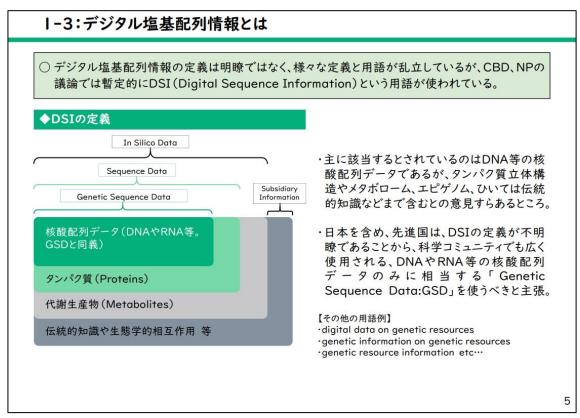
- 主に二者間で合意した詳細な 条件(契約)に基づく取引
- 取引対象は全ての遺伝資源

食料·農業植物遺伝資源条約

- 多数国間で合意した共通の条件(定形契約)に基づく取引
- 取引対象は一部の食用・飼料 作物

遺伝資源取得 ※取得は、提供国の 国内法令に従う




遺伝資源取得

遺伝資源の利用者(種苗会社、大学、研究機関等)

※ABS: Access and Benefit Sharing。遺伝資源の取得の機会 (Access)と その利用から生ずる利益の公正かつ衡平な配分 (Benefit-Sharing)

2-I:国際条約とDSIの議論

- 2014年8月にCBD事務局が公表した『Synthetic Biology:updated report』を皮切りに、2015年には合成生物学の議論から独立した"ABSと同様の課題"として議論され始めた。
- 近年はCBD、NPやITPGR等の国際条約の会合における最大の主要課題となり、先進国・途上国間の対立が先鋭化している状況。

◆途上国(遺伝資源提供国)の主張

- DSIの利用は、遺伝資源の利用と同等。 利益配分がなされるべき。
- DSIの利用は急速に進んでおり緊急な対応が必要。
- DSIは事前同意無しで利用可能である ため、多国間利益配分メカニズムが必要。

VS

◆先進国(遺伝資源利用国)の主張

- 条約・議定書上の「遺伝資源」の定義に はDSIは含まれない。(情報はmaterial ではない。)
- 遺伝資源より得られたDSIに係る利益配分については、当事者間のMAT(契約)等で規定可能(特段の対応不要)。

(参考)生物多様性条約 第2条

- <u>「遺伝資源」</u>とは、現実の又は潜在的な価値を有する<u>遺伝素材</u>をいう。 "Genetic resources" means <u>genetic material</u> of actual or potential value.
- <u>「遺伝素材」</u>とは、遺伝の機能的な単位を有する植物、動物、微生物その他に由来する<u>素材をいう</u>。 "Genetic material" means any <u>material</u> of plant, animal, microbial or other origin containing functional units of heredity.

6

スライド 8

2-2:DSIに関する農林水産省の意見

◆CBD事務局へのDSIに関する意見提出

- 当該議論で使用される定義は、用語の範囲を明確にすることで締約国間の共通理解を容易にし、 議論の中での曖昧さを取り除くことが肝要で、科学コミュニティで広く使われており、その対象が 明確であるGenetic Sequence Dataが適切。これは、世界保健機関 (WHO) のパンデミックイン フルエンザ対策枠組み (PIPF) の下で確立された用語。また、条約第 2 条で定義されている「遺 伝資源」とは有形のものを指し、DSI/GSDやその他の情報は含まれない。そのため、DSI/GSDへのアクセスは事前のPICの対象外となる。
- DSI/GSDに関する議論は、条約の物理的・時間的範囲に影響を与えるものではないはず。また、 ヒト遺伝資源に関する DSI/GSD は、ヒト遺伝資源が条約の枠組みに含まれていないことが COP2で再確認されたため、議論の範囲から除外されるのは当然のこと。同様に、WHO や食料・ 農業植物遺伝資源条約(ITPGR)のような他の政府間組織がすでに取り組んでいる、あるいは取り組むとされている事項においても、用語の範囲から除外すべきである。
- 遺伝資源由来のDSIに関する商業的及び非商業的利用に対する利益分配については、理論的にはMATの条件の中でカバーできるかも知れない。
- DSI/GSDへのオープンアクセスは、生物多様性の保全と持続可能な利用だけでなく、食糧安全保障やヒト/動物/植物の健康などの他の重要な分野にも実際に貢献することから、これこそが利益分配の一形態であると考えている。このため、DSI/GSDへのオープンアクセスから得られるこのような利益を阻害する可能性のある方向に持っていくことを避けるべき。

2-2:DSIに関する農林水産省の意見

◆(参考)ITPGR事務局へのDSIに関する意見提出

- 近年、研究成果を障壁なく誰でもアクセスできる「オープンサイエンス」の取組が推進されてきており、先進国及び途上国の双方がこれを活用している。さらに、ほとんどの国際的な学術論文雑誌でも、投稿された論文の採択条件として、塩基配列情報等のデータセットの公開を求めている。
- 塩基配列情報が蓄積・公開され、自由に利用できることによって科学技術が発展し、持続可能な利用に役立っている。仮に、塩基配列情報へのアクセスが規制されることになれば、これらの取組が阻害されかねない。
- 当該議論で使用されている定義は、科学コミュニティで広く使われており、その対象が明確である Genetic Sequence Dataが適切である。それ以外の用語は概念及び対象が明確ではないこと から適当ではない。
- DSIの利用のタイプ (例えば、特性評価、育種、遺伝的改善、保全、分類) については、 植物等の 育種の過程で、塩基配列の違いが識別できるDNAマーカーを利用することで、後代集団中から有 用な遺伝子をもつ個体を効率的に選抜することが可能となっている。これらの技術を用いて、世界 各国で必要とされる新品種の開発が行われている。
- 食料安全保障及び栄養とDSIの関連性については、収量の向上及び栄養機能の改善を目指して 育種が行われており、開発された品種については、塩基配列情報等は公表され、途上国等多くの 国の育種に役立てられている。

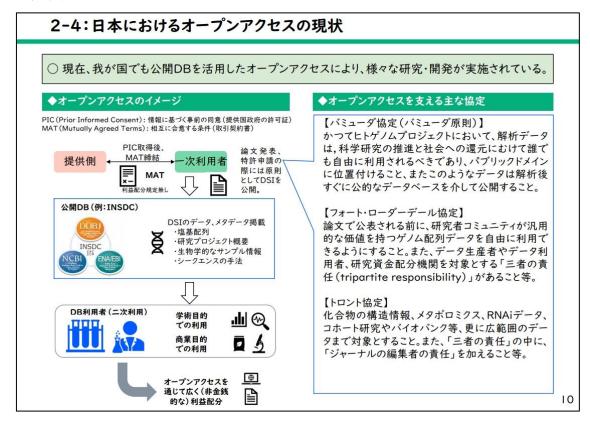
8

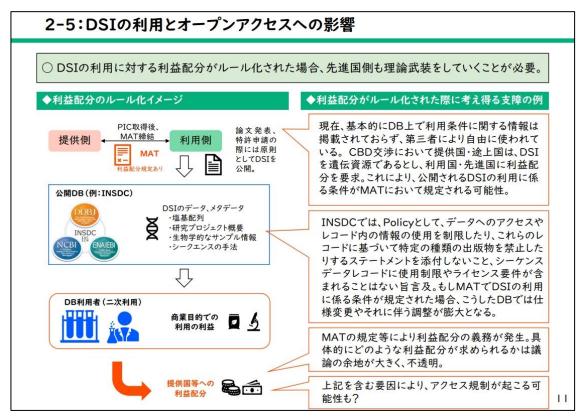
スライド 10

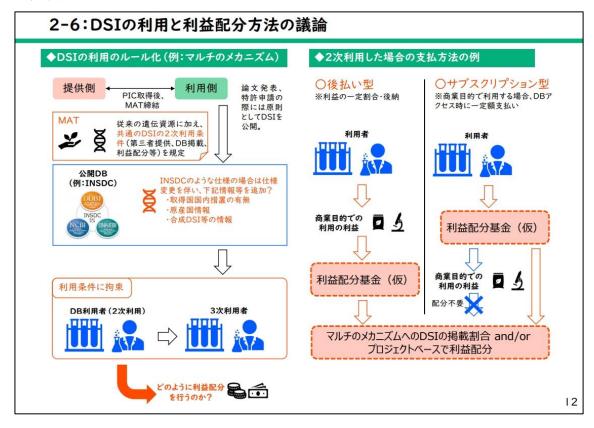
2-3:2019年度までの動き-生物多様性条約とDSIの議論-

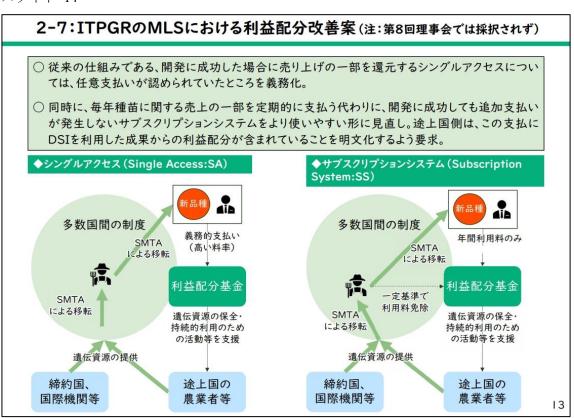
○ COP14の最終局面で、「ポスト2020枠組」(CBD-COP15(2021年・中国)で採択予定の、2020年以降の新たな生物多様性の世界目標)においてDSIをどのように扱うか検討することが、提供国(途上国)側の強い要求を受けて決議文書に盛り込まれた。

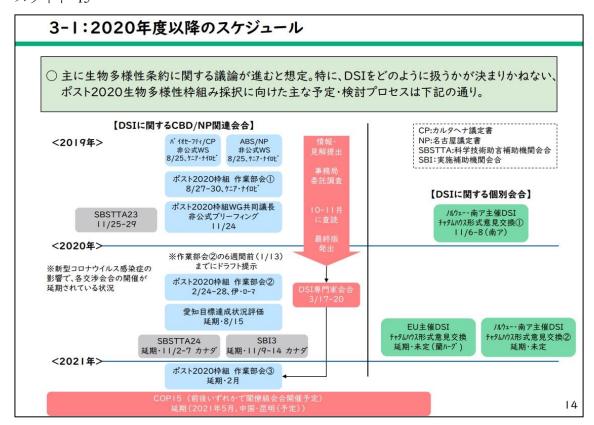
◆COP14 (2018年11月、於:エジプト) の結果


- DSIの利用による利益の配分について、先 進国(遺伝資源利用国)と途上国(遺伝資 源提供国)それぞれが原則的立場に固執、 溝は埋まらず。
- 未明までに及ぶ交渉の結果、下記の検討 事項を通じて見解の相違を解消していくことに合意。(議論・検討の先送り)


◆主な検討事項等


- DSIを「ポスト2020枠組み」でどう扱うか。
- DSIのコンセプトやスコープ、利用状況
- ・キャパビル・ニーズ
- DSIに関する国内措置(有無、内容)【現 状把握・分析】
- デジタル情報のトレーサビリティの状況 【現状把握・分析】
- DSIのデータベースの状況 【現状把握・ 分析】


◆COP15に向けて


- デジタル塩基配列情報 (DSI) の利用に対する利益配分について、先進国側はDSI が遺伝資源に含まれない (=議論しない) 立場をとっているが、ノルウェー等の他の先進国の状況等もあり、議論せざるを得ない状況も考えられる。
- 特に、ポスト2020枠組みの議論とのパッケージで何らかの合意に持ち込めるように、途上国は精力的に活動している。
- 我が国に不利益とならないように、国内当事者(利用者、研究者)から意見を伺うことが重要。

3-2:特にご意見・ご知見等をお伺いしたいポイント

◆DSIの利用の実際・実態

- DSIをどのように利用しているのか。
- 途上国側が懸念するような、国外の生物遺伝資源の塩基配列データから核酸合成することで遺伝資源へのアクセスを回避するような利用はあるのか。

◆ DSIへのアクセス規制

• DSIのアクセス規制が実施された場合、どのような問題が発生するか。また、その支障は許容できる範囲内か。例:提供者がDSIの利用規程を定め、2次利用ができない

提供者がDSIの利用規程を定め、2次利用はできるものの、DBの仕様等により事実上利用できない等

◆途上国遺伝資源及びこれに由来するDSIの利用ニーズ

• 契約 (MAT) や提供国措置で利用条件が設定されるDSIを利用しない選択肢はありえるのか。

◆DSIの利用に対する利益配分とその方法

• DSIの利用に対して金銭的・非金銭的問わず、利益配分を行うことついてどう考えるか。

◆利益配分の議論について

スライド12で例示したようなメカニズムが導入される場合、前払い型、サブスクリプション(後払い)型、どちらを望むか。

(参考資料)デジタル塩基配列情報の議論

※本資料は、産業界との意見交換用に現状認識を便宜的にまとめたもので、日本政府の公式見解を示すものではございません。 記載内容についても、今後の意見交換等によって得られた知見・示唆等を踏まえて修正されていく可能性がございます。

0

スライド 18

|-|:主な生物多様性に関する国際条約・議定書

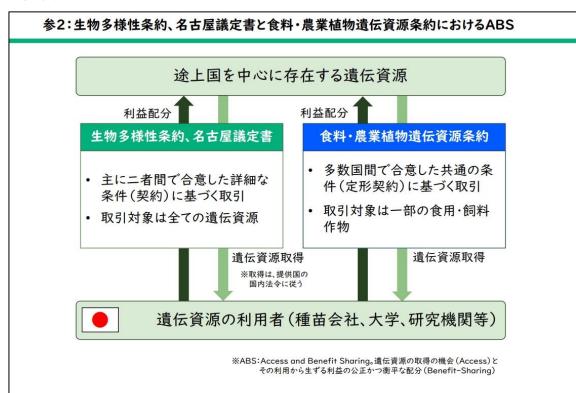
生物多様性条約(CBD)

生物多様性の保全、持続可能な利用、遺伝資源の利用から生ずる利益の公正かつ衡平な配分

カルタヘナ議定書

遺伝子組換え生物が生物多様性の保全及び持続可能な利用に及ぼす可能性 のある悪影響を防止

名古屋・クアラルンプール補足議定書


遺伝子組換え生物による損害に対する責任と救済に関して締約国が講ず べき措置を規定

名古屋議定書(NP)

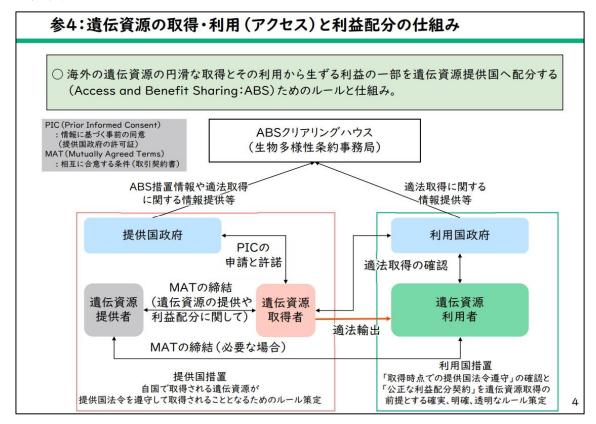
遺伝資源の利用から生ずる利益の公正・衡平な配分がなされるよう、遺伝資源の提供国及び利用国がとるべき措置を規定

食料·農業植物遺伝資源条約(ITPGR)

持続可能な農業及び食糧安全保障のための、食料・農業植物遺伝資源の保全及び持続可能な利用並びにその利用から生ずる利益の公正かつ衡平な配分

参3:生物多様性条約及び名古屋議定書

○「生物の多様性に関する条約の遺伝資源の取得の機会及びその利用から生ずる利益の公正かつ 衡平な配分に関する名古屋議定書」は、2014年10月発効、122カ国及びEUが締結(2020年 2月末現在)。日本では、2017年8月に発効。


◆生物多様性条約及び名古屋議定書の目的と対象

- 遺伝資源の利用から生ずる利益を公正かつ衡平に配分し、これによって生物多様性の保全及びその構成要素の持続可能な利用に貢献することを目的とする。
- 遺伝資源の原産国又はそこから遺伝資源を取得した締約国が提供する遺伝資源及びその利用から生ずる利益を対象とする。

◆名古屋議定書の主な内容

- (I) 遺伝資源の利用等から生ずる利益は、その提供国等と公正かつ衡平に配分する。配分は相互に合意する条件 (MAT: Mutually Agreed Terms) で行う。
- (2) 遺伝資源の取得者に事前同意 (PIC: Prior Informed Consent) を得ることを要求する提供国は、事前同意に係る制度を法的に確実・明確・透明なものとするために必要な措置をとる。
- (3) 利用国は、自国内で利用される遺伝資源について、提供国法に従ったPICに基づいて取得されたこと、かつ、MATが締結されたこととなるよう、適当、効果的で均衡のとれた措置をとる。
- (4) 利用国は、遺伝資源の利用に関するモニタリング等のための措置として、情報の収集等を行う。

3

参5:名古屋議定書条文(抜粋)

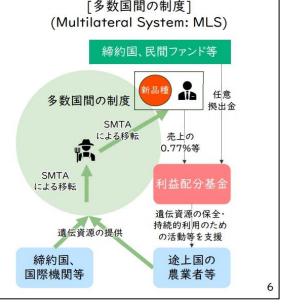
◆第二条 用語

条約第二条に定義する用語は、この議定書に適用する。さらに、この議定書の適用上、

- (a)「締約国会議」とは、条約の締約国会議をいう。
- (b)「条約」とは、生物の多様性に関する条約をいう。
- (c)「遺伝資源の利用」とは、遺伝資源の遺伝的又は生化学的な構成に関する研究及び開発(条約 第二条に定義するバイオテクノロジーを用いるものを含む。)を行うことをいう。
- (d)条約第二条に定義する「バイオテクノロジー」とは、物又は方法を特定の用途のために作り出し、 又は改変するため、生物システム、生物又はその派生物を利用する応用技術をいう。
- (e)「派生物」とは、天然に存在する生化学的化合物であって、生物資源又は遺伝資源の遺伝的な発現又は代謝の結果として生ずるもの(遺伝の機能的な単位を有していないものを含む。)をいう。

