日本農林規格 (案)

JAS XXXX : 20XX

精米

Milled rice

1 適用範囲

この規格は、水稲うるち精米又は陸稲うるち精米の短粒種(形の欠けていない精米粒の長さと幅との比が 1.9 以下であるもの)であって、炊飯に供するものの品質について規定する。

2 引用規格

次に掲げる引用規格は、この規格に引用されることによって、その一部又は全部がこの規格の要求事項を構成している。これらの引用規格は、その最新版(追補を含む。)を適用する。

JIS Z 8722 色の測定方法-- 反射及び透過物体色

JIS R 3503 化学分析用ガラス器具

JIS Z 8801-1 試験用ふるい-第1部:金属製網ふるい

3 用語及び定義

この規格で用いる主な用語及び定義は、次による。

3.1

玄米

もみからもみ殻を取り除いて調製したもの

3.2

精米

玄米からぬか層と胚芽の全部又は一部を除いたもの

3.3

異物

穀粒を除いた他のもの及び完全粒の4分の1未満の大きさの粒

3.4

異種穀粒

その種類の精米を除いた他の穀粒

注釈1 水稲うるち精米の場合は、陸稲うるち精米、もち精米、玄米及びその他の穀類が異種穀粒に該当する。

2

XXXX: 20XX

3.5

着色粒

虫, 熱, 微生物等によって粒面の全部又は一部が赤, 黄, 褐, 黒色等になった粒 (精米の品質に著しい影響を及ぼさない程度のものを除く。)

注釈1 着色粒の例を図A.1 に示す。

3.6

被害粒

虫, 熱, 微生物, その他の障害によって汚染又は損傷を受けた粒(砕粒を除く。) 注釈1 被害粒の例を図A2に示す。

3.7

砕粒

完全粒の3分の2から4分の1までの大きさの粒 注釈1 砕粒の例を図A3に示す。

3.8

粉状質粒

粒質が粉状又は半粉状の粒

注釈1 粉状質粒の例を図A.4 に示す。

3.9

水浸割粒

水に浸したときに、短径の2分の1以上の亀裂が生じた粒

4 品質

精米の品質は、表1の品質基準に適合していなければならない。

表 1-品質基準

区分	基準
白度	5.3 によって試験したとき、39以上。
水分	5.4 によって試験したとき、15.0%以下。
異種穀粒及び異物	5.5 によって試験したとき、0.0%以下。
着色粒	5.6 によって試験したとき、0.0%以下。
被害粒(着色粒を含む。)	5.7 によって試験したとき、1%以下。
砕粒	5.8 によって試験したとき、3%以下。
粉状質粒	5.9 によって試験したとき、6%以下。
水浸害粒	5.10 によって試験したとき、10%以下。

5 試験方法

5.1 一般

試験に使用する器具は、次による。

a) 白度計 白度計は、JIS Z 8722 に規定する照射及び受光の幾何条件によって、精米の白度を測定できるものであって、次による。

;

XXXX: 20XX

- 1) 波長測定範囲が、450 nm~480 nm であるもの。
- 2) 測定値の繰返し性が、その測定値の±0.1 %以内であるもの。また、同一の安定な物体色を、長時間を経た後に同じ条件で測定した場合の反復性は、上記の繰返し性が 3 倍を超えないもの。
 - 注記 市販品の例として、株式会社ケット科学株式会社研究所製の玄米精米白度計 (C-600) がある。この情報は、この規格の利用者の便宜のために示しており、この製品を推奨するものではない。
- b) 定温乾燥器 106.5 ℃に設定した場合の温度調節精度が±1 ℃以内で調節できるロータリー型(回転棚式)のもの。
- c) ひょう量缶 下径直径 50 mm 以上, 高さ 25 mm 以上のもので蓋を持つアルミニウム製のもの。
- d) デシケーター JIS R 3503 に規定するもので、乾燥剤としてシリカゲルを入れたもの。
- e) 試料粉砕器 ロールは鋼製ローレット仕上げであって、焼き入れのうえクロームメッキしたもので、ロール径 25 mm、回転比 2 対 1、ロール間隙 0.5 mm、ローレット目数 1 cm に 9 目、目の高さ 0.5 mm のもの。
- f) 電気水分計 電気水分計の仕様は、次による。
 - 1) 直流抵抗式又は高周波容量式であって、測定値が0.1%単位まで表示できること。
 - 2) 5.4 a)による測定値との標準偏差が±0.5%以内であること。
 - 3) 11.0%から 18.0%までが測定できること。
- g) 近赤外分析計 近赤外分析計の仕様は,次による。
 - 1) 次によって、機器の精度及び機器の安定が確保されていること。
 - 1.1) 同一試料の反復測定における再現性が標準偏差で±0.1%以内であること。
 - 1.2) 未知試料の測定精度が標準偏差で±0.30%以内であること。
 - 1.3) 電圧変動の影響を受けないこと。
 - 2) 作業環境(温度,粉塵,振動等)への対応又は防護措置がとられていること。
 - 3) 測定者自身で、検量式の作成及びバイアス又はスロープの調整が可能なこと。
- h) 試験用ふるい JIS Z 8801-1 に規定するものであって、針金25 番線ふるい目開き 1.7 mm のもの。

