令和2年度

山地保全調査(水源森林保全調査・有明海等の閉鎖性海域と森林に関する調査)委託事業

報告書

令和3年3月

林 野 庁

目次

I.	事業の背景	1
II.	令和2年度(2020年度)調査計画	2
1.	調査目的	2
2.	本事業のこれまでの経緯	2
3.	課題の整理	5
4.	事業の基本方針	6
5.	本年度の業務内容	9
III.	計画準備	11
IV.	筑後川、矢部川流域における現地調査	12
1.	調査概要	12
2.	調査結果	14
V.	筑後川、矢部川 SWAT モデルの構築	23
1.	SWAT モデルの概要	23
2.	SWAT モデルの作業フロー	24
3.	菊池川モデルの他流域への適用	24
4.	菊池川モデルの筑後川および矢部川流域への適用	25
4	4.1 菊池川モデルの他流域への適用に関する考え方	26
4	4.2 菊池川モデルとの整合性の調整	27
5.	インプットデータの作成(既存データの収集・整理)	28
5	5.1 気象データ	28
5	5.2 土地利用データ	48
5	5.3 土壌データ	49
5	5.4 地形データ	51
5	5.6 その他の追加インプット設定	65
6.	モデルの各種設定条件	75
7.	感度分析	76
7	7.1 感度分析の方法	76
7	7.2 対象パラメータの選定	76
7	7.3 感度分析結果	76
8.	キャリブレーション・バリデーション	78
8	3.1 概要	78
8	3.2 キャリブレーションに必要なパラメータの選定	80
8	3.3 パラメータ値	80
8	8.4 対象期間	85

9.		SWAT モデル シミュレーションによる推定結果	85
	9.	1 筑後川の水収支	85
	9.	2 矢部川の水収支	92
	9.	3 筑後川の土砂・栄養塩流出量	98
	9.	4 矢部川の土砂・栄養塩流出量	100
VI.		菊池川モデルの再調整	102
1.		菊池川モデル構築の経緯	102
2.		残存課題および対応方針	103
	2.	1 窒素流出量の過小推計	103
	2.	2 水田と農地におけるリン流出量のバランス	103
3.		モデル再調整にかかる準備	104
4.		モデル再調整の結果	105
5.		QSWAT バージョンアップの影響	108
6.		残存課題への対応	108
VI	[. :	3 流域モデルの結果比較及びまとめ	109
1.		3 流域モデルの結果比較	109
	1.	1 流域別にみたパラメータ感度の比較	109
	1.	2 3 流域における豊水年、渇水年別の水収支比較	110
2.		今年度のモデル構築成果まとめ	112
З.		残存課題及び今後の評価モデルの精緻化に係る計画	112
VI	II.	山体地下水調查	115
1.		概要	115
2.		調査地と観測井の概要	115
3.		結果	117
	3.	1 地文特性	117
	3.	2 地文特性	119
	3.	3 地下水位応答の実態	122
	3.	4 地下水位と流出量の関係および水質測定結果	124
	3.	5 地下水位と流出量の関係および水質測定結果	126
4.		まとめ	128
5.		SWAT-MODFLOW モデルによる地下水シミュレーション	129
	5.	1 SWAT-MODFLOW モデルの概要	129
	5.	2 SWAT モデルの設定および構築	130
	5.	3 MODFLOW モデルの設定および構築	132
	5.	4 SWAT モデルによるシミュレーション結果	133
	5.	5 SWAT-MODFLOW モデルによるシミュレーション結果	134