◆第十条 地球的規模の多数国間の利益の配分の仕組み(GMBSM)

締約国は、遺伝資源及び遺伝資源に関連する伝統的な知識であって、国境を越えた状況で存在するもの又は情報に基づく事前の同意を与えること若しくは得ることができないものの利用から生ずる利益の公正かつ衡平な配分に対処するため、地球的規模の多数国間の利益の配分の仕組みの必要性及び態様について検討する。


遺伝資源及び遺伝資源に関連する伝統的な知識の利用者がこの仕組みを通じて配分する利益は、 生物の多様性の保全及びその構成要素の持続可能な利用を地球的規模で支援するために利用され る。

参6:食料・農業植物遺伝資源条約の概要と多数国間の制度

○「食料及び農業のための植物遺伝資源に関する国際条約(ITPGR)」は、2004年6月発効、145カ国及びEUが締結(2020年2月末現在)。日本では、2013年10月に発効。

[主要な内容]

- (1) 食料・農業植物遺伝資源へのアクセスと利益配分を各国共通のルールの下で行うことができる多数国間の制度 (MLS)を構築。
- (2) MLSに提供された食料・農業植物遺伝資源は、定形の素材移転契約 (SMTA) による簡易で迅速なアクセスが可能。
- (3) MLSを通じてアクセスした食料・農業植物 遺伝資源を利用して商業上の利益が生じた 場合で、第三者による更なる新品種開発の ための利用が制限されているときは、利用 者はその一部を国連食糧農業機関(FAO) 内の利益配分基金を通じて途上国に還元。
- (4) なお、MLSを通じたアクセスは、
- ①食料・農業のための研究、育種及び教育目 的、かつ
- ②条約附属書のクロップリスト(35作物、29属 牧草類)の作物に限定。

スライド 24

参7:ITPGRにおけるMLS対象となる遺伝資源(クロップリスト)

- ITPGRでは、「多数国間の制度」に登録すべき植物遺伝資源の範囲を、『食糧安全保障等の観点から重要な作物として、35種類の食用作物及び81種の飼料作物(条約の附属書 I に掲載)』のうち、『「締約国の管理・監督下」にあり、「公共のもの」となっているものの全てを含める』と規定。
- 我が国は農業生物資源ジーンバンク事業で保有する植物遺伝資源のうち、この条件に該当する植物遺伝資源を、多国間の制度 (MLS) に約3万8千点登録。

◆「多数国間の制度」対象の食料・農業植物遺伝資源

■食用作物(35種類)

イネ ささげ類* アスパラガス あぶらな類** 大麦 ソルガム 小麦 とうもろこし いちご ライ小麦 なす しこくびえ ライ麦 とうじんびえ にんじん いんげん豆 ばれいしょ りんご えんどう かんきつ類*** かんしょ ガラス豆 カッサバ芋 ココやし き豆 えん麦 バナナ そら豆 ビート ひまわり ひら豆 ヤム ぱんのき ひよこ豆 サトイモ類

■飼料作物(81種)

マメ科牧草(52種) イネ科牧草(26種) その他(3種)

- 小豆、ササゲ、緑豆、ケツルアズキなど
 キャベツ、菜種、マスタード、クレス、ルッコラ、大根、かぶ、ハクサイ、ブロッコリー、カリフラワー、コールラビ、ツケナ、タカナ、カラシナなど
 か4 きっ類全ア(ブンタン、カポコ マダキ タン
- *** かんきつ類全て(ブンタン、カポス、スダチ、タンカン、ネーブル、ユズ、ポンカン、ハッサク、ナツミカン、イヨカンなど)。台木としてカラタチ、キンカンを含む

「あふの環2030プロジェクト」について

農林水産省 環境政策室

あふの環プロジェクトとは

農林水産省

あふの環プロジェクト

勉強会・交流会 Study and event

・サステナブルな活動を行 う生産者・事業者の情報 収集・連携の機会を提供。

サステナウィーク Sustainability Week

- ・毎年9月下旬、国連総会の時期に合わせて実施予定。
- ・日本各地で同時期にサステナビリティをPRすることでコレクティブインパクトを発揮。

サステナアワード Sustainability Award

- ・サステナブルなサービスや 商品を扱う地域・生産者・ 事業者を表彰。
- ・今年はコロナ禍で生まれた 消費者と生産現場をつなぐ 取組等にも着目。

上記の取組やプロジェクトメンバーの個々の取組について日本語・英語で国内外へ発信。

食と環境を考える1億人会議

生産・流通・消費者の共創の場を作ることで一人一人が食と農林水産業の未来を考える。

サステナビリティ・アクションへの 新規提案、分科会

※来年度はプロジェクトメンバーによるサステナビリティの考え方の検討、 サステナブル商談会、生産者と消費者をつなげる取組促進を予定。

「日々の食や消費の選択=未来の選択」 生産・流通・小売サイドと消費サイド双方の理解が行動変容につながる

スライド 4

あふの環の具体的な活動一例 サステナウィーク (Sustainability Week) とは

農林水産省 環境政策室

サステナウィーク (Sustainability Week)

毎年、国連総会が開催される9月22日に合わせて開催 今年は、**9月17日 (木) ~27日 (日)**! (予定)

「サステナブルなものを選ぼう!」をキャッチフレーズに、

あふの環メンバーをはじめとした持続可能な生産消費に向けた活動を行う企業や団体が、

生活者全体に向けて一斉に未来に向けたサステナブルな取組をアピールする期間のことです。

☆同時開催ローカルイベント☆

参加企業・団体が、日本各地 で「サステナビリティ」をテーマに イベントを開催

あふの環参画企業用

☆知って食べてうちの企業 のサステナブル☆

Webショップ・小売店舗などで、サステナブルな一推し商品・サービスと、共通のロゴやイラストなどを掲示。サステナブルな連携とその活動をPR

あふの環参画企業用

☆ ハッシュタグキャンペーン☆

9月22日(国連総会開催日)に 合わせて#サステナウィーク#サ ステナビリティ#Sustainability #エシカル等で自社のサステナブ ルな活動を発信!

メリット

- ・一斉に「サステナビリティ」を発信することで、企業の環境に良い活動に注目してもらえます。
- ・多様な企業の「サステナブルな活動」とのコラボレーションの足がかりがもてます。
- ・みんなでやることで消費者の認知を上げつつ、自社の活動をPRすることができます。

よくあるご質問(FAQ)

農林水産省 環境政策室

O. 登録申請方法を教えてください。

A. あふの環HPにある「登録申請書」及び「サステナ宣言フォーマット」に必要事項を記載の上、事務局までメールにてお送りください。お申込み頂きますと、事務局より登録申請受付メールが届きますので、まずはそちらをご覧ください。登録手続きには2週間程度のお時間を頂戴する場合がありますのでご了承ください。登録手続きが完了しましたら、その旨をメールにてご連絡いたします。なお、第1期申込締切は7月末とします。

O. 登録要件はありますか。

A. 「本プロジェクトの目的に賛同する企業・農林水産事業体・教育機関・国際機関・地方公共団体・NGO/NPO・民間団体(個人は含まない)等であって、食や農林水産分野における持続可能な消費につながる活動についてサステナ宣言を行うこと」としています。なお、代表者は"社長名、役員名又は事業部などの部署長名"でのご登録をお願いいたします。その他要件についてはあふの環HPをご確認ください。

Q. プロジェクトメンバーはどんなことができますか。

A. 随時開催の勉強会や交流会、サステナウィーク(9月17日-27日予定)、食と環境を考える共創型イベント(10月-12月予定)、サステナ・アワード(来年1-3月予定)などにご参加いただけます。この他、ブロジェクトメンバーの皆様からの企画や提案を歓迎します。同じ方向を目指す仲間を見つけ、日本における「サステナビリティ」の可能性や解決策を考える機会をつくっていきたいと考えています。

O. 勉強会は誰でも参加できますか。

A. 原則としてプロジェクトメンバーのみ参加可能です。登録していただいた企業・団体等の方であれば、役職は問いません。

0 任会費はありますか。

A. 年会費はありません。

※登録申請方法

二点を事務局まで ご提出ください。 登録申請書

+

サステナ宣言 例: 1,「かなえたい未来」に共感し、 以下の行動をします。 2,私たちは、地球環境に配慮した たべものの生産と消費を応援します。

問合せ: 農林水産省大臣官房政策課環境政策室 あふの環HP

あふの環プロジェクト事務局

E-mail: SCAFFF@maff.go.jp TEL: 03-6744-2017

3-1-2遺伝資源関連勉強会 (タジキスタン)

発表資料 2-1: Study of the Biodiversity of the Flora of Tajikistan スライド1

Study of the Biodiversity of the Flora of Tajikistan

Bobozoda Bakokhodja

Director of the Institute of Botany, Physiology and Plant Genetics of the National Academy of Sciences of Tajikistan, Candidate of Biological Sciences

スライド2

"The totality of all genes of the species ... I called the gene pool to emphasize the idea that in the person of the gene pool we have the same national wealth as in the face of oil reserves, gold reserves, coal hidden in our depths."

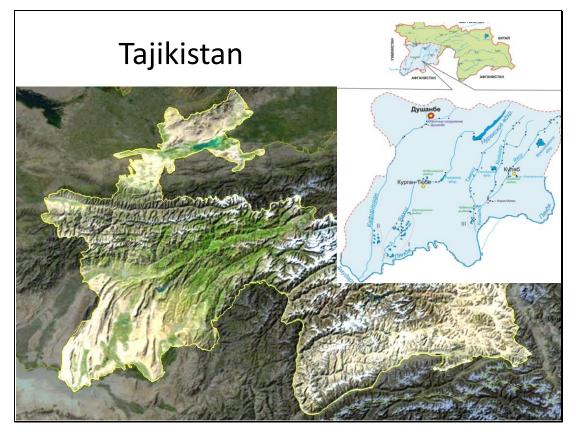
A. S. Serebrovsky (1926)

Hull aluel

"It is better to show excessive frugality at the present time than to expose to destruction that which has been created by nature for thousands and millions of years."

N. I. VAVILOV

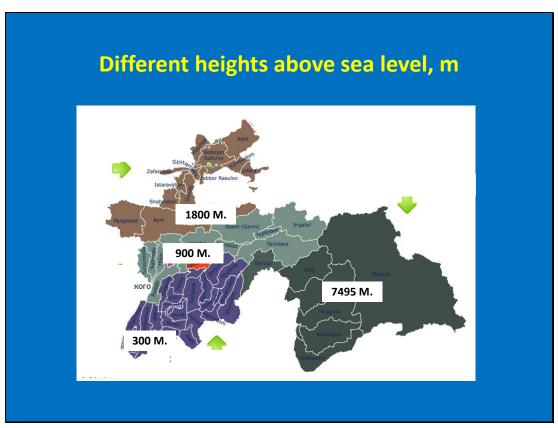
スライド4


Convention on Biological Diversity (CBD)

Article 1
The objective of the CBD is to conserve biodiversity, use its components sustainably and share the fair and equitable benefits associated with the use of genetic resources, including through the provision of necessary access to genetic resources.

Strategic significance

plant genetic resources


lies in the fact that they are the most valuable source material for the present and future agricultural and economic development, the basis for the biological and food security of the world, as well as the national sovereignty of the country.

スライド7

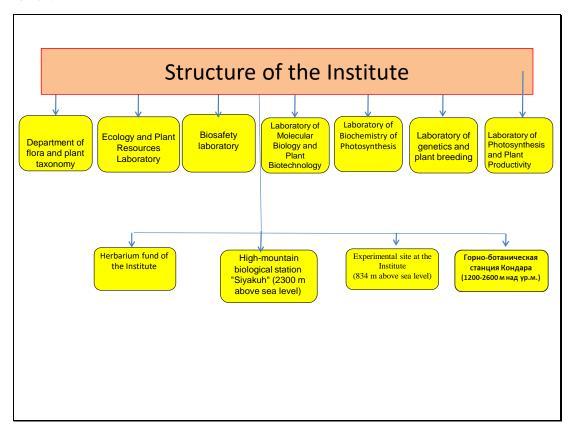
スライド8

TAJIKISTAN - A COUNTRY OF AGROBIODIVERSITY

- Tajikistan is one of the most ancient centers of agriculture development in Central Asia,
- The inhabitants of this mountainous country from immemorial time have been busy with farming and developing agriculture,
- Agroecological conditions, especially in the mountainous zone, are important factors for changing a number of morphological and genetic traits of representatives of flora and fauna in Tajikistan.
- The territory of Tajikistan is considered the birthplace of origin of many agricultural crops, such as wheat, onions, garlic, legumes, melons, fruit, fodder and other crops,
- Many peoples of the world, such as India, China, Central Asian and European countries, are still using the achievements of the ancient Tajiks, the varieties and hybrids of agricultural crops and animal breeds they developed,

- •The biological diversity of Tajikistan today has more than 23,300 species of flora and fauna, and on average there are more than 164 species per thousand square kilometers of territory, which is ten times more than the world indicator.
- Due to anthropogenic and other types of impact on nature, 226 plant species and 162 animal species are included in the Red Data Book of Tajikistan, which have become rare and are under threat of extinction.
- The loss of agrobiodiversity in Tajikistan is especially negatively affected by the process of global climate change. Therefore, it is now necessary to take measures to preserve local agrobiodiversity and increase the adaptive capacity of communities to climate change.

Institute of Botany, Physiology and Plant Genetics of the National Academy of Sciences of Tajikistan


The Institute of Botany, Physiology and Plant Genetics of the Academy of Sciences of the Republic of Tajikistan was created by the Decree of the Government of the Republic of Tajikistan No. 32 dated February 4, 2011 (as a successor) on the basis of the merger of the Institute of Botany of the Academy of Sciences of the Republic of Tatarstan and the Institute of Plant Physiology and Genetics of the Academy of Sciences of the Republic of Tajikistan. The Institute is part of the Department of Biological and Medical Sciences of the Academy of Sciences of the Republic of Tajikistan.

Currently, the Institute employs 57 researchers, 12 doctors of science (including 2 academicians of the RT Academy of Sciences, 5 corresponding members of the RT Academy of Sciences), 20 candidates of sciences and 2 doctors of specialties (PhD).

スライド12

The main directions of the Institute

The main directions of scientific research of the Institute are: studying the systematic composition of the flora of higher and lower plants, botanical resource science, geobotanical research, mapping the vegetation of Tajikistan, developing theoretical foundations and methods of using the achievements of plant physiology and biochemistry, genetics and molecular biology to increase the efficiency of photosynthesis, create high-yielding plants, varieties of agricultural crops resistant to the action of unfavorable factors and the improvement of technologies for their cultivation, the use of biotechnological techniques in crop production, ecological physiology and biochemistry of plants, the development and application of modern methods of analysis for the detection of biological agents and toxins, chemical pollutants in food and agricultural crops.

DEPARTMENT OF PLANT FLORA AND SYSTEMATICS Основные направления Research - the study of species and systematic diversity and taxonomy of vascular and spore plants of the natural flora of Tajikistan; ecological-geographical and geobotanical research, protection of flora and vegetation. To date, about 120 families, 994 genera and 4513 species of vascular plants have been identified on the territory of Tajikistan, more than 200 species new to science have been described and more than 600 endemic species have been recorded. "Flora of Tajikistan" in 10 volumes was published, which is included in the golden fund of world literature on plant biodiversity.

Along with the study of the flora of higher plants, much attention is paid to the flora of spore plants in Tajikistan (algae, lichens, bryophytes) and fungi.

An inventory and ecological-floristic study of algae in natural and artificial water bodies of Tajikistan is being carried out. 217 species (360 intraspecific taxa) are described, among which 9 genera and 87 species were new floristic finds for Central Asia.

The most important advances in research on lower plants of practical importance are work on bioindication, on the use of mosses, lichens, algae and fungi in monitoring and studying anthropogenic impact on the environment.

Growth and development of Strigosella turkestanica in the Tereklitau mountains

(in the foreground is an endemic and rare plant Tulipa tubergeniana)

スライド16

But also the disappearance of some unique natural ecosystems of southern Tajikistan (in this case, the natural landscape in the Childukhtaron reserve)..

However, hot weather, insufficient rainfall, as well as negative anthropogenic impact (regular grazing, the use of trees and shrubs as fuel by local residents, etc.) in recent years have led to a decrease and disappearance of not only

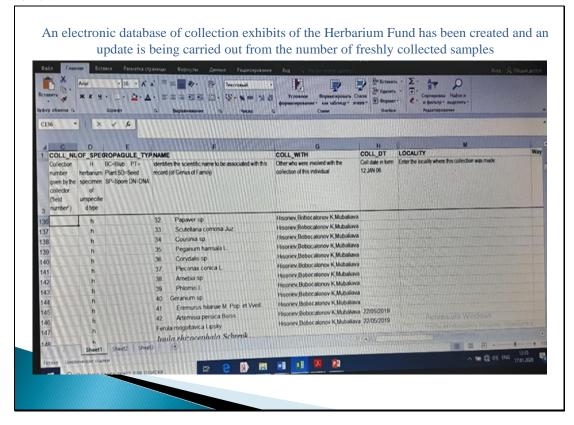
LABORATORY OF ECOLOGY AND PLANT RESOURCES

The main direction of the laboratory's research is the study of the composition and structure of the vegetation cover of southern Tajikistan and the patterns of its distribution in connection with vertical zoning.

Resources of medicinal and forage plants have been identified in the flora of southern Tajikistan, their biological and ecological characteristics, productivity and methods of their sustainable use have been studied.

It has been established that at least 1070 species of medicinal plants from 464 genera and 96 families, as well as more than 700 species of forage plants, which make up about 35% of the total biodiversity of plant species, grow in southern Tajikistan. Populations of high quality valuable forage plants are widespread here, which are of interest for introduction into culture and breeding work.

スライド18



HERBARIUM FUND

The Herbarium Fund was established in 1941 and is the richest specialized botanical museum in Tajikistan, where collections of plants from more than 200,000 dried herbarium specimens of vascular plants, 28,000 bryophyte leaves, 15,000 lichen specimens, more than 15,000 algological specimens and preparations collected in the mountain the Pamir-Alai system (Tajikistan, Uzbekistan, Turkmenistan, Kyrgyzstan, South Kazakhstan and North Afghanistan) by many generations of Russian and Tajik scientists, from 1876 to the present.