5.2 試験用試料の調製

採取試料は、a)又はb)によって200 g となるまで均分に縮分し、試験用試料とする。

- a) 四分法 試料を円形に平らに広げ、縦、横に分割して4等分し、対角の部位にある試料を寄せ集めて混合し縮分 試料とする。この操作を1回行うと試料は半分となる。さらに、縮分を必要とする場合は、この操作を200gに なるまで繰り返す。
- b) 試料均分器による方法 試料を適当な容器に入れて、二分割器の試料供給口全域に、均一に供給して分割する。二分割された試料のどちらか一方を選び、縮分試料とする。円錐部は常に水平を保ち、試料を入れ終ってからシャッターを開く。漏斗の容量以上の試料を連続的に均分するときは、漏斗部が空にならないよう試料を補填する。なお、均分中シャッターの開閉は行わない。

5.3 白度

5.2 の試験用試料を、白度計によって複数回測定し、その平均値を求め、小数第1位を四捨五入して整数とする。

5.4 水分

水分の測定は、次のいずれかによる。

a) 常圧加熱乾燥法

- 1) あらかじめ 106.5 °Cに設定した定温乾燥器にふたを開けた状態のひょう量缶を入れ、定温乾燥器の表示温度で庫内温度が 106.5 °Cであることを確認した後、1 時間加熱する。定温乾燥器内でひょう量缶にふたをし、デシケーターに移し替え、室温になるまで放冷した後、直ちに質量を 0.1 mg の桁まで測定する。この操作を前後の秤量差が 0.5 mg 以下となるまで繰り返し、恒量を求め、ひょう量缶の質量とする。
- 2) 1)によって恒量を求めたひょう量缶に試料粉砕器を用いて粉砕した 5.2 の試験用試料約 $5\,g$ をはかりとり、質量を $0.1\,\mathrm{mg}$ の桁まで測定する。

XXXX: 20XX

3) 2)によってはかりとったひょう量缶のふたを開け、ふたとともにあらかじめ 106.5 $^{\circ}$ $^{\circ}$ に設定した定温乾燥器に入れ、定温乾燥器の表示温度で庫内温度が 106.5 $^{\circ}$ $^{\circ}$ $^{\circ}$ であることを確認した後、5 時間加熱する。

4) 定温乾燥器内でひょう量缶のふたをし、デシケーターに移し替え、室温になるまで放冷した後、直ちに質量を 0.1 mg の桁まで測定し、次の計算式によって、水分を求め、小数第 2 位を四捨五入して、小数第 1 位までとする。

$$M = \frac{W_1 - W_2}{W_1 - W_0} \times 100$$

ここで, M: 水分(%)

 W_0 : ひょう量缶の質量 (g)

W₁: 乾燥前の試験用試料とひょう量缶の質量(g)W₂: 乾燥後の試験用試料とひょう量缶の質量(g)

b) 電気水分計を用いる方法

1) 電気水分計本体の温度と室温との差が2℃以内になるように電気水分計を測定場所の温度にならす。

2) 試験用試料の温度と、1)によって適合した状態の電気水分計の温度との差を3℃以内に近づける。

3) 5.2 の試験用試料を,電気水分計によって複数回測定し,その平均値を求め,小数第 2 位を四捨五入して,小数第 1 位までとする。

c) 近赤外分析計を用いる方法

1) 近赤外分析計が設置してある部屋の温度と試料の温度との差を3℃以内に近づける。

2) 5.2 の試験用試料を, 近赤外分析計によって複数回測定し, その平均値を求め, 小数第2位を四捨五入して, 小数1位までとする。

5.5 異種穀粒及び異物

異種穀粒及び異物の質量比の測定は、次による。

a) 5.2 の試験用試料<u>を</u>約 100 g <u>をはかりとり</u><u>に縮分し</u>, 0.1 g の単位まで測定した後, 試験用ふるいによってふるい分けする。

b) a)のによって試験用ふるいを通過した試料を, 0.1 g 単位まで測定する。

c) a)のによって試験用ふるいの上に残った試料から、目視によって異種穀粒及び異物を選別し、0.1g単位まで測定する。

d) 次の計算式によって、異種穀粒及び異物の質量比を求め、小数第2位を四捨五入して、小数第1位までとする。

$$A = \frac{W_1 + W_2}{W_0} \times 100$$

ここで,

A: 異種穀粒及び異物の質量比(%)

W₀: 5.5 a)で測定した試験用試料の質量 (g)

 W_1 : 5.5 c)で選別した異種穀粒及び異物の質量 (g)

W₂: 試験用ふるいを通過した試料の質量 (g)

5.6 着色粒

5.5 c)から,目視によって着色粒を選別する。質量を $0.1\,\mathrm{g}$ 単位まで測定し,次の計算式によって,着色粒の質量比を求め,小数第 $2\,\mathrm{d}$ 位を四捨五入して,小数第 $1\,\mathrm{d}$ 位までとする。

$$B = \frac{W_1}{W_0} \times 100$$

ここで.