	5.	6 SW	AT-MODFLOW の適用性について	137
IX.		事業成	果の公表	139
X.		その他	の流出物に関する検討	140
1.		基礎	情報の収集と論点整理	140
2.		新た	に検討すべき物質の候補選定	140
XI.		検討委	:員会の開催	142
1.		委員	会開催の目的	142
2.		水源	森林保全調査・有明海等の閉鎖性海域と森林に関する調査委員会の開催	142
XII		次年度	:以降の調査計画	145
1.		次年	度以降の調査計画(案)	145
2.		事業	成果のとりまとめに向けて	145
	2.	1 2) まとめの方針	145
	2.	2 2 !	りまとめ方法	146
XII	I.	巻末資	料	147
1.		第1	回検討委員会資料	147
2.		第2	回検討委員会資料	147
3.		第3	回検討委員会資料	147
4.		現地	調査結果	147
5.		現地	調査写真	147
6.		計量	証明書	147
7.		感度	分析パラメータ	147
8.		土壌	データベース	147
			図表目次	
		II-1	平成 28 年度からこれまでの本事業の経緯	
	义	II-2	調査対象河川	
		III-1	有明海及び八代海に注ぐ一級河川流域	
	义	IV-1	筑後川及び矢部川流域での現地調査(左から雨水・湧水・土壌)	
		IV-2	筑後川及び矢部川流域における雨水調査位置	
		IV-3	筑後川及び矢部川流域における湧水調査位置	
		IV-4	筑後川及び矢部川流域における土壌調査位置	
	义	IV-5	菊池川流域における調査位置	
	义	V-1	モデル構築における各ステップのフロー	
	义	V-2	令和3年度モデル構築対象流域の変更	
	义	V-3	菊池川モデルの他流域への適用および他流域モデルから 菊池川モデルへ	のフ

	イー	・ドバックイメージ	. 26
図	V-4	他流域モデルにおけるパラメータ再調整手順	. 27
図	V-5	雨量観測所(筑後川)	. 30
図	V-6	月降水量と年降水量(国土交通省:久留米観測所)	. 31
図	V-7	月降水量と年降水量(国土交通省:三隈観測所)	. 32
図	V-8	月降水量と年降水量(国土交通省:雉谷観測所)	. 33
図	V-9	雨量観測所(矢部川)	. 34
図	V-10	気温、風向・風速、日照時間観測所(筑後川)	. 37
図	V-11	気温、風向・風速、日照時間観測所(矢部川)	. 38
図	V-12	観測所ごと月平均気温	. 39
図	V-13	黒木における月平均気温	. 39
図	V-14	観測所ごと月平均日照時間	. 45
図	V-15	黒木 月平均日照時間	. 46
図	V-16	日田観測所の月平均相対湿度の平均値(2008 年~2018 年)	. 47
図	V-17	土地利用細分メッシュ(2015(H27)年(製品仕様 第 2.5 版))	. 48
义	V-18	土地利用細分メッシュ(2015(H27)年(製品仕様 第 2.5 版))	
図	V-19	土壤図(筑後川)	50
図	V-20	土壌図(矢部川)	50
义	V-21	対象流域の DEM データ(陰影図上にオーバーレイ)	. 51
义	V-22	対象流域の DEM データ(陰影図上にオーバーレイ)	. 51
义	V-23	流量データ観測所	52
図	V-24	月平均流量(瀬ノ下観測所)	53
図	V-25	月平均流量(小渕観測所)	. 54
図	V-26	水質データ観測所	. 55
図	V-27	出水時測定データの補正方法	. 59
図	V-28	流量データ観測所	. 60
図	V-29	月平均流量(船小屋観測所)	. 61
図	V-30	水質データ観測所	. 62
図	V-31	キャリブレーション・バリデーションの作業フロー	. 79
図	V-32	SWAT-CUP でのパラメータの選択画面	. 79
図	V-33	流量実測値と推測値の比較	. 80
図	V-34	筑後川の水の流出パターン(実数グラフ)	. 85
図	V-35	筑後川の水の流出パターン(2012 年、2018 年の出水時)	. 86
図	V-36	筑後川の水の流出パターン(対数グラフ)	. 86
図	V-37	筑後川の水の流出パターン(対数グラフ)	. 87
図	V-38	水流出量の実測値と推定値の比較	. 88