The number of herbarium specimens of only endemic species (species that grow only on the territory of Tajikistan and nowhere else) is more than 5800 specimens of herbarium sheets from more than 500 species of vascular plants.

Currently, the herbarium fund also contains a collection of herbarium specimens of the most interesting plants - the remains of the ancient relict flora of Central Asia, i.e..

BIOSAFETY LABORATORY

The main direction is the development and application of modern methods of analysis for the detection of biological agents and toxins, chemical contaminants in food and agricultural crops, monitoring of the possible stage of infection in the food chain to further create a model for assessing ecosystems and risks in this area.

Control of biological agents and toxins that can pose a threat to crops and food, as well as the development of express methods for their determination;

Determination and monitoring of pathogenic agents in samples taken from soil and water in areas of growing crops;

Analysis of chemical contamination of food products: determination of nitrate and nitrite ions in meat products; determination of toxic elements Zn, Cd, Pb, Cu, Co, As, Fe, Al in food, water and air at the place of food production; determination of persistent organic pollutants (pesticides and dioxins) in food;

Analysis of biological contaminants in food: determination of mycotoxins, antibiotics, hormones and stimulants, as well as determination of allergens (immunoglobulin E);

Evaluation of foods derived from new technologies such as genetic modification.

It is planned to create a database and recommendations for the further creation of models for ecosystem and risk analysis.

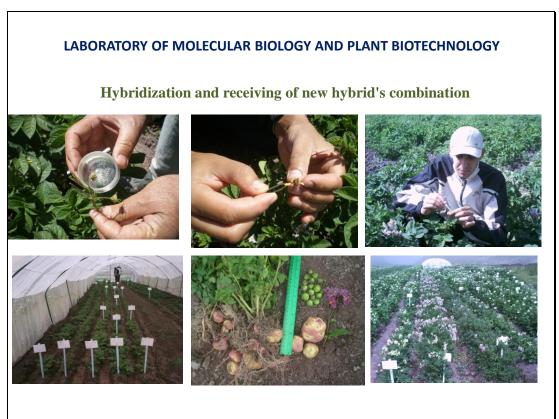
LABORATORY OF MOLECULAR BIOLOGY AND PLANT BIOTECHNOLOGY

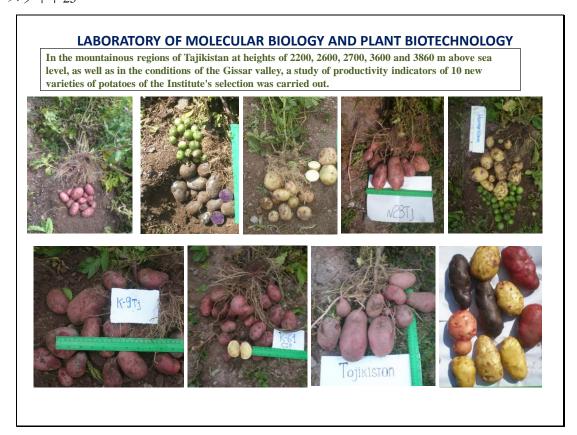
The laboratory has developed a method for making potatoes tolerant to viruses and diseases. The method is based on the use of potato stolons in *in vitro* biotechnology. This method makes it possible to reduce the period of obtaining regenerant plants by 3 times in comparison with the traditional meristem method.

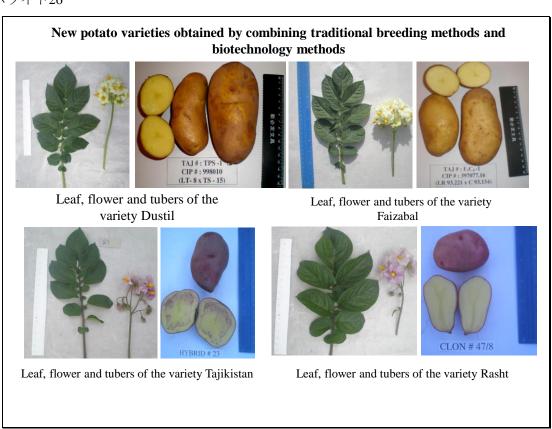
Based on the cell culture, a screening test for resistance to salinity, drought and high temperature has been developed, which made it possible to obtain new potato varieties that are simultaneously tolerant to two stressors: salinity and drought.

スライド22

Physiological and biochemical screening for resistance to salinity and high temperature






スライド23

スライド24

• Studies have shown that sweet potato plants were distinguished by a wide variety of leaf shape, leaf color, stems and vine length.

Cluster Tree

Case 6

Case 1

Cluster analysis (dendrogram) for morphological characteristics of 15 sweet potato genotypes

PLANT PHOTOSYNTHESIS AND PRODUCTIVITY LABORATORY

The main direction is genetics of signs of photosynthesis and other components of the production process, development of physiological tests and selective improvement of photosynthetic productivity of plants on a physiological-genetic basis in order to increase the productivity of agricultural crops. This line of research is widely recognized among plant physiologists, geneticists and breeders.

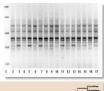
On the basis of theoretical studies using physiological and photosynthetic test traits, the laboratory developed new promising varieties of medium staple cotton Rohaty, Guliston, Guliston-2, Ravshan, Somoni and Shavkat-80.

スライド30

PHOTOSYNTHESIS BIOCHEMISTRY LABORATORY

The main direction is the study of photosynthesis and photosynthetic metabolism of carbon in higher plants. The photosynthesis and photosynthetic metabolism of CO2 in various types of plants are studied under various combinations of environmental conditions, including under extreme conditions, a variety of pathways for biosynthesis of photosynthetic products and adaptation of photosynthetic carbon metabolism to climatic conditions.

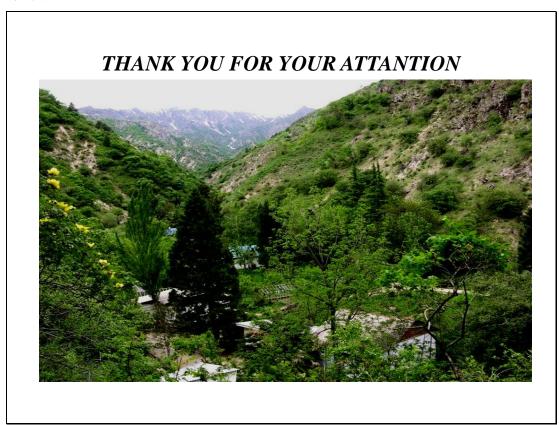
A set of methods for modeling the conditions of possible climate change (under different scenarios of the combination of the main climate-forming factors) in special cultivation facilities for growing wheat, in which the necessary microclimate regime was created, has been developed and tested.



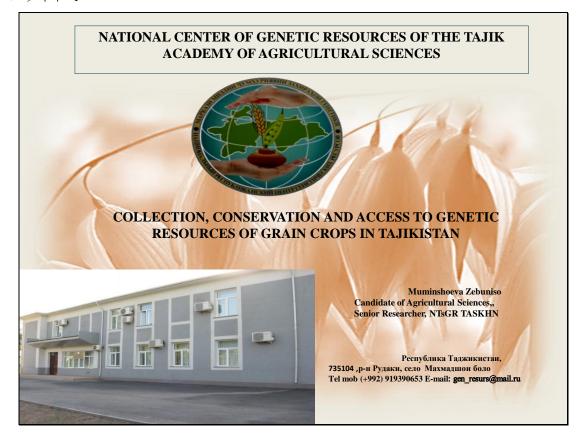
LABORATORIES OF GENETICS AND PLANT BREEDING

The Laboratory of Genetics and Plant Breeding conducts research in the field of genetics, breeding and biochemical evaluation of breeding material of varieties and forms of cereals. The laboratory has a large set of gene pool of indigenous and wild relatives of local wheat and Aegilops.

One of the directions of the laboratory's research is the creation of varieties of grain crops that are resistant to adverse environmental factors, the selection of adaptive genotypes based on physiological and biochemical test signs.



Within the framework of the ISTC project No. T-1105 "Genomic analysis of cereals and their relatives in Tajikistan" (2004-2008), genotyping of promising and aboriginal wheat varieties and all Aegilops species growing in Central, Northern and Southern Tajikistan was carried out using special molecular markers and electrophoretic analysis of gliadin proteins. The Catalog of wild Aegilops species growing in various ecological-geographical regions of Tajikistan has been published.



Another area of research in the laboratory is: Study of mechanical, biochemical parameters of the quality of grain and flour and local and introduced (imported) wheat varieties and the creation of a catalog of varieties and samples by morphological, physiological and biochemical characteristics.

発表資料 2-2: Collection, Conservation and Access to Genetic Resources of Grain Crops in Tajikistan

スライド 2

COLLECTION, CONSERVATION AND ACCESS TO GENETIC RESOURCES OF GRAIN CROPS IN TAJIKISTAN

The management of the National Center for Genetic Resources of the Academy of Agricultural Sciences of Tajikistan expresses sincere gratitude and appreciation to the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) and ICNet Consultants, Ms. Yasuko Kikuchi and Mr. Makoto Tabata, for assistance in the implementation of the outlined "Project for the Promotion, Conservation and Use of Foreign Genetic Resources for Adaptation to climate change".

Using this opportunity, I would like to once again express my sincere gratitude to the organizers of the meeting for the invitation to take part in the work and the opportunity to make a presentation.

I hope that our participation in the meeting will be useful for expanding cooperation with foreign countries in the collection, conservation, access and sustainable use of plant genetic resources, with the aim of developing agricultural science in Tajikistan.

It is also advisable to expand and deepen cooperation with all international institutes in the MAFF system on genetic biodiversity.

We can say with confidence that the activities of the Ministry of Agriculture, Forestry and Fisheries of Japan in the Commonwealth of Independent States (CIA) region, in particular in Tajikistan, are extremely important for us.

Capacity building activities are key to our development and we appreciate the support that (MAFF) will provide to us in collecting, conserving, accessing and sustainable use of genetic resources.

It is also advisable to use foreign genetic resources to adapt to climate change in various soil and climatic conditions and ecological cultivation zones in order to create varieties adapted for the preservation and enrichment of unique genes in gene-banks for the further development of agriculture and seed production in the country.

We will do our best to further cooperate and strengthen our partnership with all International Institutes in the MAFF System on genetic biodiversity in the country.

スライド 4

- •It is known that with the collapse of the Soviet Union, the CIA regions, including Tajikistan, faced an acute problem of breaking ties with various research institutions in other regions and with the All-Russian Institute of Genetic Resources (VIR) named after N.I. Vavilov. Sankt-Peterburg, Russian Federation.
- •In previous years, the regions regularly received and tested hundreds of varieties from VIR to create varieties, as well as use them as a source material for expanding breeding, genetic and seed production, as well as enriching the fund of agricultural crops in the country.B стране.

Tajikistan is characterized as a land-poor country, but with a very rich storehouse of plant resources, botanical and genetic diversity of types and varieties of cereals, legumes, fodder, oilseeds, melons and vegetables of their wild relatives growing in various microclimatic zones of the republic is the center of origin of a number of the most important crops,.

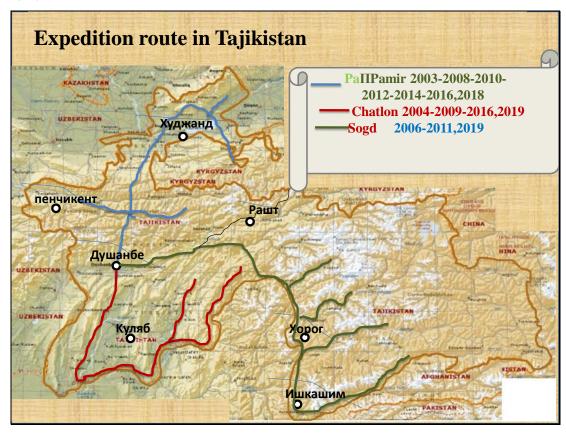
Collection, study, conservation and exchange of germplasm of unique, valuable and less widespread endemic species in order to ensure the safety and preservation of living plant resources in accordance with the requirements of the Law of the Republic of Tajikistan "On the Collection, Conservation and Rational Use of Genetic Resources of Cultivated Plants" from 1.08.2012 № 892, and subject to the requirements of the legislation of the Republic of Tajikistan and international legal instruments in the field of biological diversity recognized by Tajikistan.

•Scientific organizations interested to conduct a joint scientific expedition submit a Memorandum on the collection and access to plant genetic resources in accordance with the Nagoya Protocol, ratified by Tajikistan in 2012. The Nagoya Protocol and the Principles on Access to Genetic Resources defines further steps for the effective implementation of the Nogoya Protocol and principles in Tajikistan. The Nagoya Protocol supports the Convention on Biological Diversity (CBD) in relation to access to genetic resources belonging to local communities and their use in practice.

スライド 6

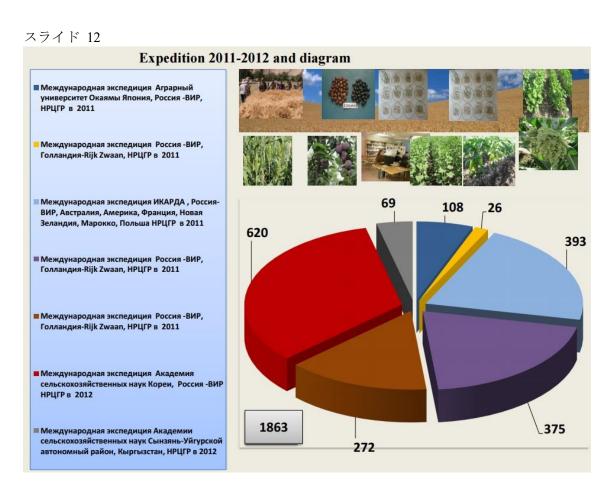
Issues of collection, preservation of germplasm and genetic depletion as issues of global importance, requiring all kinds of attention and support.

However, in recent years in Tajikistan there has been a strong reduction in the population size of local ancient varieties, varieties of people's selection, their replacement with newly bred varieties. At the same time, there is a threat of loss of valuable local genetic resources.


It is gratifying that recently there has been a significant increase in attention from scientists of the world, international organizations and the government of various countries to the problem of protecting, collecting, studying and preserving plant resources in collections, i.e., creating a stable, reliable gene-bank in the country, as well as ensuring and preservation of genetic information on species to its full extent.

In this regard, the International Center for Agricultural Research in the Arid Regions of ICARDA for the implementation of the program "Conservation of plant genetic resources" at the Tajik Academy of Agricultural Sciences in 2003 created the "Center for Plant Genetic Resources in Tajikistan" (CGRT). On the basis of the Center, in 2006, the National Republican Center for Genetic Resources (now the National Center for Genetic Resources (NCGR)) of the Tajik Academy of Agricultural Sciences (NCGR TASKHN) was established. Scientists of the NCGR from 2003 to 2014 and in 2019 signed an Agreement with the Vavilov Institute (VIR) of the Russian Federation on holding a joint International Scientific Expedition across the territory of Tajikistan. Since 2010, the scientist and staff of the Vavilov Institute (VIR) is the direct organizer and key link in the expedition to the Republic of Tajikistan.

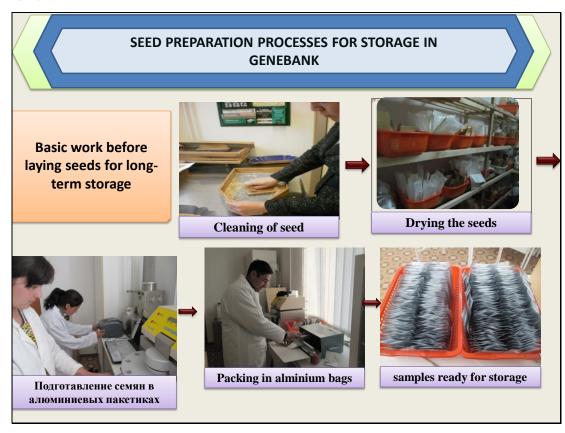

- The results of surveys of the territory of the country by domestic and foreign scientists carried out in the 30s gave us the opportunity to correctly orient ourselves in the collection of local ancient varieties of agricultural crops and their wild relatives.
- During this time, 19 joint international scientific expeditions were organized with the participation of specialists from the CGIAR-ICARDA, Vavilov Institute (VIR), the Russian Federation, TsGRR TASKHN, the Netherlands, France, Korea, Australia, Japan, Poland, New Zealand, Holland, China, Uzbekistan, Kyrgyzstan, and later other international organizations of foreign countries. International scientific expeditions with the participation of specialists from the NCGR (НЦГР) purposefully began searching for the collection of local ancient varieties of plant genetic resources and their wild relatives in all agricultural regions: GBAO (Pamir), Sughd, Khatlon regions and RRS (РРП) of Tajikistan.

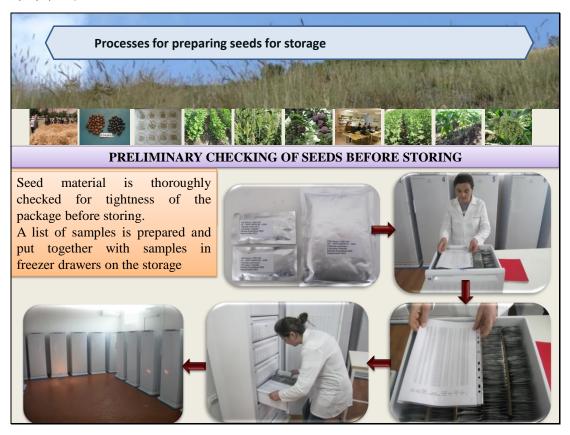

スライド 9

スライド 10

•As a result, scientists of the NCGR collected 12 thousand unique and rare collection of local ancient varieties of agricultural crops, distinguished by a great variety in botanical, genetic, breeding and economically valuable traits and properties, which are included in the catalog of the NCGR TASKhN.HIЦΓР TACXH

•The restoration of local ancient varieties of crops is one of the most important problems in the country. Through annual harvesting in mountain and foothill cultivation zones (1932-1935), 26 local ancient varieties of grain crops were identified and restored. The study showed that the germination of seeds in the field was 90-95% and they showed a high adaptive capacity.