B: 着色粒の質量比(%)

 W_0 : 5.5 a)で測定した試験用試料の質量 (g)

W1: 5.6で選別した着色粒の質量 (g)

XXXX: 20XX

5.7 被害粒(着色粒を含む。)

被害粒の質量比の測定は、次による。

- a) 5.6 の試験後の5.5 c)からを20 g をはかりとりに縮分し, 0.1 g の単位まで測定する。
- b) 目視によって被害粒を選別する。質量を 0.1 g 単位まで測定し、次の計算式によって、被害粒の質量比を求め、 小数第1位を四捨五入して整数とする。

$$C = \frac{W_1}{W_0} \times 100 + B$$

C: 被害粒の質量比(%)

Wo: 5.7 a)で測定した試料の質量 (g) W₁: 5.7 b)で選別した被害粒の質量(g) B: 5.6で測定した着色粒(%)

5.8 砕粒

5.7 a)から、目視によって砕粒を選別する。質量を 0.1 g 単位まで測定し、次の計算式によって、砕粒の質量比を求 め、小数点1位を四捨五入して整数とする。

$$D = rac{W_1}{W_0} imes 100$$

ここで, D : 砕粒の質量比(%)

 W_0 : 5.7 a)で測定した試料の質量 (g) W₁: 5.8で選別した砕粒の質量 (g)

5.9 粉状質粒

5.7a)から、目視によって粉状質粒を選別する。質量を 0.1 g 単位まで測定し、次の計算式によって、粉状質粒の質 量比を求め、小数第1位を四捨五入して整数とする。

$$E = \frac{W_1}{W_0} \times 100$$

E: 粉状質粒の質量比(%)

Wo: 5.7 a)で測定した試料の質量 (g) W₁: **5.9**で選別した粉状質粒の質量 (g)

5.10 水浸割粒

水浸割粒の粒数比の測定は、次による。

- a) 5.7 から 5.9 までの試験後の 5.7 a)から 100 粒を抽出し、常温(15 ℃~25 ℃)にした水に 20 分浸漬させる。
- b) 目視によって粒幅の2分の1以上の亀裂の入った粒を選別し、次の計算式によって、水浸割粒の粒数比を求 め、小数第1位を四捨五入して整数とする。

$$F = \frac{\cancel{W} \cancel{N}}{100} \times 100$$

ここで、 F: 水浸割粒の粒数比 (%)

5.11 試験手順

5.2~5.10 の試験の流れを図1に示す。

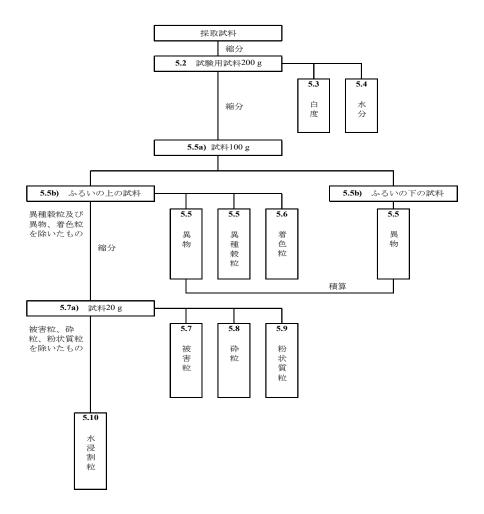


図1-試験手順

附属書 A (参考)

着色粒,被害粒,砕粒及び粉状質粒の例

着色粒、被害粒、砕粒及び粉状質粒の例を、 \mathbf{Z} A.1 \sim \mathbf{Z} A.4 に示す。

図 A.1 一着色粒の例

図 A.2 一被害粒の例

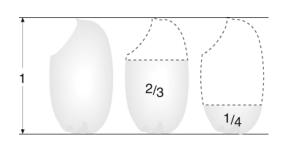


図 A.3 一砕粒の例

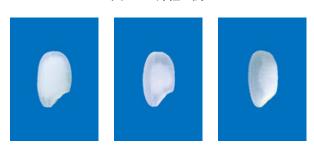


図 A.4 一粉状質粒の例