図	V-39	筑後川モデルの水収支推定結果	89
図	V-40	福岡市の土地利用比率	90
図	V-41	筑後川の水収支構成割合	90
図	V-42	筑後川モデルにおける流出量の空間分布(HRU 別)	91
図	V-43	矢部川の水の流出パターン(実数グラフ)	93
図	V-44	矢部川の水の流出パターン(2012年、2018年の出水時)	93
図	V-45	矢部川の水の流出パターン(対数グラフ)	93
図	V-46	矢部川の水の流出パターン(対数グラフ)	94
図	V-47	水流出量の実測値と推定値の比較(矢部川)	94
図	V-48	矢部川モデルの水収支推定結果	96
図	V-49	筑後川モデルの土砂・リン・窒素の推定値と実測値の比較 (時系列)	98
図	V-50	筑後川モデルの土砂・リン・窒素の推定値と実測値の比較(散布図)	98
図	V-51	矢部川モデルの土砂・リン・窒素の推定値と実測値の比較 (時系列)	101
図	V-52	矢部川モデルの土砂・リン・窒素の推定値と実測値の比較(散布図)	101
図	VI-1	菊池川流域を対象に構築したモデルの種類	102
図	VI-2	令和元(2019)年度に再調整を行った菊池川全流域モデルによる	103
図	VI-3	菊池川モデルの流出パターン	105
図	VI-4	流量実測値と推定値の比較	105
义	VI-5	菊池川モデルの流出パターン(上:土砂、中:リン、下:窒素)	106
义	VI-6	土砂流出量実測値と推定値の比較	107
义	VI-7	リン流出量実測値と推定値の比較	107
义	VI-8	窒素流出量実測値と推定値の比較	107
义	VII-1	シミュレーション期間中の年平均降水量(支流域別)の空間分布	110
図	VII-2	シミュレーション期間中の流域別年降水量と抽出された豊水年および	び渇水
	年		111
図	VII-3	豊水年、渇水年別土地利用別水収支構成割合	111
図	VIII-1	観測井の位置	116
図	VIII-2	観測井の配置と構成	116
図	VIII-3	(左) 観測井の地上部の様子と(右)水位センサ	117
図	VIII-4	簡易貫入試験機による土壌貫入抵抗値(Nc)の鉛直プロファイルと	土壌断
	面 (土壌断面図は加藤ら(1995)を改変)	118
図	VIII-5	土壌の飽和透水係数(Ks)の測定結果	118
図	VIII-6	得られた期間の日降雨量・先行降雨指数と地下水位変動	119
図	VIII-7	ボーリングコアの亀裂の様子	121
図	VIII-8	各地点における RQD 値の鉛直分布	121
図	VIII-9	B1(3) における地下水位と API の時系列変化	122

図	VIII-10	B2(20) における地下水位と API の時系列変化	123
図	VIII-11	B3(30) における地下水位と API の時系列変化	123
図	VIII-12	B1(3) における地下水位と流量の時系列変化	124
図	VIII-13	硝酸態窒素濃度測定結果	125
図	VIII-14	B3(15) および B3(30) における地下水位のピークの関係	126
図	VIII-15	SWAT-MODFLOW において各モデルが扱うプロセスの概念図	129
図	VIII-16	SWAT-MODFLOW におけるシミュレーションの流れ	129
义	VIII-17	SWAT-MODFLOW インタフェースのイメージ	130
図	VIII-18	常陸太田試験流域モデルの主なインプットデータ	131
図	VIII-19	構築された常陸太田試験流域モデル	. 132
図	VIII-20	常陸太田試験流域SWATモデルにより推計された各観測地点の流出パ	ター
	ン		. 133
図	VIII-21	常陸太田試験流域 SWAT モデルにより推計された水収支	134
図	VIII-22	SWAT モデル推計による各観測地点における流出パターン	135
図	VIII-23	HB 地点における 2 モデル間の河川流量推定値の比較	135
义	VIII-24	地下水からの河川流出量および涵養量の季節別変化	136
図	VIII-25	観測井地点における地下水位推定結果	136
	VIII-26	地下水位推定結果の空間分布(流域全体)	
図	X-1 流出	物分析項目の検討フロー	. 140
表		業全体の取り組み事項	
		查項目	
•		質分析項目	
		地調査項目一覧表(菊池川)	
表		水調査結果(8 月)	
表		水調査結果(11 月)	
表		水調査結果(1月)	
表		水調査結果(2月)	
表		水調査結果(8 月)	
表		水調査結果(11 月)	
表		勇水調査結果(1 月)	
表		勇水調査結果(2 月)	
表	IV-12	上壤調査結果	20
表	IV-13	南池川流域調査結果	
		西モデル構築に用いたデータ一覧	