スライド 14


- •. Selected 8 local ancient wheat varieties with stable biological productivity, economically valuable properties and traits were transferred to the country's farmers.
- •11 local varieties of grain and leguminous crops have been identified for their high productivity, early maturity and resistance to disease for transfer to research institutes as the main component for creating varieties.

The research is aimed at identifying among local ancient varieties of agricultural crops for resistance to biotic and abiotic environmental factors, with climate change.

In accordance with the Agreement, 20 local varieties of grain and leguminous crops were transferred as an exchange resource to the Xinjiang Academy of Agricultural Sciences of the People's Republic of China.

FoxPro, responded to all parameter of the International criterion and was widely used in all CIA regions.

Currently in the Database more than 9580 thousand were contributed ancient, local and wild congeners of different varieties Tajikistan.

Establishment of Database

- •The main purpose of creating a database is to introduce into the program all information on different varieties of accessions in order to facilitate wider access and better use of crop genetic resources.
- •The basis for compiling the Database is the FoxPro program, which was founded in 2001 in Aleppo (Syria).

- •Since 2009, the National Center for Genetic Resources (NCGR) has an Agreement a cooperation agreement with the International Organization SIDA NordGen-Sweden.
- The staff of the NRCGR underwent a training course in NordGen-Sweden to teach the new program compiled by the SESTO Database.
- The SESTO program is a genebank management tool. It was developed with the help of the NordGen organization of the Nordic countries of Scandinavia with the aim of documenting all types of genetic resources crops, forage and fruit and vegetable species.
- SESTO programs differ in their completeness from ICARDA-FoxPro programs. When compiling a table using the SESTO program, the Latin names of the samples, the serial number of the sample, the results of plant germination both in laboratory and in the field, etc. are given.
- •According to the SESTO program, more than 6750 thousand local varieties have been added to the Database.

With the support of The Global Trust Fund, 1,022 wheat varieties and 624 barley varieties were restored and propagated from 2010 to 2012.

In 2012, in accordance with international norms and standards, these samples were sent for long term storage (100 years) to the international global storage facility Svalbord Spitsbergen

State of Norway. Duplicates of these samples were also sent for storage to Vavilov Institute of Genetic Resources (VIR), St. Petersburg, Russian Federation. The third duplicated samples are also stored at the storage of the NTsGR TASKHN

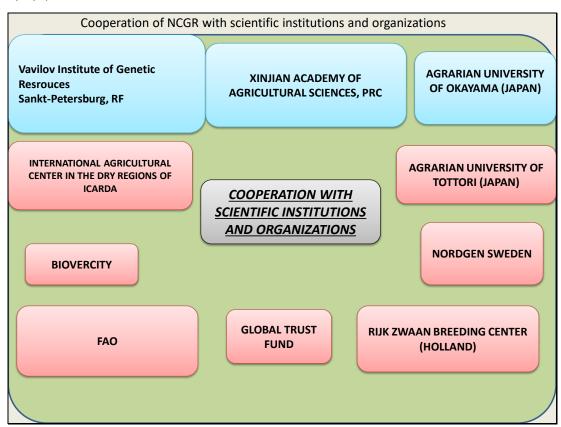
スライド 20

With the support of the SIDA and NordGen project of the Scandinavian countries, the new building of the Center for Genetic Resources was renovated and refurbished. The Genbank is equipped with modern equipment for long-term storage of valuable samples and their wild relatives, agricultural crops growing in various climatic conditions of the country. The genebank's repository is designed to store 30,000 samples.

Currently, about 3166 local, ancient and selective varieties of agricultural crops have been laid down in the NCGR for short-term storage (5-15 years).

For long-term storage (20-50 years), about 7193 local, ancient and selective varieties of agricultural crops have been laid.

For long term storage (100 years) at the Svalbord International Storage in Spitsbergen State of Norway. 1640 unique rare local ancient varieties of agricultural crops were laid.



• For the first time, with the support of the ICARDA International Center in 2011, a documentary film "Biodiversity of local genetic resources of Tajikistan" was produced. The film is shown on the TV program MIR (MUP).

In 2012, an article on "Biodiversity of local genetic resources of Tajikistan" was published in the journal "Saudi Aramco World" about the results of the expedition of ICARDA and NCGR.

Collection, Conservation and Access to genetic resources of Fruit Crops in Tajikistan

Shomuradova Svetlana Butaevna, Senior Researcher

スライド 2

Tajikistan, along with other Central Asian countries, is the center of origin and diversity of many agricultural crops. This is confirmed by the fact that until now many valuable ancient local varieties of fruit crops, including apple, pear, apricot, walnut, grapes and others are grown on the household plots of the inhabitants of the republic. In their natural habitat, you can find their wild relatives.

- Unfortunately, at present, this unique genetic diversity is under threat of extinction, due to a greater extent to anthropogenic factors uncontrolled human activities for harvesting wild fruits, felling trees for firewood, grazing livestock.
- Therefore, the protection and enrichment of the existing diversity of fruit crops and their congeners is of paramount importance in providing genetic material for all user groups, including breeders and researchers, gardeners, farmers and others.

- This will help to increase agricultural production, contribute to ensuring food security and environmental stability.
- Local varieties, forms and types of fruit crops have many positive qualities and characteristics. However, they are gradually disappearing or being replaced by new varieties imported from abroad. As a result, our national wealth in the form of the most valuable local varieties is under threat. Therefore, it is necessary to continue activities to preserve them..

 An important goal of the research carried out at the National Center for Genetic Resources in the collection. Taiikistan is replenishment, enrichment, preservation of the gene pool of fruit crops, including rare, valuable local varieties of apple, pear, walnut, as well as less common introduced species, including plum varieties, cherry-plum hybrids. almonds. apricots. Providing access to the gene pool is a priority for the Center.

スライド 6

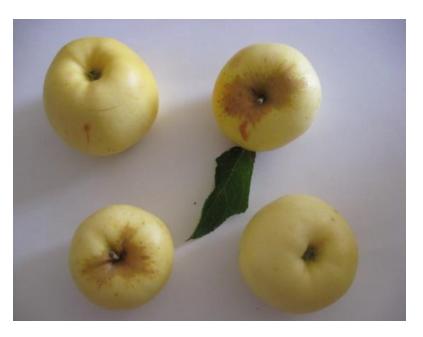
• Since 2008, surveys have been carried out in various zones of the republic, including in the foothill and mountainous areas, where since ancient times the population has been cultivating apple, pear, walnut and other valuable fruit species. In the course of the survey, promising variety forms are isolated and selected according to a complex of such important economic and biological characteristics as fruit quality, yield, resistance to dangerous diseases, and others. Selected samples of apple, pear, plum were vegetatively propagated in the nursery and planted (fixed) in a pure-bred uterine-cuttings orchard and in collections.

- At present, most of the varieties have entered in the fruiting stage, which allows a step-by-step pomological (morphological) description of the preserved of varieties for entry into the database.
- Today, the gene pool of fruit crops growing in the collection of the National Center for Geological Development of TASKHN includes 50 rare local and introduced varieties of apple, 5 pears, 30 plums and its hybrids, 10 almonds and some others.

- In 2008-2012, expeditionary surveys were carried out in the mountainous and foothill zone of Central and Southern Tajikistan, including the Khatlon region - in the Baljuvan, Khovaling, Muminabad districts and in the Rasht zone of Tajikistan.
- As a result, valuable varieties and forms of fruit crops of local origin and less common, rare introduced species were identified and selected, including in the Baljuvan region - 6 apple samples, 1 - grapes (anguri mahalla), 1 - plums (olui kuhi).

 In the Khovaling area, 13 apple samples were selected, including large-fruited rare Kadu seb, Safed seb, Kosimi, as well as beautifully colored varieties - Shokhi seb, Changali and others. In the Muminabad region, 14 local varieties of apple were selected (including Shir seb, Shokhin seb, Khafak) and 2 introduced species (Antonovka, Saffron summer), 2 samples of apricot (Isfarak and Mohtobi).

- The conducted surveys made it possible to identify and select in the former industrial gardens and from the local population valuable, little common varieties of fruit crops of local origin, as well as introduced rare varieties of apple, pear, plum, apricot, grapes, etc.
- Here is a brief description of some of them:


Fig 1. Jugori seb

A variety of early summer ripening, fruit weight up to 100 g. Fruit height 72mm, width 59-60mm, medium one-dimensionality, conical, elongated shape. The peduncle is short, of medium thickness, woody, obliquely set. The funnel is sharp-conical, small, no rustiness, the calyx does not fall off, the saucer is small, wide, grooved, the skin is smooth, oily-shiny. The color of the fruit is greenish-yellow, the integumentary color is blurred, striped, throughout the fruit. The blush is pink, with red blotches, the pulp is white, tender, juicy, sweet, aromatic. The quality of the pulp is good, the consistency is tender, crunchy, excellent taste.

Zard Seb

Variety of summer ripening, fruit weight up to 100 g, stalk is short, medium thickness, woody, obliquely set. The funnel is blunt-conical, of medium depth, rusty is weak. The calyx is not falling, closed. The saucer is deep, medium, furrowed, the skin is of medium thickness, smooth, buttery. The color is golden yellow, the integumentary is absent. The pulp is creamy yellowish. There are few subcutaneous points, poorly visible. Seeds are medium in size, dark brown. The pulp of the fruit is tender, mellow, without stony cells, juicy, sweet, with a slight sourness, aromatic, good taste..

Fig. 2. Zard seb

Olui kuhi, Anguri mahalla

スライド 16

Fruiting of the local plum variety Olui Kuhi
The color of the fruits is black, with a bluish bloom on the skin, below average. The skin is of medium thickness, strong, does not crack during transportation. Suitable for table consumption and processing, drying, canning.

... The stone is small, partially fused with the pulp, the pulp is sweet and sour, pleasant taste, juicy, pink.

 The local grape variety Anguri Mahalla is resistant to fungal diseases, has a high yield, early summer ripening period. A medium-sized brush, weighing 250-300 g, dense, winged. The berries are pink, juicy, and have a pleasant taste.

スライド 18

Local apple variety Shokhin seb

Local apple variety Shokhin seb

The variety is early-summer, with fruits with an average weight of up to 100 g, large ones reaching 150 g, fruit height 59 mm, width 71-70 mm, non-one-dimensional, round, broad-conical, slightly ribbed. The peduncle is short, thick, straight, woody, erect. The skin is tender, smooth, oily, shiny. The color is greenish yellow and golden yellow. Integumentary - in the form of a light tan, pink, blurred, striped, on a smaller part of the fruit. The pulp is white, tender, juicy, sweet, aromatic, of good taste.

スライド 20

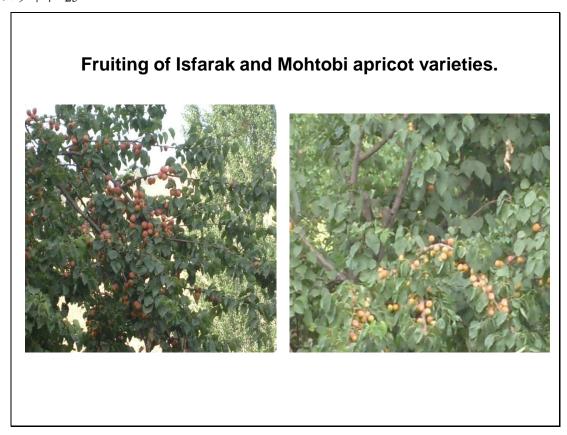
Kadu Seb

Large-fruited apple variety Kadu spb

 The variety is of summer ripening, the fruits are very large - 160-180 g and above. Fruit height 62 mm, width 78-80 mm. Fruits are slightly ribbed, round in shape, the stalk is short, of medium thickness. The skin is of medium thickness, smooth, buttery. The color is greenish-yellow, the integumentary color is in the form of a light tan, blurred, pink. The pulp is white, tender, of excellent taste, aromatic.

スライド 22

Apple fruits of varieties Surkh seb and Safed seb

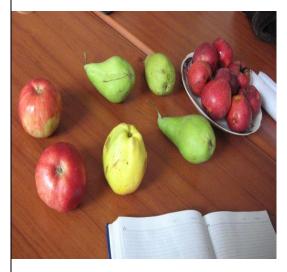


Fruiting of the local apple variety Sebi changali.

スライド 24

 In the Muminabad region, 14 local varieties of apple were selected, including Khafak, Shokhin seb, Shir seb, 2 introduced varieties (Antonovka, Shafran early), 2 apricot varieties (Isfarak and Mohtobi). A pomological description of 22 local apple varieties was compiled for entering into the database.

スライド 26


• It has been established that in the Rasht zone, in the village of Khait, local valuable varieties of apricot are preserved, the age of trees of which reaches 50-70 and more years. In the Pakhmdara tract, apple orchards and numerous walnut plantations at altitudes of 1700-2000 m above sea level were examined. The age of young apple orchards in five newly created dekhkan farms is from 10 to 20 years, in which, in addition to introduced species, local varieties of apple trees are planted. A unique garden was revealed on an area of 5 hectares at the age of about 70 years, in which old varieties of apple, pear, cherry, walnut grow.

スライド 28

 A survey was carried out in the Sangvor region to identify local varieties of fruit and nut crops. Based on the results of the work carried out, 5 rare varieties of apple trees of local origin for late autumn and winter consumption, one variety of pear, 3 forms of walnut were selected and described. A survey of local residents revealed that in their gardens and natural plantings there are local varieties of apple trees of summer ripening, fruitful, high taste.

•

Fruits of apple varieties Khuboni and Idared, pears - Kure from the Sangvor region. Local thin-crust forms of walnut Hameli and Kogoti (Sangvor)

スライド 30

 A survey of fruit crops planting carried out in Istaravshan, Zafarabad, B. Gafurov and Isfara districts of Sughd region made it possible to select valuable varieties of late ripening plum, almond, peach, apricot and apple trees for the collection, which are fixed in collection gardens. • Thus, the conducted expeditionary surveys of dekhkan, rental and household farms in Khovaling, Baldzhuvan and Muminabad districts of Southeastern Tajikistan, in the Sughd region in the North of the republic, in the Rasht valley and in the Sangvor region of Central Tajikistan made it possible to identify, select, reproduce and fix in mothers and collections of rare, uncommon and promising varieties of fruit crops for conservation, reproduction and cultivation in various agriculture and household plots of the population in Tajikistan.

スライド 32

Thank you for your attention

発表資料 2-4: Legal Framework for the Exchange, Distribution and Use of Plant Genetic Resources in Japan

Study Group Meeting on the of Genetic Resources in the Field of Agriculture, Forestry and Fisheries

Genetic Resources in Tajikistan

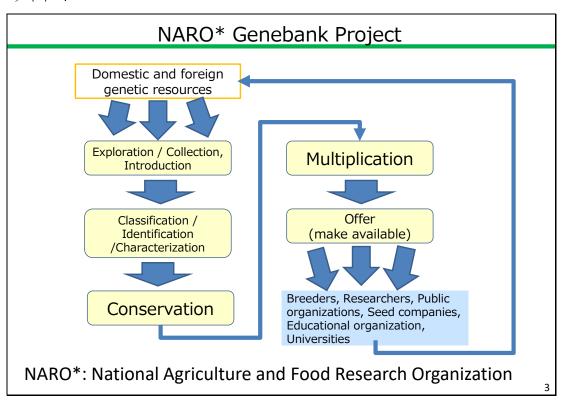
November 24, 2020

Legal Framework for the Exchange, Distribution and use of Plant Genetic Resources in Japan

0

スライド 2

Breeding of new varieties


The development of innovative varieties with resistance to diseases/pests is indispensable to ensure the stable food supply. A wide range of genetic resources should be made available as breeding material.

- ▶Japan, through its Genebank Project, collects and conserves domestic and foreign genetic resources.
- ➤230,000 plant genetic resources (6th in the world), 30,000 microorganisms, 2,000 animal genetic resources are conserved.
- > Japan makes these genetic resources available for use by breeders and researchers to promote the use of genetic resources and the development of new varieties.

1

スライド 4

Promotion of use of Plant Genetic Resources

International mechanisms regulating the introduction of genetic resources to which Japan is party:

- ① Convention on Biological Diversity (CBD) party since 1993
- ② International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGR) (multilateral rules) (party since October 2013)
- ③ Nagoya Protocol on Access and Benefit Sharing (ABS)(bilateral rules) (party since August 2017)

4

スライド 6

Use of MLS under the ITPGR

- ·1,800,000 genetic resources are registered
- •50,000 Standard Material Transfer Agreements
- •16,265 food and agriculture genetic resources are under development
- •3,400,000 genetic resources have been transferred so far
- •6,001 recipients in 168 countries
- •1,309 registrations to the plant genetic resource transfer system through Web-site
- ·Main crops: wheat, rice, barley, maize, chickpea, lentil

5

Use in Japan of the MLS of the ITPGR

%as of April 2019

- ·863 Standard Material Transfer Agreements
- •29,609 genetic resources have been transferred (rice: 19,042; wheat: 2,747; sorghum1,739)
- •Main provider countries: the Philippines, Nigeria, Mexico, India, Germany, China, etc.

6

スライド8

Implementation of the Nagoya Protocol in Japan "ABS Guidelines"

7

ABS Guidelines, published on May 18, 2017,

Domestic measures to implement the Nagoya Protocol

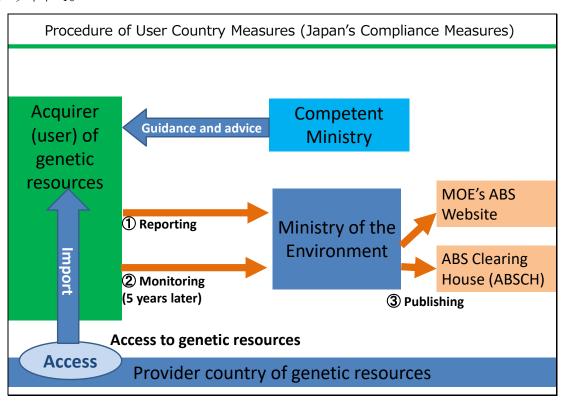
User Country Measures

Reporting

Acquisition of genetic resources under the Nagoya Protocol should be reported to the Ministry of the Environment (MOE)

② Monitoring

5 years later, the use of GR should be reported


③ Publication


Access report should be posted on the website of MOE and the ABS Clearing House Mechanism (ABSCH)

Provider Country Measures

Japan does not require Prior Informed Consent (PIC) for access to genetic resources in Japan.

8

3-1-3遺伝資源関連勉強会 (ウズベキスタン)

発表資料 3-1: Plant Genetic Diversity and Resources in Uzbekistan

スライド 1

Study Group Meeting on the of Genetic Resources in the Field of Agriculture, Forestry and Fisheries November 25, 2020

PLANT GENETIC DIVERSITY AND RESOURCES IN UZBEKISTAN

Zakir Rakhimov, Director

Research Institute of Environment and Conservation Technologies State Committee on Ecology and Environment Protection, Tashkent, Uzbekistan

スライド 2

BRIEF INTRODUCTION

Globally, more than 2 billion people depend on smallholder farms and about 1.4 billion people depend on forests for their livelihoods (*IPGRI report*).

In Uzbekistan, different crop plants occupy about 44,457,900ha

Total farming area: 27 667.400 ha

Arable land: 4 486.000 ha

Mowing (Grassland): 109.600 ha

Pasture: 22 532.200 ha

Forests occupy 9.1 million ha. National Parks and State Reserves occupy area 818,000ha

More than 6000 plant species grow, belonging to 138 families in Central Asia.

492 agricultural species belonging to 79 families

577 species are used as medicinal plants

- Cotton (*Gossypium hirsitum*) is the most important crop of the national economy, planted on 50% of irrigated lands.
- o Mountain and foothill areas are richest with wild-growing species:
 - Apple (Malus sp.),
 - Pear (Pyrus sp.),
 - · Walnut (Juglans sp.),
 - Hawthorn (Crataegus sp.)
 - Onion (Allium sp.)
 - Garlic (Allium sp.)
 - Carrot (Daucus sp.)

In Uzbekistan plant genetic resources are conserved mostly in natural habitats in *in-situ* conditions and high intraspecific diversity is observed

```
The following are most diversified plant families (with a large number of species)
          Asteraceae (624 species)
          Fabaceae (512)
         Poaceae (301)
         Lamiaceae (238)
         Brassicaceae (235)
          Apiaceae (231)
          Rosaceae (231)
         Boraginaceae (123)
The following are most diversified plant genera (with a large number of species)
          Astragalus L. (273 species)
         Cousinia Cass. (149)
         Allium L. (137)
         Gagea Salisb. (82 species)
         Oxytropis DC. (63)
         Ferula L. (59 species)
Artemisia L. (47)
          Phlomoides Moench (45)
         Silene L. (44)
          Iris L. s.l. (41 species, of which 24 species belong to Juno Tratt.)
         Tulipa L. (34 species)
Hedysarum L. (30 species), etc.
```

PLANT SPECIES DIVERSITY IN UZBEKISTAN

- oGeneral plant species: 4400 species. Of which 300 species are endemic.
- Desert Plant Species: 300 species belonging to 14 families.

20% of the species are endemic: a large part of them grows in mountains

スライド 6

Cereals CONSERVATION 50,7% Industrial More than 75 thousand accessions on 147 different rops 25% agricultural crops are conserved in 17 institutions of the country. During several centuries has been established unique local assortment of fruits, vegetables, melons, cereals, oilbearing crops and grape. They are conserved in in-situ/on-Fruit Crops Vegetables farm condition. Fodder Crops and Grape and melons 9.0% 1,5% 12,7% * germplasm availability Introduced materials, Rare disappearing species which are being * conservation of less well-collected species such as many crop wild relatives and large under threat landraces and forms and their wild numbers of neglected and underutilized relatives are being under threat species with little or no representation Modern breeding cultivars and hybrids, Genetic sources and donors of economicvaluable threats.

	Year of formation	Area, th.ha		
Reserves and National Parks			Including forest	Number of growing plant speds
St	ate Reserves			
Chatkal Forest Biospherical Reserve	1947	45,7	6,6	1060
Z <mark>amin Mounta</mark> in Juniper Reserve	1960	10,5	4,2	70
Gissar Mountain Juniper reserve	1983	80,9	12,2	87
Kizilkum Nature Reserve		1,01	5,1	12
Lower Amudarya biosphere reserve		6,5	3,9	64
Surkhan Nature Reserve	1987	24,6	-	80
Nurot <mark>a Nature Reserve</mark>	1975	17,8	2,5	65
Kitob Mountain Geological Reserve	1979	5,4	2,8	80
N	ational Parks			
Zaamin National Park	1978	24,1	12,1	100
Ugam-Chatkal <mark>National</mark> Park	1990	574,6	56,4	100
Zeravshan National Park	1975	2,4	0,9	30
Kitab Geological Nati <mark>oan</mark> l Nature Park	2020	3,938		
Khoresm National Park	2019			
South Ustyurt National Park	2020	1.5 Mln		

PLANT DIVERSITY OF UZBEKISTAN (TREE)

Tree species representing

Fruit tree

Apricot (Prunus armeniaca)

Apple (Malus domestica)

Pomegranate (Punica granatum)

fig (Ficus carica, F.afganistanica)

grape (Zizibus jujuba)

Silver berry (Eleagnus orientalis)

 ${\bf Mulberry}\;(Morus\;alba,\,M.nigra)$

Hackberries (Celtis caucasica)

Wild tree species

Russian olive (Eleagnus angustifolia)

Poplar (Populus alba, P.ariana, P.usbekistanica)

Maple (Acer turk estanica, A. sem en ovii, A. pubescens, A.regelii)

Ash (Fraxinus sogdiana, F.raibocarpa)

Aphyllum, Haloxylon aphyllum

Caligonum, Malocacarpus

Nitraria, Salsola

Juniperus (zeravshanica, turkestanica, semiglabosa)

The flora of Uzbekistan is diverse in ancestors and wild relatives of cultured plants. Of special interest are wild relatives, which are of the greatest importance to cultivation of new and improvement of existing valuable cultivars.

This includes the species: Juglans regia L., Amygdalus communis, Amygdalus bucharica Korsch., Diospyros lotus L., Ficus carica L., Punica granatum L., Pyrus turcomanica Maleev, Malus sieversii (Ledeh.) M. Roem., Wits vinifera L., Ziziphus Lijube L., Pistacia vera L. etc., which are mainly concentrated in the mountainous regions of Uzbekistan.

スライド 10

PLANT GENETIC RESOURCES FOR AGRICULTURE (FIELD GENBANK)

- o Field genbank has 2509 species for fruit 56,6 ha
 - Apple (Malus Mill.)- 140 species,
 - Pear (Pyrus L.)- 329 species,
 - Quince (Cydonia Mill.)- 90 species;
 - Plum (Prunus Mill.)- 150 speciesB,
 - Grape (Vitis L.)- 1800 species.

These species of collection is going regeneration process

Peach(Persica Mill.)

Big cherry (Cerasus avium (L.) Moench.),

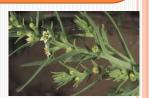
Cherry (Cerasus Juss.)

Plum (Prunus Mill.)

Most table grapes are grown in the south part of Uzbekistan including Samarkand, Surkhandarya region, the Ferghana Valley as well as in the Tashkent region. The long warm to hot weather, combined with the well drained soils, are ideal for grape cultivation. In all approximately 37 grape varieties are cultivated both as table grapes and for wine production.

PLANT DIVERSITY OF UZBEKISTAN (ENDEMIC SPECIES)

Most of the endemic species in Uzbekistan include relict species that were preserved after the Tethys sea was dried up and the desert climate has established in Central Asia. The mountains of the Pamir-Alai and the western Tien Shan are especially diverse in relicts. Undoubted relicts in the Pamir-Alai flora are (Otostegia bucharica B. Fedtsch.), (Allium verticellatum Regel), (Astragalus thlaspi Lipsky), (Zygophyllum bucharicum B. Fedtsch.), (Cleome gordjaginii Popov) and others that are preserved in the speckled strata of low mountains in Kashkadarya and Surkhandarya provinces.


(Fumariola turkestanica Korsh.), (Dionysia hissarica Lipsky), (Cephalorhizum opodum Popov & Korovin), and (Ostrovskia magnifica Regel) are characterized by narrow habitats in different sites of the Pamir-Alai part of Uzbekistan.

A moderate number of endemic relicts have been preserved in the mountains of the western Tien Shan. The western Tien Shan relicts include (*Thesium minkwitzianum* B. Fedtsch.), the relict of an ancient African flora isolated from its nearest congener; (*Kamelinia tianschanica*) is an endemic species of the Akhangaran Valley;

(Nanophyton botschantzevii U.P. Pratov) is one of the mountain representatives of the desert genus;

(Kuramosciadum corydalifolium Pimenov, Kljukov & Tojibaev) is a recently recorded endemic species of the upper reaches of the Chorkesara, etc.

the flora of Uzbekistan has its own peculiarities, which are expressed in a high index of endemism – about 8%. Relict endemics constitute 10-12% of the total number of endemic species. Among endemic species, a special place is occupied by the representatives of genera Tulipa L., Allium L., Gagea Salisb, Eremurus M. Bieb, Astragalus L., Cousinia Cass., Iris L. and many others.

Groups of plants according to their use	Families	Number of species
Food plants	Rosaceae, Amaryllidaceae, Juglandaceae, Rhamnaceae	More than 350
Fodder plants	Poaceae, Fabaceae, Chenopodiaceae, Asteraceae	1700
Medicinal plants	Ranunculaceae, Lamiaceae, Rosaceae, Boraginaceae, Apiaceae u òp , Asteraceae, Peganaceae	More than 800
Ether-oil plants	Lamiaceae, Apiaceae	650
Dye plants	Malvaceae, Papaveraceae, Asteraceae	150
Ornamental plants	Liliaceae, Asphodelaceae, Iridaceae, Amaryllidaceae, Rosaceae, Asteraceae	270
Culinary herbs and Spices	Lamiaceae	200
Saponin plants	Fabaceae	100

PLANT DIVERSITY OF UZBEKISTAN (VEGETABLE)

The area occupied under vegetables crops exceeds 242 thousands of hectares with a total production of more than 6 million tons, making almost 50% of total production in the region

Vegetable species belonging to 9 families

Alliaceae

Apiaceae

Asteraceae

Brassicaceae

Cucurbitaceae

Fabaceae

Lamiaceae

Poaceae

Solanaceae

They are representative in countries in Central Asia and the Caucasus.

www.tourstouzhekistan.com%2Fuploads%2Fnew%2Fmy_Gles%2Fuzhek_food%2Fuzh_kulmys%2520(10).1PG&imgrefurl=https%3.4%2F%2Fwww.tourstouzhekistan.com%2Fem%2Fblog%2Fuzhek-cuisine%2Fuzhek-

スライド 14

FAMILY: CUCURBITACEAE

MELON: (Cucumis melo)

Today Uzbekistan has more than 160 melon varieties. In recent years, 36 melon varieties have been released in Uzbekistan. Among these varieties, some are early ripening (9), midseason ripening (15), and late ripening (12). More delicious melons varieties are called KHANDALAK (Cucumis melo ssp.).

Watermelon: (Citrullus lanatus (Thunb.) Matsum. et Nakai),)

All vary in size, however, the 5 to 10 kg sizes in all types dominate. The market is divided between hybrids (all imported seed) and open pollinated seed, the later which is the most common type found in the market

Pumpkin (*Cucurbita* L.)-In Uzbekistan, 18 species grown. qattiq poʻstli qovoq (Cucurbita pepo L.), yirik mevali qovoq (Cucurbita maxima Duch.) va muskat qovoq (Cucurbita moschata Duch.)

 ${\bf Cucumber:}$ (Cucumis sativus) -Uzbekistan is top leader to export of cucumber in the world.

Source of picture: www.trust-travel.uz Cucumber source

- bottle gourd-тыква бутылочная; тыква посудная-Lagenaria vulgaris, Lagenaria siceraria-однолетнее растение. Разводят в Узбекистане специально для емкости; из плодов изготовляют посуду, музыкальные инструменты, из семян получают пищевое масло; декоративное растение. В Узбекистане не производится в широко-масштабном эквиваленте. Today the Calabash can be found growing around the world, thriving in tropical and sub-tropical climates. В Узбекистане суб-тропический климат можно встретить в южной части (Сурхандарья)
- white gourd; white pumpkin-Benincasa hispida (Thumb)- no data about cultivation. But, previously, it was cultivated in large scale.
- люффа-Luffa cylindrica (L.) М. Roem.-Общее число видов более 50. Но только два вида получили
 распространение в качестве культурных растений это Люффа цилиндрическая (Luffa cylindrica) и
 Люффа остроребристая (Luffa acutangula).

https://www.plantarium.ruspage/riew/item/23594.html
https://www.plantarium.ruspage/riew/item/23594.html
https://www.plantarium.ruspage/riew/item/23594.html
https://www.plantarium.ruspage/rierw/box868.htmg.url=https://si.

スライド 16

FAMILY: LILIACEAE

Colchicum

A total of 45 species in Uzbekistan Colchicum luteum Baker C.kesselrinii Rgl Eremurus robustus

Allium

Garlic (*Allium sativum*) Лук порей – Allium porrum Лук репчатый-Allium cepa

Allium motor, Allium sp (areal: Tianshan ranges-Parkent, Bostonliq)

Lilium

Lily (Lilium hibridicus)

Tulipa

The total number of species is 70. More than 20 species are found in nature in Uzbekistan. Included in Red Book

Tulipa Fosteriana, T.Greigii, T.ingens, T.Kaufmanniana

APIACEAE

In the flora of Uzbekistan, there are more than 220 species of Apiaceae.

The number of endemic Apiaceae species in Uzbekistan was reduced from 38 to 18.

Nowadays, Uzbekistan is a big exporter of Ferula sp. (gum) to India, Pakistan and China.

Apiaceae (medicinal purpose)

Cumin-Bunium persicum L - it is very popular food ingridient in Central Asia

Carrot -Caucus carota-Uzbek carrots are also exported to neighboring countries such as Kazakhstan and are marketed purposely as Uzbek carrots in foreign markets, as Uzbekistan is known for producing quality and flavorful produce. There are both foreign and domestic varieties encompassed under the Uzbek carrot name, with some of the most popular varieties being Mirzoi or Mirza Yellow, Mirzoi or Mirza Red, Mshak, and Nantes. Uzbek carrots are valued by commercial growers and home gardeners for their compact size, durability, long storage, and resistance to disease. The roots are favored as an everyday ingredient and are utilized in a wide variety of both raw and cooked applications. In Uzbekistan, people consuming this food as store of vitamin E. Wild carrot-Daucus carota L. fruits used as a diuretic. The plant extract has been used as a vermifuge and purgative, while carotinoids obtained from the roots used for ulcer, burning and kidney stones. For a long time, the essen-tial oils of wild carrot fruits have been used in medicine for making astringent and spicy extracts

Source of pixtures. Vallow

Cartes-www.google.com/impres/imgurl=https%3A%2F%2F.jpinimg.com%2F3d%2F3d%2F3d%2F3d%2F73d%2F3d%2F4d%3E75d%3aC9d490Cfc7706.png&imgrefurl=https%3A%2F%2Fjwww.pinterest.com%2Fpin%2F2065
2F&thoid=lnkCY8VjcDas9Maxve=12ahUXE9jpi0X1Eg3pdhWFEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bM&w=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bM&w=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bM&w=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGgUIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGuIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGuIARCIAQ_i&docid=ShhxpmhrZhs3bMw=690&h=450&q=carron%20family%20vegetables%20im%20azhekistan&safe=active&0624jpiAhWEKQKHU03AY4QMygGuIARCIAQ_i&docid=ShhxpmhrZhs3bWkW=690&h=450&q=carron%20azhekistan&s

スライド 18

SOLANACEAE

- o In Uzbekistan, Solonaceae has 36 species of the 11 genus
- Eggplant or aubergine (Solanum melongena)
- o Tomato -Tomatoes account for 40-45% of the total area under vegetable crops. 80% of the main crop is processed (conservation).
- o Potato-Solanum tuberosum L.- appr. 20 types of potato growing in large scale in areas of Uzbekistan

SOLANACEAE(WILD)

- Паслён сладко горький -Solanum dulcomara,
- о Паслён черный-Solanium nigrium,
- о Паслён ольги- Solanium olgae Pojark,
- о Паслён пропущенная -Physalis praetermissa Pojark,
- о Дереза русская-Lycium ruthenicum Murr,
- о Белена черная -Hyascyamus niger,
- Белена крошечная -Hyoscyamus pusillus,
- о Дурман обыкновенная-Datura stramonium

zbekistan, this family includes	76 genera and about 200 species
Introduced	wild
Cabbage-Капуста-Brassica olerace	Panc (Brassica napus)
Turnip-Репа-Brassica rapa	Сафлор-safflower (Carthanius tinctorius)
Radish-Редиска-Raphanus sativns	Пастушья сумка (Jag-jag)- Capsella bursa-pastoris (L.) Medic.
Зеленая редька-Турп- Raphanus sativus var. lobo	қурттана-гулявник-sauce-alone (Sisymbrium alliaria)
Вайда- ўсма-Pastel -Isatis tinctoria	Горчица-mustard-Sinapis L.
	Лизель
	икотник серозеленый-Berteroa incana (L.) DC.
	индоу
	кромбе-Crambe L.

BRASSICASEAE

Cabbage

Brassica L.

Daikon

Daikon (Raphanus sativus subsp. acanthiformis) is introduced plant in Uzbekistan. In small hectares (10-15 ha) produced for soup ingredients and making salads in summer time. It is a promising cultivar, especially for industrial areas where polluted with heavy metalls (Kashkadarya, Surkhandarya, Navoi, Zarafshan regions). For Uzbekistan, it is necessary introducing spring-summer types

スライド 22

LEGUMES

o Soybean

• New varieties of legumes like **vegetable soybean** and mung bean, which increase soil fertility and are good for crop rotation, and the **Jerusalem artichoke** (or topinambour or girasol) are being taken up by farmers in Uzbekistan. What is good, these varieties are early-maturing and well adapted to the country's soil and climatic conditions. Average harvest around 18 c/ha, vegetable soybean is planted in around 20 th. ha of the land (2019), especially before cotton growing for crop rotation. Planned for 2021 growing around 21th.ha in Uzbekistan.