表	V-2	菊池川モデルと筑後川、矢部川流域モデルの設定レベルの整合性	. 27
表	V-3	SWAT モデル構築に必要なソフトのバージョンアップ状況	. 28
表	V-4	雨量観測所一覧(筑後川)	. 28
表	V-5	月降水量(国土交通省:久留米雨量観測所)	. 30
表	V-6	月降水量(国土交通省:三隈雨量観測所)	. 31
表	V-7	月降水量(国土交通省:雉谷雨量観測所)	. 32
表	V-8	月降水量(国土交通省:舞鶴雨量観測所)	. 34
表	V-9	月降水量(国土交通省:黒木雨量観測所)	. 35
表	V-10	月降水量(国土交通省:杠葉雨量観測所)	. 35
表	V-11	気温、風向・風速、日照時間観測所一覧(筑後川)	. 36
表	V-12	気温、風向・風速、日照時間観測所一覧(矢部川)	. 38
表	V-13	観測所ごと気温の月平均値(筑後川)	. 38
表	V-14	観測所ごと気温の月平均値(矢部川)	. 39
表	V-15	月最多風向(気象庁:朝倉観測所)	. 40
表	V-16	日最大風速 10m/s 以上の日数(気象庁:朝倉観測所)	. 41
表	V-17	月最多風向(気象庁:久留米観測所)	. 41
表	V-18	日最大風速 10m/s 以上の日数(気象庁:久留米観測所)	. 41
表	V-19	月最多風向(気象庁:日田観測所)	. 42
表	V-20	日最大風速 10m/s 以上の日数(気象庁:日田観測所)	. 42
表	V-21	月最多風向(気象庁:玖珠観測所)	. 42
表	V-22	日最大風速 10m/s 以上の日数(気象庁:玖珠観測所)	. 43
表	V-23	月最多風向(気象庁:黒木観測所)	. 43
表	V-24	日最大風速 10m/s 以上の日数(気象庁:黒木観測所)	. 44
表	V-25	日照時間の観測所ごと月別平均値	. 44
表	V-26	日照時間の観測所ごと月別平均値	. 45
表	V-27	月平均相対湿度(日田観測所)	. 47
表	V-28	3 土地利用種割り当て表	. 48
表	V-29	流量(水位)観測所一覧	. 53
表	V-30	月平均流量(瀬ノ下観測所)	. 53
表	V-31	月平均流量(小渕観測所)	. 54
表	V-32	水質データ観測所	. 54
表	V-33	水質概要(瀬ノ下観測所)	. 55
表	V-34	平水時 NP 形態別割合(2020/1/30 時点)	. 58
表	V-35	出水時 NP 形態別割合(2020/1/30 時点)	. 59
表	V-36	流量(水位)観測所一覧	. 60
表	V-37	月平均流量(船小屋観測所)	. 61