BRASSICASEAE

- o Brocolli (Brassica oleracea var.botrytis, B.oleraceae var.italica)
- o is introduced plant in Uzbekistan (annual). On food consuming crown (head) part. Mostly, private sector has grown these species for export in Russia. Currently, grown around 150 ha in Uzbekistan. Not resistant to the cold (-3C)
- Cauliflower (Brassica oleracea botrytis cauliflora)
- is introduced plant in Uzbekistan (annual). On food consuming crown (head) part. Harvesting yield around 180c/ha.
- Komatsuna (Brassica rapa var.Perviridis)
- o is **not introduced** in Uzbekistan. "Japanese mustard spinach" has soft leaves, compare to the spinach. It is a very important cultivar in our country, such as in our country's climate is more realiable to produce it.

スライド 24

CAPPARACEA

O Пастушья сумка (Jag-jag)- Capsella bursa-pastoris (L.) Medic.-Blood coagulant, used when vitamin deficiency. In spring time, local people consumed with mixing spinach for getting energy after winter period.

Amaranthaceae

• Spinach - *Spinacia oleracea* - only growing 2 types. One of them is berry spinach, which is grown among the spice plants.

Asteraceae

• Lettuce- Lactuca sativa. 5 varieties are growing in Uzbekistan. In Uzbekistan, "Blue Horn" varieties produced in 2002 by Uzbek Research Institute of Vegetables, Melons and Potatoes are grown.

POACEAE

Тимофеевка луговая-Phleum pratense (timothy grass)

Many cereals are a major component of natural hayfields and pastures, and are included: o'tloq timoti (Phleum pratensis), tipratikan (Dactylis glomerata), o'tloq feshesi (Festuca pratensis), ulkan bukilgan (Agrostis gigantea), qarovsiz gulxan (Bromus inermis), ko'p yillik somon (Lolium perentens) (o'tloq tulki). o'tloq bluegrass (Poa pratensis), baland javdar (Arrhenatherum elatius) va boshqalar Qizil feska (F. rubra), ko'p yillik javdar (Lolium perenne) and etc. It has used as lawn grass in ornamental horticulture. Also broadly used to fix moving sands (Ammophila arenaria) and sandy spikelet (Leymus arenarius)

Hie (Echinochloa esculenta)-Japanese millet-no data

スライド 26

MAIZE

o Zea mays L-In Uzbekistan, irrigated lands can produce 100-110 s / ha of grain and 800-1000 s / ha of silage. Advanced farms produce 80-100 c / ha of grain on large areas. Currently, most hybrid types exported from China and Holland. Mix maize with alfalfa are widely grown in Uzbekistan. Also, tested sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) seeds from ICBA varieties in Central Asia.

FOXTAIL MILLET

о просо итальянское (Setaria italica)- not cultivated in Central Asia.

Rye

Рожь -Secale cereale- group of annual and perennial plants belonging to the family of cereals, cereals. Of the 13 species, 11 are wildy. One of the 2 species is found in the fields as a weed (S. segetale). Rye is rarely cultivated in Uzbekistan (8,000 ha, 1999).

スライド 28

DEVELOPING MONITORING AND EARLY WARNING SYSTEMS FOR LOSS OF PLANT GENETIC RESOURCES FOR FOOD AND AGRICULTURE IN UZBEKISTAN

- In this subject the less attention has been drawn by Government and researchers. In fact, the international projects has been involved like FAO, UNDP, etc. and their investment money is less than 1% equal to plant genetic aspects.
- In some institutes double collections are created. The estimation of genetic erosion is carried out within international projects UNEP GEF, IPGRI framework.
- Public awareness of the value of plant genetic resources for food and agriculture conservation and use has been less described in TV, radio (broadcasting)

CONCLUSIONS

For improvement and effective use of plant genepool priority direction are:

- almost 95% of the information is not in the electronic form and it is necessary to conduct this work the next years.
- Perfecting of the legislation and dilation of the National Program on plant genetic resources
- o Carrying out of monitoring of plant genetic resources status for its efficient management and use.
- Enrichment of genepool by way of collecting missions in the Central Asia and collecting of valuable landraces, rare and disappearing species, and also introduction, exchange between genebanks.
- Improvement storage conditions of ex-situ collections in institutions.
- Periodic multiplication of accessions.
- o Development of double collections of fruits and grape.
- o Development of methods of regeneration for plant species of which the multiplication is difficult.
- Realization of documentation and development of database on genetic resources of agricultural crops.
- Development of cooperation with international centers and organizations in the field of plant genetic resources.
- o Molecular methods of investigations are applied basically in small amount on cotton.

スライド 30

CONCLUSIONS (CONT)

- Ex situ conservation of plant genetic resources is an important endeavor that provides security for loss of crop diversity in the field and ease of access, and hence usage, for research and crop improvement. It can also allow reintroduction into their natural habitat when the species or crops have disappeared.
- o In situ conservation on farm remains a vital part of ensuring germplasm availability for use by future generations through the combination of evolution that happens between the crop, the environment and the human selection component. It also ensures the conservation of less well-collected species such as wild relatives and large numbers of neglected and underutilized species with little or no representation in ex situ collections.
- It is not enough to have just a few farmers engaged in *in situ* conservation. Scale matters. Uzbekistan needs a lot more attention to give *in situ* conservation, if we are to conserve the crop diversity that is essential for our future food security.

CONCLUSIONS (CONT.) PROPOSAL

IMPROVING THE NATIONAL INFORMATION SHARING MECHANISM

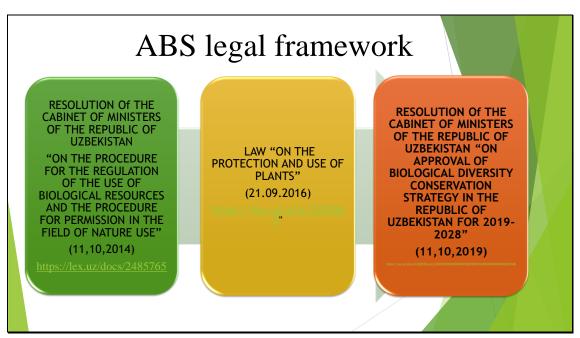
- A number of institutes and organizations which have collected the available information related to the plant genetic diversity is still required to input into computer (digitizing)
- o Gaps still exist among partners and stakeholders in relation to the collecting, managing and sharing of seeds and information.
- Farmers are less interested in wild native plants and do not contribute to the promotion and growing of wild natives plants (for conservation of natural genetics)

スライド 32

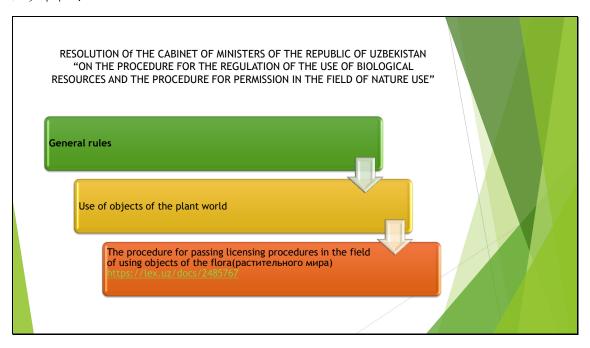
PROPOSED PROJECTS

- Uniquely collect all wild tree species in Uzbekistan and digitizing all available sources for wild tree species (areal of distribution)
- Collection of all types of tulips and creation of unique land for grow all types of tulip
- Collection of decorative plant species from family Alliaceae and Amaryllidaceae
- Endemic plant: conservation of *Otostegia bucharica* & *Sperostegia bucharica* in the Surkhandarya region (Red Book)
- Producing and growing following species in our country (recommended in large scale): daikon, Japanese mustard spinach

PROPOSED WILD TREES FOR UZBEKISTAN WHICH WILL ADAPTED TO CLIMATE CHANGE CONDITIONS


- o Ryabina (Sorgus persica, S.tianschanica, S.turkestanika
- o Sariq dolana (Pratageous pontica)
- Cherry (Prunus devaricata)
- Pear (Pyrus regelia, P. bucharica, P. communis)
- Grapes
- Apple

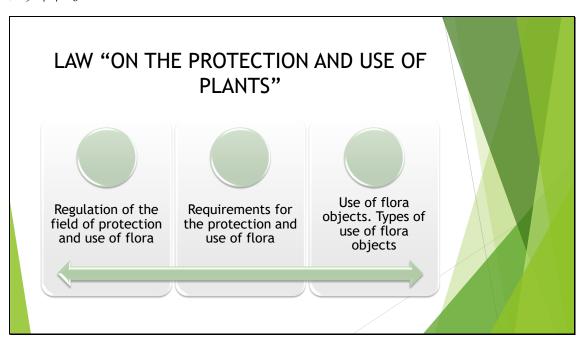
スライド 34

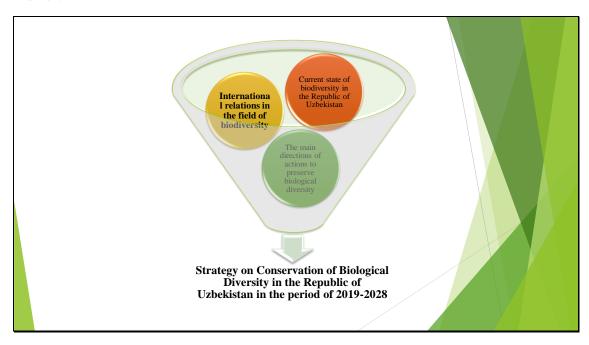

Спасибо за внимание

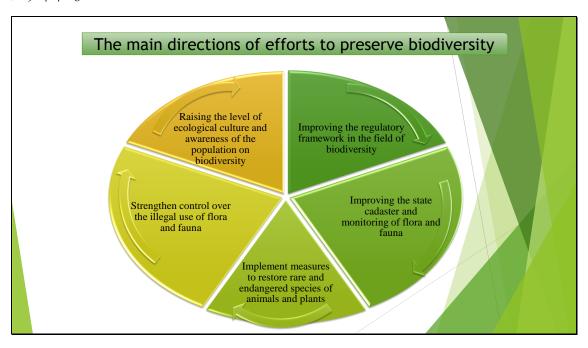
Thank you for your attention

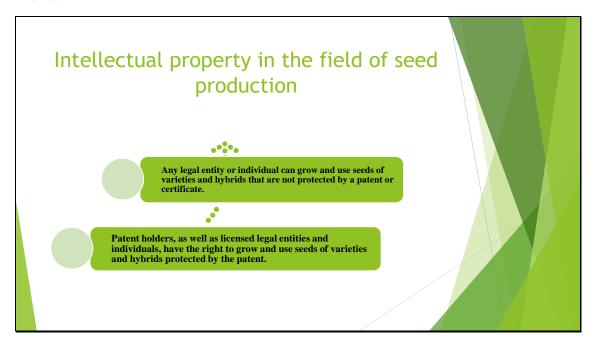
ABS legal framework and its implementation and competent authorities in Uzbekistan

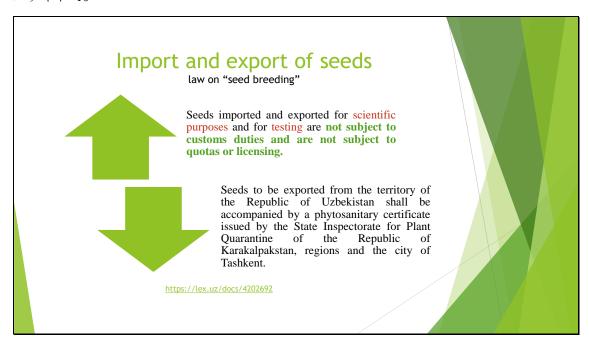
The procedure for passing licensing procedures in the field of using objects of the flora (https://lex.uz/docs/2485767)


Permits to perform actions and (or) carry out certain activities in the field of using

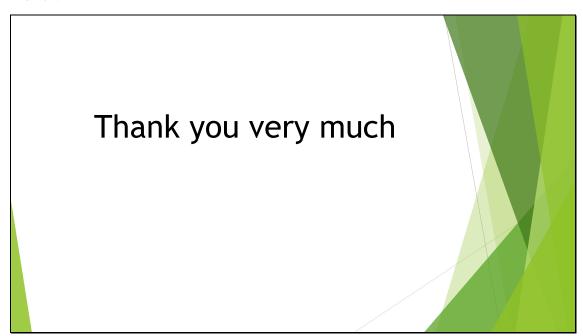

objects of the flora are issued by the relevant authorized bodies


The State Committee for Ecology and Environmental Protection of the Republic


- The State Committee for Ecology and Environmental Protection of the Republic of Uzbekistan:
- For collection of plant species not included in the Red Book in the whole territory of the Republic of Uzbekistan from the natural environment;
- For extraction of rare and endangered plant species listed in the Red Book of the Republic of Uzbekistan from the natural environment;
- to bring in and take away wild plants, their parts; for haymaking and grazing livestock;


(Compliance with the legislation on protection and use of flora is obligatory for legal entities and individuals (this legislation also applies to foreign legal entities))

Article 28. Import and export of seeds law on "seed breeding"

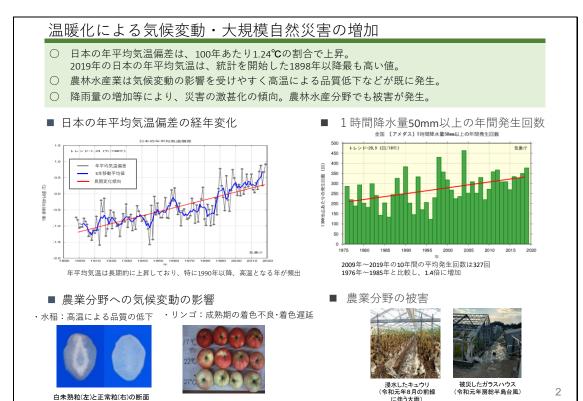

Import of seeds to the territory of the Republic of Uzbekistan is allowed provided

- the seeds of cotton, cereal crops and potatoes belong to the variety and hybrid, which are included in the State Register of agricultural crops recommended for sowing on the territory of the Republic of Uzbekistan;
- there is a certificate of conformity and a phytosanitary certificate for seeds, as well as a quarantine permit;
- seeds are intended for selection and research work, display.
- When importing seeds (with the exception of cotton seeds, grain crops and potatoes), the results of tests carried out by foreign laboratories accredited by international accreditation organizations are recognized, in cases where the requirements applied during testing are not inferior to similar requirements in force in the Republic of Uzbekistan.

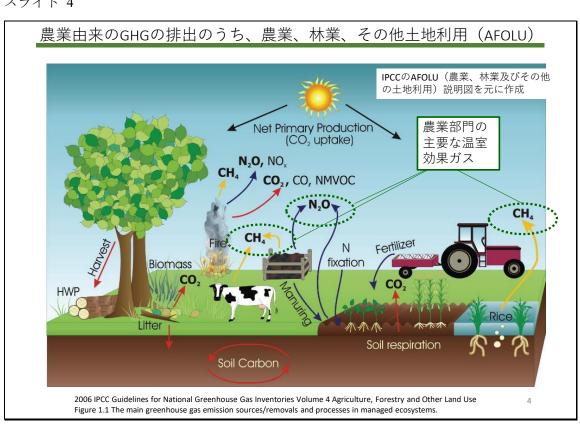
スライド 12

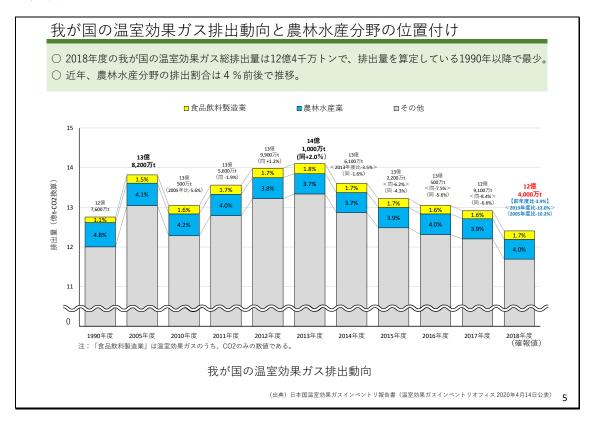
Article 32. Intellectual property in the field of se production

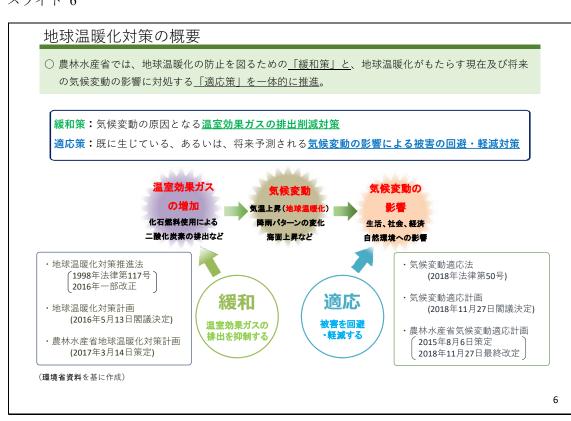
- ▶ The right to produce and use seeds of varieties and hybrids protected by a patent is held by patent owners, as well as legal entities and individuals who have a license.
- Seeds of varieties and hybrids that are not protected by a patent or certificate can be produced and used by any legal entities and individuals.


3-2一般向けセミナー

発表資料 4-1:気候変動に対する農林水産省の取り組み スライド 1


気候変動に対する農林水産省の取組


2020年11月20日


農林水産省

世界全体と日本の農業由来の温室効果ガス(GHG)の排出 〇 世界のGHG排出量は、490億トン $(CO_2$ 換算)。このうち、農業・林業・その他土地利用の排出は世界の 排出全体の1/4。 ○ 日本の排出量は12.4億トン。このうち、農林水産分野は約5,001万トン (2018年度、約4.0%)。 ○ 農業分野からの排出について、水田、家畜の消化管内発酵、家畜排せつ物管理等によるメタンの排出 や、農用地の土壌や家畜排せつ物管理等によるN₂Oの排出がIPCCにより定められている。 *温室効果は、CO2に比ベメタンで25倍、N2Oでは298倍。 ○ エネルギー起源のCO₂排出量は世界比約3.4% (第5位、2017年 (出典: EDMC/エネルギー経済統計要覧))。 ○ 日本の吸収量は約5,590万トン。このうち森林4,700万トン、農地・牧草地750万トン (2018年度)。 ■ 日本の農林水産分野のGHG排出量 ■ 世界の経済部門別のGHG排出量 電力と熱生産 エネルギー 農用地の土壌 農業・林業・その他の土地利用 541 家畜排せつ物管理 (AFOLU)24% 392 N₂O (18.8%) CO₂ 49GtCO₂換算 (Gtは10億トン) (2010年) 2018年度排出量 5,001万t-CO₂ 稲作 CH₄ (46.8%) 1,356 その他の エネルキ 石灰·尿素施肥 家畜排せ 物管理 間接CO。排出 747 単位:万t-CO₂ **232 747** データ出典:温室効果ガスインベントリオフィス(GIO) 232 3 出典:IPCC AR5 第3作業部会報告書 図 SPM.2

課題解決に向けた取組の現状(緩和策)

<革新的環境イノベーション戦略(2020年1月策定)(農林水産分野の概要)>

海洋によるCO2吸収

- ■目標コスト
- 産業持続可能なコスト
- CO2吸収量 119億トン~/年*

【技術開発】

- あ藻類の増養殖技術等、ブルーカーボンの創出
- バイオ炭の農地投入や早生樹・エリートツリーの開発・普及等高層建築物等の木造化や改質リグニンを始めとしたバイオマ
- ス素材の低コスト製造・量産技術の開発・普及

【施策】

- バイオ技術による要素技 術の高度化
- 先導的研究から実用化、 実証までの一貫実施

農畜産業からの メタン・N_oO排出削減

農地や森林、

- 目標コスト ■ CO₂潜在削減量
- 既存生産プロセスと同等価格 17億トン/年**

土壌のGHG排出削減

【技術開発】

- メタン発生の少ないイネや家畜の育種、N₂Oの発生削減資材 の開発
- メタン・N₂Oの排出を削減する農地、家畜の管理技術の開発メタン・N₂Oの削減量を可視化するシステムの開発

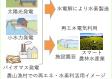
【施策】

● 産学官による研究体制の 構築

再エネの活用& スマート農林水産業

- ■目標コスト
- エネルギー生産コストの大幅削減
- CO₂潜在削減量 16億トン~/年**

水電解により水素製造 太陽光発電 再エネ電気利用


【技術開発】

- 農山漁村に適した**地産地消型エネルギーシステムの構築**
- 作業最適化等による燃料や資材の削減
- 農林業機械や漁船の電化、水素燃料電池化

*削減量・吸収量は世界全体における数値をNEDO等において試算。

【施策】

● 産学官による研究体制の 構築

**潜在削減量は世界全体における数値を農林水産省において試算。

7

スライド8

課題解決に向けた取組の現状(適応策)

- 気候変動に適応する持続的な農業の実現に向け、高温に強い品種や生産技術を開発。
- 農作物のゲノム情報や生育等の育種に関するビッグデータを整備し、これをAIや新たな育種技術と組 み合わせて活用することで、従来よりも効率的かつ迅速に育種をすることが可能となる「スマート育種 システム」を開発中。
- 海外に対して強みを持つ国産ゲノム編集技術やゲノム編集作物の開発も進展。
- 気候変動に対応する品種などを効率よく提供することが可能に。

〇開発した気候変動適応技術の例

・高温でも白未熟粒が少ない高温耐性品種 の開発

(例:にじのきらめき、秋はるか)

果樹(ブドウ)

(例:グロースクローネ)

・高温でも着色がよいブドウ品種の開発

・高温でも着色を促進する環状剥皮技術の開発

にじのきらめき(左)と コシヒカリ(右)

果樹(リンゴ)

・高温でも着色がよいリンゴ品種の開 発 (例:錦秋、紅みのり)

果樹(ミカン)

みかんの浮皮軽減のための植物

ブドウの環状剥皮 グロースクローネ

○開発中の適応策の例 スマート育種システムの構築 気象データ 栽培データ **5種ビッグデー** 0 1 AIや新たな育種技術を活用した効 率的な品種開発 ゲノム情報 成分情報 圃場データ 過去の文献 ゲノム編集作物の開発 GABA高蓄積トマト 超多収に向けたシンク能改変イネ 筑波大が開発済み。ベン 農研機構等が開発 チャー企業を設立し、実 済み。2017年度から 野外ほ場での形質評 用化に向けた準備が進 価を開始。 穂発芽耐性コムギ 天然毒素を低減したジャガイモ 阪大・理研等が開発済 岡山大・農研機構等が 開発済み(左)。 野外での形質評 8 み。企業等とともに協議 会を設立し、実用化を

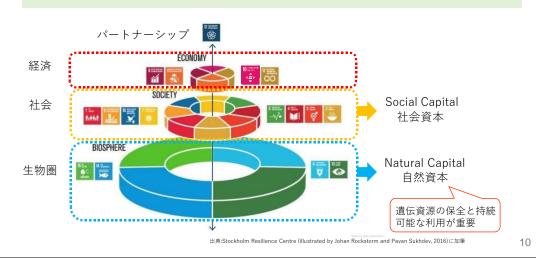
価を進備中。

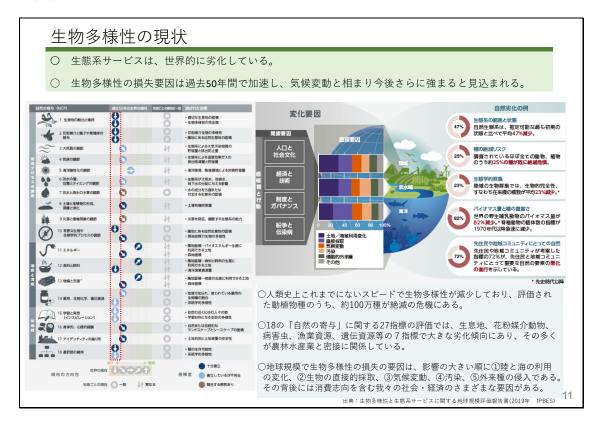
地球の限界(プラネタリー・バウンダリー)

- 地球の変化に関する各項目について、人間が安全に活動できる範囲内にとどまれば、人間社会は 発展し繁栄できるが、境界を越えることがあれば、人間が依存する自然資源に対して回復不可能な 変化が引き起こされる。
- **9**つの環境要素のうち、種の絶滅の速度と窒素・リンの循環については、不確実性の領域を超えて高リスクの領域にあり、また、気候変動と土地利用変化については、リスクが増大する不確実性の領域に達している。

31-1-1 地球の限界(プラネタリー・パウンダリー)による地球の状況
気候変動
生物圏の一体性
生態系機能
の消失
土地利用変化
大気エアロゾルの負荷
選素
生物地球化学的循環
・ 不安定な領域を超えてしまっている (高リスク)
・ 不安定な領域を超えてしまっている (高リスク)
・ 大気エアの別外の領域や (安全)

資料: Will Steffen et al. [Guiding human development on a changing planet]


9


スライド 10

自然資本とSDGs (持続可能な開発目標)

○ SDGsの17のゴールを階層化したとき、自然資本※は他のゴールの土台となる。自然資本から生み出される様々なものを活かすことで、私たちの社会は成り立っており、自然資本を持続可能なものとしなければ他のゴールの達成は望めない。

※自然資本(ナチュラルキャピタル):自然環境を国民の生活や企業の経営基盤を支える重要な資本の一つとして捉える考え方。森林、土壌、水、大気、生物資源など、自然によって形成される資本のこと。

スライド 12

- 〇 「主物多様性報略計画2011-2020及び変和目標」の最終計画として主物多様性栄約事務局が各種制画の「国 別報告書」とIPBESアセスメント等をもとにまとめたもの(2020年9月15日公表)。
- ほとんどの愛知目標についてかなりの進捗が見られたものの、20の個別目標で完全に達成できたものはない。
- 2050年ビジョン「自然との共生」の達成には、「今まで通り(business as usual)」から脱却し、社会変革が必要。

愛知目標の評価

①愛知目標の20の個別目標のうち完全に達成できたものはないが、<u>6つの目標が2020年の達成期限までに部分的に達成と評価</u>。

※20の個別目標に含まれる60の「要素」の内、

- 7要素が達成
- -38要素が進捗
- -13要素が進捗がなかったか後退
- -2要素の進捗は不明

とされた。

②未達成の理由として、愛知目標に応じて各国が設定する<u>国別目標の範囲や目標のレベルが、愛知目標の達成に必要とされる内容と必ずしも整合していなかった</u>ことを指摘。

海外遺伝資源の取得及び利用の促進と生物多様性の保全

○ 気候変動等の地球規模課題に対応するため、高温耐性・病害虫抵抗性を持つ新品種の開発 の素材として海外遺伝資源の取得の円滑化が期待されているところ。

途上国を中心に存在する遺伝資源

利益配分


利益配分 4

生物多様性条約、名古屋議定書

- 主に二者間で合意した詳細な 条件(契約)に基づく取引
- 取引対象は全ての遺伝資源

食料・農業植物遺伝資源条約

- 条約締約国が合意した共通の 条件(定型契約)に基づく取引
- 取引対象は一部の食用・飼料 作物

遺伝資源の利用者(種苗会社、大学、研究機関等)

13

スライド 14

各国の環境政策

ΕU

【「ファーム to フォーク」(農場から食卓まで)戦略】

欧州委員会は、2020年5月に本戦略を公表し、欧州の持続可能な食料システムへの包括的なアプローチを示している。

今後、二国間貿易協定にサステナブル条項を入れる等、国際交渉を通じてEUフードシステムをグローバル・スタンダードとすることを目指している。

- 次の数値目標(目標年:2030年)を設定。
- 農薬の使用及びリスクの50%削減
- 一人当たり食品廃棄物を50%削減
- 肥料の使用を少なくとも20%削減
- 家畜及び養殖に使用される抗菌剤販売の50%削減
- 有機農業に利用される農地を少なくとも25%に到達等

米国(農務省)

【農業イノベーションアジェンダ】

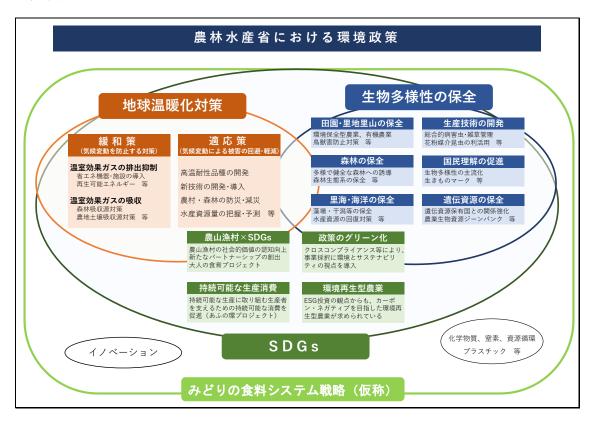
米国農務省は、2020年2月にアジェンダを公表し、2050年までの農業生産量の40%増加と環境フットプリント50%削減の同時達成を目標に掲げた。さらに技術開発を主軸に以下の目標を設定。

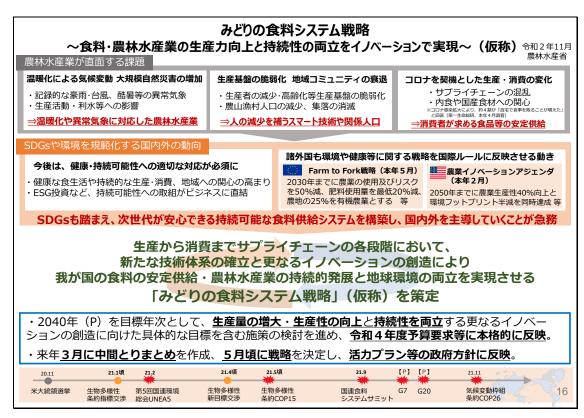
- 2030年までに食品□スと食品廃棄物を50%削減
- 2050年までに土壌健全性と農業における炭素貯留を強化し、 農業部門の現在のカーボンフットプリントを純減
- 2050年までに水への栄養流出を30%削減

バイデン米国次期大統領のマニフェスト(農業と環境部分)

米国大統領選の民主党候補者バイデン氏のマニフェストには、 **米国のバリ協定への再加入**のほか、農家のために機能する貿易 政策の追求等と並行して、**地域の食料システムの開発促進とバ** イ**オ燃料により排出量ゼロ**を達成するため、農家と提携し、農家 の新たな収入源とする旨が書かれている。

中国


【国連総会一般討論演説(2020年9月22日)】


・ (環境政策に関して) 中国は国としての自主的貢献度を 高め、より強力な政策と措置を取り、二酸化炭素の排出につ いて2030年までにピークに達することを目指し、2060年ま でにカーボンニュートラル実現を目指して努力する。 日本

【第203回国会 内閣総理大臣所信表明演説】

・我が国は、2050年までに、温室効果ガスの排出を全体としてゼロにする、すなわち2050年カーボンニュートラル、脱炭素社会の実現を目指すことを、ここに宣言いたします。もはや、温暖化への対応は経済成長の制約ではありません。 積極的に温暖化対策を行うことが、産業構造や経済社会の変革をもたらし、大きな成長につながるという発想の転換が必要です。

発表資料 4-2:新たな品種の開発と植物遺伝資源の役割 スライド 1

令和2年11月20日 植物遺伝資源セミナー「気候変動と植物遺伝資源」

新たな品種の開発と 植物遺伝資源の役割

農研機構遺伝資源センター 保存技術・情報チーム 山本伸ー

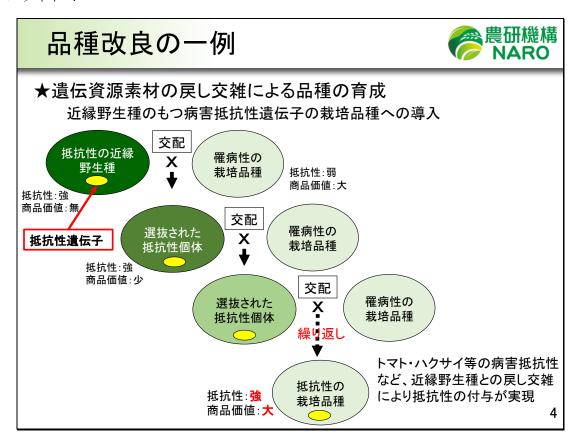
※ 農研機構(のうけんきこう)は、国立研究開発法人農業・食品産業技術総合研究機構のコミュニケーションネーム(通称)です。

スライド 2

「植物遺伝資源」とはなにか

NARC

食料・農業植物遺伝資源条約 での定義 (第二条 用語) (正式名称:食料及び農業のための植物遺伝資源に関する国際条約)


「食料及び農業のための植物遺伝資源」とは、 植物に由来する遺伝素材であって食料及び農業のための現実の又は 潜在的な価値を有するものをいう。

「遺伝素材」とは、植物に由来する素材であって遺伝の機能的な単位を 有するもの(生殖能力を有する素材及び栄養繁殖性の素材を含む。) をいう。

ここでの「植物遺伝資源」は<u>農作物のすべての栽培品種</u> (<u>在来/改良含む)・近縁野生種</u>などが相当する

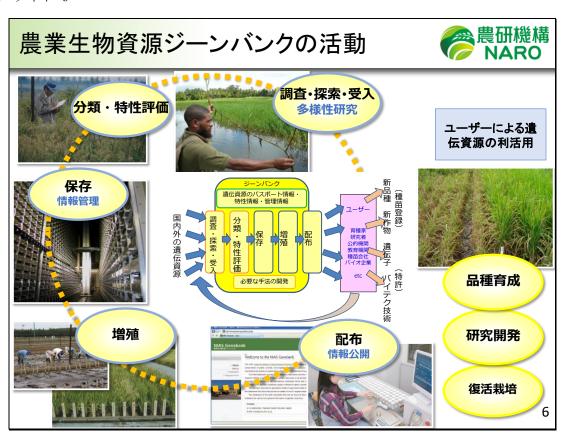
※生物多様性条約(生物の多様性に関する条約)では すべての生物が遺伝資源に相当

多様な遺伝資源の一例 世界には様々な品種が存在します その他は栽培種 るの他は栽培種 での他は栽培種 ののの 3

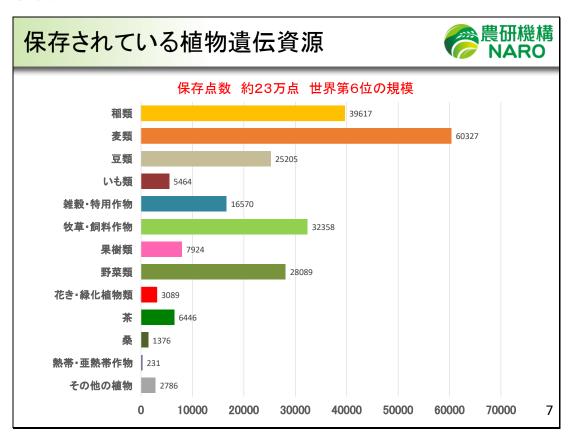
農業生物資源ジーンバンク事業

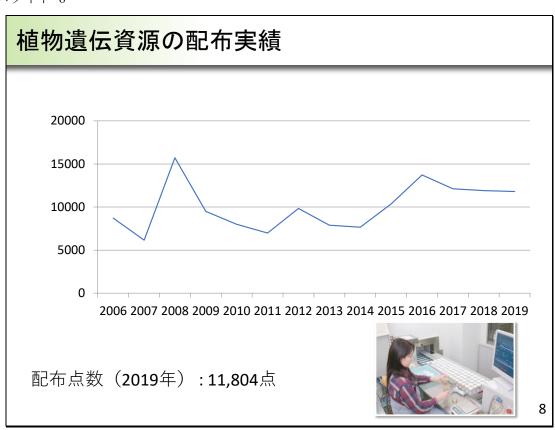
農業生物資源ジーンバンクは、農業分野に関わる遺伝資源について探索収集から特性評価、保存、配布および情報提供までを行う事業です。