表	V-38	水質観測所一覧	62
表	V-39	水質概要(船小屋観測所)	62
評	価モデ	ル上で構築されるパラメータ RCN.bsn(雨水中の窒素濃度 (mg/L))に採力	k さ
	れた	全窒素の平均値を入力した。入力したパラメータは、表 V-40 のとおり。	65
表	V-41	評価モデルへの雨水水質データの反映	65
表	V-42	評価モデルへの湧水水質データの反映	66
表	V-43	評価モデルへの土壌データの反映	66
表	V-44	筑後川・矢部川流域のダムと入力パラメータ	68
表	V-45	支流域ごとの河川幅	. 70
表	V-46	生活排水の原単位	. 71
表	V-47	畜産排水原単位	. 71
表	V-48	森林の設定パラメータ	
表	V-49	水田の設定パラメータ	. 72
表	V-50	水田の耕作シナリオ	
表	V-51	畑(平地)の設定パラメータ	. 73
表	V-52	畑(平地)の耕作シナリオ(筑後川)	. 74
表	V-53	畑 (平地) の耕作シナリオ (矢部川)	. 74
表	V-54	畑 (傾斜地) の設定パラメータ	. 74
表	V-55	畑 (傾斜地) の耕作シナリオ (筑後川)	. 75
表	V-56	畑 (傾斜地) の耕作シナリオ (矢部川)	
表	V-57	モデルの各種設定条件	. 75
表	V-58	筑後川(左)と矢部川(右)の水収支パラメータ感度分析結果	. 77
表	V-59	筑後川(左)と矢部川(右)の土砂パラメータ感度分析結果	. 77
表	V-60	筑後川(左)と矢部川(右)の栄養塩パラメータ	. 78
表	V-61	流出モデルの評価指標と精度評価基準(Moriasi et al. (2007)より引用)	. 78
表	V-62	水収支に係るパラメータと入力値(筑後川)	. 81
表	V-63	水収支に係るパラメータと入力値(矢部川)	. 81
表	V-64	土砂に係るパラメータと入力値(筑後川)	. 82
表	V-65	土砂に係るパラメータと入力値(矢部川)	. 83
表	V-66	栄養塩(リン)に係るパラメータと入力値(筑後川)	. 83
表	V-67	栄養塩(窒素)に係るパラメータと入力値(筑後川)	. 83
表	V-68	栄養塩に係るパラメータと入力値(矢部川)	. 84
表	V-69	キャリブレーション・バリデーションの対象期間	. 85
表	V-70	水流出量の再現精度(筑後川・瀬ノ下)	. 88
表	V-71	筑後川の水収支・モデル推定結果と既存資料の比較	
表	V-72	筑後川の水収支 (mm/年)	90

表	V-73	水流出量の再現精度(矢部川・船小屋)	95
表	V-74	矢部川の水収支・モデル推定結果と既存資料の比較	96
表	V-75	筑後川モデルの土砂・リン・窒素の再現精度	99
表	V-76	土地利用別の土砂・栄養塩流出量(筑後川)	99
表	V-77	土地利用別の土砂・栄養塩流出量(過年度業務:菊池川)	99
表	V-78	矢部川モデルの土砂・リン・窒素の再現精度	101
表	VI-1	菊池川モデルのタイプ別テーマ	102
表	VI-2	再調整済みの全流域モデルにおける窒素流出量の再現精度	103
表	VI-3	菊池川全流域 2019 モデルによる 2008 年の水収支結果	104
表	VI-4	菊池川モデル別キャリブレーション・バリデーション期間	105
表	VI-5	再現精度	105
表	VI-6	土砂流出量の再現精度	107
表	VI-7	リンの再現精度	107
表	VI-8	窒素の再現精度	107
表	VI-9	「菊池川 2019 モデル(菊池川全流域モデル)」と	108
表	VII-1	流域別パラメータ感度の比較	109
表	VII-2	感度分析時のパラメータ設定幅およびベストパラメータ値	110
表	VIII-1	常陸太田試験流域 SWAT モデルの設定条件	131
表	VIII-2	2 MODFLOW モデルのインプット・パラメータ設定	132
表	VIII-3	3 常陸太田試験流域 SWAT モデルの再現精度	133
表	IX-1	公表機会および内容	139
表	X-1	検討委員へのヒアリング結果	141
表	X-2	水産関係専門家 ヒアリング結果	141
表	XI-1	第1回検討委員会出席委員	142
表	XI-2	第2回検討委員会出席委員	143