農研機構遺伝資源センターに本部を置き、植物・微生物・動物の遺伝資源の収集・受入、増殖・保存、特性評価、配布および情報の管理提供ならびに生物遺伝資源の高度化のための試験研究を行っています。


世界の主要国における植物遺伝資源の保存数

米国587千点中国392千点インド366千点ロシア322千点日本229千点


8(出典:日本の数値は農研機構遺伝資源センターの資料(2019年)、他国の数値は国連食程農業機関(FAO)資料)



5

スライド 7

遺伝資源の利用

- ・新しい特性の育種素材
- 昔の品種の復活栽培

9

スライド 10

復活栽培の例 雑司ヶ谷ナス

江戸時代、雑司ヶ谷や 向島で生産されるナス は美味しいと評判だった。

しかし、都市化で栽培は減少し、関東大震災でその栽培はほとんど失われた。

ジーンバンクで保存していた「雑司ヶ谷ナス」「寺島ナス」などの種子が、昔の産地に提供され、特産品として生産されている。

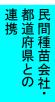
新しい特性の育種素材としての利用

遺伝資源収集から新品種開発までの流れ

遺伝資源保有国との交渉

遺伝資源の収集・特性評価

有用な遺伝資源の発見


育種•遺伝解析

素材開発(中間母本育成)

新品種開発

は対応しにくい民間種苗会社で

スライド 12

新しい特性の育種素材としての利用

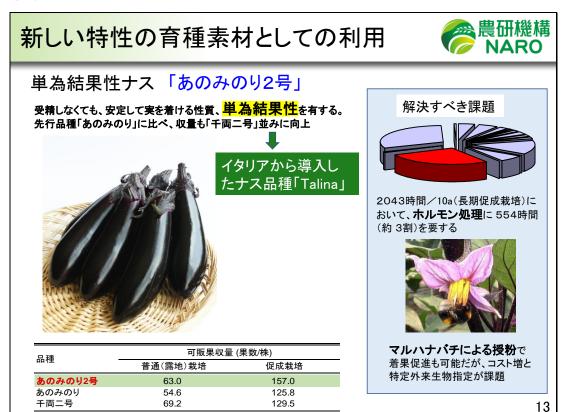
水稲品種「コシヒカリBL」

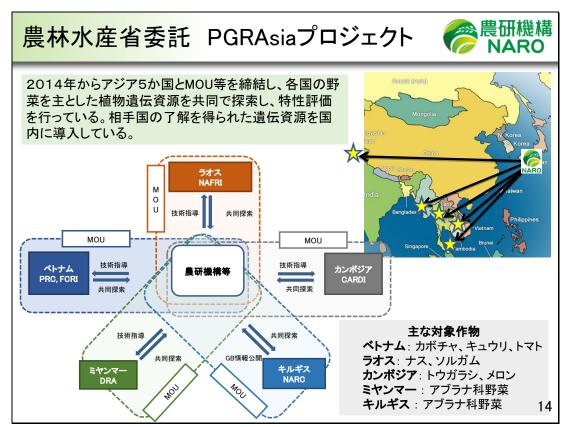
新潟県等では、イネの「いもち病」に抵抗性のフィリピンや米国等 の品種をコシヒカリに交配し、いもち病に強い「コシヒカリBL品種 群」を育成した。

いもち病菌の種類に応じて、「コシヒカリB L」を複数組み合わせて栽培し、いもち病 の蔓延を予防できる。

新潟県では、いもち病の発生が劇的に抑 えられ、農薬の使用回数も約25%削減さ れ、生産コスト削減にも貢献している。

コシヒカリ新潟BL3号


- → 遺伝資源: Tadukan(フィリピン) コシヒカリ新潟BL4号
- 遺伝資源:Zenith(米国)
- コシヒカリ新潟BL5号
- 遺伝資源: 荔子江(中国)
- コシヒカリ富山BL3号
- 遺伝資源 : Engkatek <mark>(マレーシア)</mark>



コシヒカリ

コシヒカリBL

農林水産省委託 PGRAsiaプロジェクト

現行のPGRAsiaプロジェクトの研究内容

A: 探索

B: ウリ科野菜遺伝資源の特性解明 C: ナス科野菜遺伝資源の特性解明

D: 葉根菜遺伝資源の特性解明

E: 穀物遺伝資源の特性解明

F: 育種素材の育成

G: データベースの整備と公開

H: 遺伝資源ゲノムデータ基盤の構築による

民間育種の加速化

15

スライド 16

海外での遺伝資源探索および

探索収集

奥地の農村を訪れ、昔から東南アジアで栽培されている 在来品種の種子を集めます。

ベトナム北部におけるカボチャやキュウリの探索

収集されたキュウリ(上)と カボチャ(下)

特性調査

熱帯の環境で遺伝資源品種を栽培し、耐病性や品質など の特性を調査します。

ベトナムでのイネの調査

カンボジアでの野菜の調査

研修

研究者が来日し、農研機構等で遺伝資源に関する研修を受講 1(

PGRAsiaプロジェクトの実績

海外植物遺伝資源探索

PGRAsia 第一期(2014~2017年度)5か国合計で約3,000点の食糧・農業植物遺伝資源を収集

対象国	対象作物	2014	2015	2016	2017	合計
ベトナム	カボチャ、キュウリ、アマランサス 等	59	97	77	65	298
ラオス	ナス、ナス近縁種 等	134	136	108	200	578
カンポジア	トウガラシ類、メロン、ソルガム 等	124	259	319	295	997
ミャンマー	在来野菜、アブラナ科野菜 等		121	278	321	720
ネパール	キュウリ、トウガラシ、アマランサス 等		88	151	157	396

PGRAsia 第二期(2018~2022年度) 5か国合計でこれまで1,700点以上の食糧・農業植物遺伝資源を収集

対象国	対象作物	2018	2019	合計
ベトナム	トウガラシ、ナス 等	113	88	201
ラオス	ナス、ナス近縁種、アブラナ科野菜 等	135	163	298
カンボジア	キュウリ、在来野菜類 等	231	232	463
ミャンマー	アブラナ科野菜、キュウリ、トウガラシ等	286	313	599
キルギス	メロン、葉根菜類 等		221	221

総計4,700点以上の新規遺伝資源を収集。有望系統も見出された。17

スライド 18

もっと詳しく知りたい方へ

●農業生物資源ジーンバンクWebサイト: https://www.gene.affrc.go.jp/index_j.php

●PGRAsiaプロジェクトWebサイト: https://sumire.gene.affrc.go.jp/pgrasia/index_ja.php

ご清聴ありがとうございました

18

発表資料 4-3:気候変動がもたらす影響とその適応策 熱帯果樹の遺伝資源に関する展望

スライド 1

令和2年度植物遺伝資源セミナー 「気候変動への対応と植物遺伝資源」

2020年11月

気候変動がもたらす影響とその適応策 熱帯果樹の遺伝資源に関する展望

国際農林水産業研究センター(国際農研) 熱帯・島嶼研究拠点(熱研)

緒方達志

熱研

スライド 2

スライド 3

スライド 4

気候変動適応法

- 第二章 気候変動適応計画
 - 第七条 政府は、気候変動適応に関する施策の 総合的かつ計画的な推進を図るため、気候変動 適応に関する計画(以下「気候変動適応計画」と いう。)を定めなければならない。
 - 農林水産省気候変動適応計画
 - 平成27年8月6日決定
 - 平成30年11月27日改定

スライド 6

農林水産省気候変動適応計画

- 第一章 総論
- 第1 基本的な考え方
 - 4. 気候変動がもたらす機会の活用
 - 低温被害の減少による産地の拡大、<mark>温暖化が進んだ場合に</mark> 新規導入や転換、産地の育成、積 雪期間の短縮による栽培可能な期間の延長及び地域の拡大による生産量の増大等、気候変動がもたらす機会を活用する。
- 第二章 分野・品目別対策
 - 第1 農業
 - 2. 農業生産の分野・品目別影響及び取組
 - (2)果樹
 - » ②取組
 - このほか、気候変動により温暖化が進んだ場合、亜熱帯・熱帯・熱帯果樹の施設栽培が可能な地域が拡大するものと予想されることから、2016年以降、高付加価値な亜熱帯・熱帯果樹(アテモヤ、アボカド、マンゴー、ライチ等)の導入実証に取り組み、産地の選択により、既存果樹からの転換等を推進する。

スライド 8

日本で栽培されている主な熱帯果樹

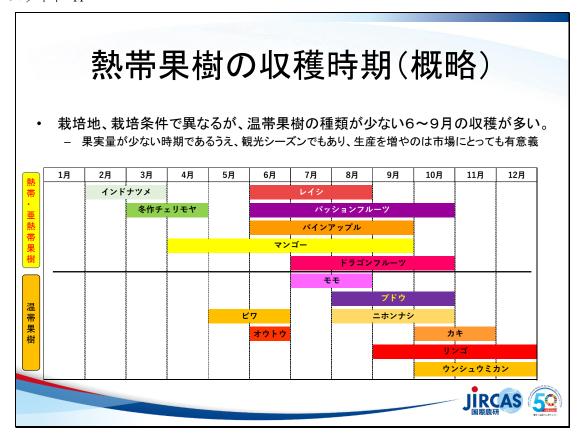
種類	栽培面積(ha)	収穫量(t)	2019生鮮輸入量(t) 財務省貿易統計			
パインアップル	(収穫面積)319	7,340	153,242			
マンゴー	421	2,923	7,327			
パッションフルーツ	62	487	-			
ドラゴンフルーツ	16	143	-			
バナナ	28	234	1,044,686			
パパイヤ	61	487	1,006			
アセロラ	8	37	-			
アテモヤ	9	42	-			
スターフルーツ	3	23	-			
レイシ等	6	17	212			
アボカド	9	8	77,287			
びわ(参考)	1,170	2,790	-			
キウイフルーツ(参考)	1,950	25,000	106,500			
みかん等(参考)	39,600	773,700	7,245			
パインアップル、みかん、びわ、キウイフルーツは2018年度、他は2016年度(農林統計)						

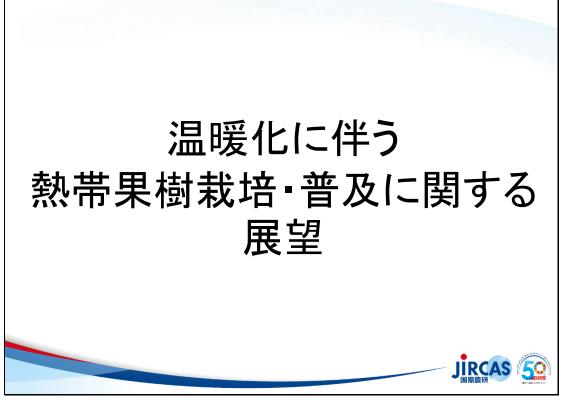
農林水産省が行っている植物の輸入検疫

- 植物の病害虫が海外から輸入される植物に付 着して日本に侵入することを防ぐため、輸入検 疫が行われています。量や商用・個人用を問 わず、貨物、携帯品、郵便物で輸入されるすべ ての植物が対象となります(農水省webサイト より)。
- 多くの熱帯果樹は、病害虫侵入防止のため、 主産地の熱帯地域から輸入が禁止されている。

スライド 10

植物防疫上の熱帯果樹の輸入制限


- 無処理生果での輸入が許可
 - 未熟バナナ、パインアップル、ドリアン
 - ・ 検査は必要
 - アボカド、マンゴー、パパイヤ
 - 一部の地域のみ
- 蒸熱処理等の条件付きで許可(国、地域による制限あり)
 - マンゴー、パパイヤ、マンゴスチン、レイシ、ピタヤ等
 - 「蒸熱処理とは 熱帯果実に寄生するミバエ類を43°Cから50°C前後 の飽和水蒸気で殺虫する方法」(日本くん蒸技術協会)
- 輸入禁止
 - ランブータン、グアバ、レンブ、バンレイシ等ほとんどの熱帯果樹


我が国で生産しなければ、多くの熱帯果樹は国内で入手できない。 入手できる場合でも輸送等の時間の制約で本来の品質ではない場合 が多い。

スライド 12

温暖化と熱帯果樹栽培

温暖化による熱帯・亜熱帯果樹栽培への影響

- 最低気温の上昇による露地栽培可能地域の増加
 - アボカド:熱帯果樹の中では耐寒性強い。品種によっては-7~8℃に耐える。
 - レイシ: 鹿児島県には江戸時代に導入したものが現在も残っている。
 - ドラゴンフルーツ:比較的耐寒性強い。本州でも露地栽培の例あり。
 - 突発的な低温があれば永年作物の果樹は回復に数年を要する甚大な被害が 出かねないので、短期的には期待できない。
- 低温期間の減少による加温等防寒対策の節減
 - 使わなくなった施設の有効利用として熱帯果樹に取り組む例が増えている。
 - 施設栽培で少なくとも最低温度5°Cを保持すれば樹体の維持が可能
- 生育可能温度期間の増加による収量、果実品質の向上
 - 特に定植一年以内に収穫できるパッションフルーツ、青パパイヤでは有効

スライド 14

我が国における熱帯果樹栽培の課題

- 冬季の低温対策
- 日本に適した品種の導入・選定、開発
- 栽培技術の開発
- 病虫害対策

地域戦略プロジェクトの成果

アボカド・パッションフルーツ 「栽培の手引き」

リーフレット集

2019年3月

地域戦略(亜熱帯果樹)コンソーシアム

農研機構果樹茶業研究部門 鹿児島県農業開発総合センター果樹・花き部 鹿児島県農業開発総合センター大島支場 鹿児島県農業開発総合センター大島支場 鹿児島大学農学部 国際農林水産業研究センター 三重県農業研究所 千葉県農林総合研究センター 東京都・笠原支庁産業課亜熱帯農業センター 岐東県農業技術センター 京都大学農学研究科

地域戦略プロジェクト:「アボカド、パッショ ンフルーツなど亜熱帯果樹における国産 化可能性の分析と栽培技術の開発」 (H28-30;農研機構、東京都、千葉県、岐 阜県、三重県、鹿児島県、京都大学、鹿児 島大学、国際農研)

海外から導入したアボカド品種の日本での栽 培適応性の評価・栽培技術の開発、パッション フルーツの栽培技術の開発、遺伝資源を用い たパッションフルーツの品種開発、等

https://www.naro.affrc.go.jp/publicity_report/ publication/files/201903nivfs_avocado_pfruit s tec manual.pdf

スライド 16

我が国における熱帯果樹栽培の課題

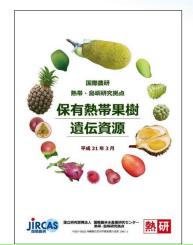
- 冬季の低温対策
- 日本に適した品種の導入・選定、開発
- 栽培技術の開発
- 病虫害対策

日本に適した熱帯果樹品種の導入・選定、開発

- 品種導入・開発の遅れ
 - 現在国内で栽培されている品種、系統(特に在来系と言われるもの)は熱帯 地域で栽培されている選抜品種と比べて果実品質が劣るのもある。
- 栽培条件の違い
 - 熱帯地域とは気温条件等が異なるため、果実品質が良くても日本では栽培適性に問題がある品種もある(高温障害、花芽着生不良等)。
- 嗜好の違い
 - 日本で栽培されているマンゴーの品種は世界的にはマイナーな「アーウィ ン」が主
 - 比較的クセが少なく、かつ樹上で完熟できて独特の風味となることから日本の消費者の嗜好に合うということで普及した。
 - フルーツパパイヤ等のややクセのある食味が苦手な人も多い

日本の栽培条件、消費者の嗜好に応じた品種の選定、ある いは開発が必要。そのために遺伝資源の導入が必要

スライド 18


熱帯果樹遺伝資源の導入

国際農研で保有する熱帯果樹遺伝資源

- 農業生物資源ジーンバンク 熱帯・亜熱帯作 物サブバンクとして
 - 熱帯果樹40種約150点(パインアップル除く)
 - 1970年代~1990年代に導入
 - 原則として研究、教育目的以外には利用でき
 - 選抜品種は少ない。
- 独自保有遺伝資源
 - 21種357品種・系統
 - 選抜品種が主
 - アメリカ、および国内の苗木業者、研究機関等から導入
 - 商業利用については?
 - 分譲には材料移転契約(MTA)締結が必要
 - 海外の品種についてはまだ不十分
 - 未導入の主要品種少なくない。
 - さらなる導入が必要

https://www.jircas.go.jp/ja/publication/ manual_guideline/tarf_tropical_fruit

JIRCASマンゴー遺伝資源サイト https://www.jircas.go.jp/ja/database/mango/mango-top

スライド 20

国際農研等における研究目的での 熱帯果樹遺伝資源導入の最近の状況

- タイ
 - 現地の研究機関はOKだが、上層部に問い合わせると不可との回答
 - 顕微鏡観察用抱埋サンプルでも不許可
 - 研究はやってもらってかまわないが、タイ国内でやってほしいとのこと
- マレーシア
 - DNAサンプルでも不許可(とのことだったので、申請せず)
- インドネシア
 - 現地でドリアンの枝の組織の研究をしていた大学の研究者が、日本で研究継続するために材料持ち出しを申請したが不許可
- ミャンマー、ラオス
 - DNA分析用乾燥サンプルについてMTA(材料移転契約)を締結し、導入
 - 苗木は不可

東南アジアから研究目的での熱帯果樹遺伝資源導入は最近は 困難。未保有の主要品種等が導入できない。

気候変動等に対応した海外遺伝資源 の保全・利用促進事業

- 研究目的では多くの東南アジアの国では現状持ち出し 許可が下りないが、民間の導入では可能となれば良い。
- アメリカは多数の熱帯果樹遺伝資源を保有しており、 かつ現在は(全てではないが)持ち出し許可が得られて いる。
 - 日本熱帯果樹協会は主にアメリカから熱帯果樹品種を導入

本事業の成果として、熱帯果樹遺伝資源が 今後導入されていくことを期待

スライド 22

ご清聴ありがとうございました。

