3.3.5 土砂崩壊防止機能区分図の作成

スギ林を主とする国有林の中から、航空 LP データが存在しかつある程度林小班がまとまっている 香美市 香北町猪野々付近を選定し、手引による ΔC マップ(土砂崩壊防止機能区分図)、 ΔC (ΣA) マップ及び Wrマップ (根重量) を作成した。各指標の算定方法は5章に詳細を記載している。

解析対象地のオルソ写真及び、航空 LP データから作成した微地形詳細図を図 3.52 及び、図 3.53 に示す。

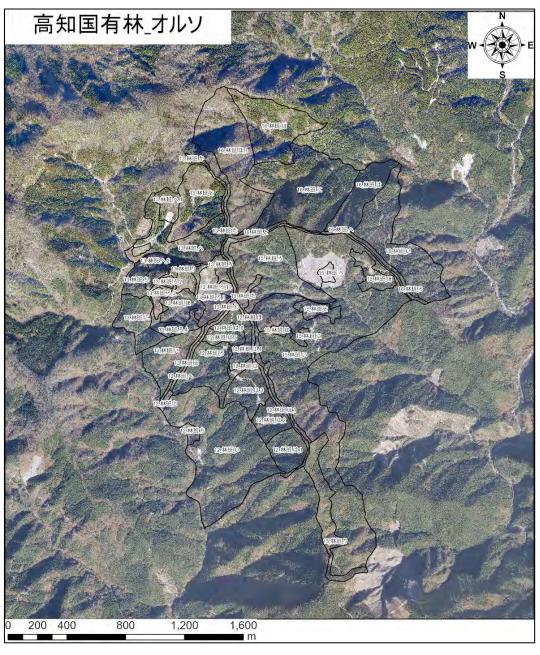


図 3.52 調査対象の林小班及び、オルソ写真

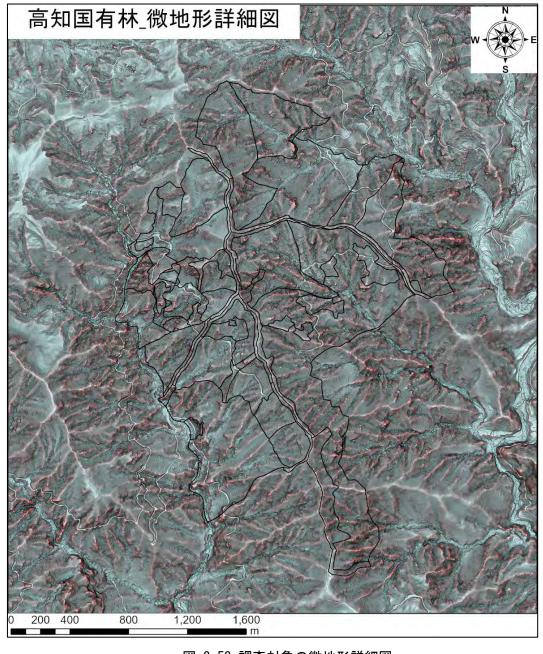


図 3.53 調査対象の微地形詳細図

災害後の崩壊発生状況との照らし合わせが必要な場合、土砂崩壊防止機能区分図の作成においては、災害前の航空 LP データを使用することが望ましい。しかし、航空 LP は近年技術の進歩が著しく、最新データと比べ過去のデータは点密度が低く、樹頂点の抽出が不可能な範囲が多くあった。そのため、本調査では災害後の航空 LP データを使用して解析を実施した。また、皆伐、土砂崩壊などにより、裸地化している箇所若しくは、植付後から間もない森林については樹頂点解析ができないため、解析不可としている。

土砂崩壊防止機能区分図の作成については、「流木災害対策の必要な森林を抽出する手法 手引 書(案) 1」(林野庁 2016)を参考とし、作成した。

総合評価は,樹種別の評価点 (P1),立木密度の評価点 (P2),胸高直径の評価点 (P3) を乗じたものを森林の土砂崩壊防止機能の評価点 P とする。

P=樹種の評価点(P1)×立木密度の評価点(P2)×胸高直径(P3)

図 3.54 総合評価の算出方法(林野庁手引 2016 より)

表 3.10 評価点 P1、P2、P3 の配点(林野庁手引 2016¹より)

樹種(P1)		立木密度(P2)			胸高直径(P3)	
区分	点数	本数 (本/ha)	点数		胸高直径	- W.
			針葉樹人工林	針葉樹人工林以外	(cm)	点数
Α		400~600	0.5	0.5	10~15	0,2
(参考樹種:スギ、 針・広天然生林)		600~800	0.8	0.8	15~20	0.5
В	1,2	800~1,600	1.0	1.0	20~25	1.0
(参考樹種:ヒノキ、 広葉樹二次林)		1,600~1,800	0.7	1.0	25~30	1.9
C (参寿樹種:マツ類)	0.8	1,800~2,000	0.4	1.0	30~35	3.0
	0.0				35~40	4.4

表 3.11 森林の土砂崩壊防止機能の判定表(林野庁手引 20161より)

森林の土砂崩壊 防止機能区分	点P	色区分	
а	~0.3		機能 低
b	0.3~0.8		Λ
С	0.8~1.3		
d	1.3以上		機能高

森林の土砂崩壊防止機能の判定は,評価点 P が 0.8 未満のメッシュを「土砂崩壊防止機能が相対的に低い森林」として区分する。

また、 ΔC (ΣA) マップ、及び Wrマップ (根重量) の比較において、基準となる閾値を設定するため、図 3.55 の近似式を用いた。その結果、表 3.12 が妥当な値となった。

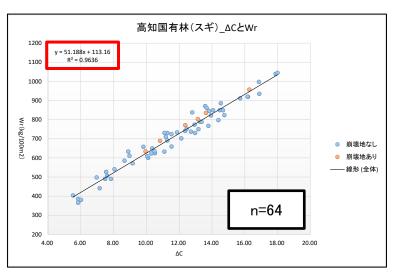
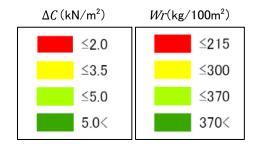



図 3.55 ΔCと Wrの関係

表 3.12 AC (SA) マップと Wrマップ (根重量) の判定基準

(1) 手引によるACマップ(土砂崩壊防止機能区分図)の作成

本解析は 10m×10m グリッドを解析単位としている。

樹種指標 P1 の分布を図 3.56 に示す。本解析範囲は半分以上を表 3.10 の樹種区分 A であるスギ林が占めており、その他は区分 B のヒノキ、広葉樹で占めている。なお、樹種については、森林調査簿の樹種 1 を採用している。

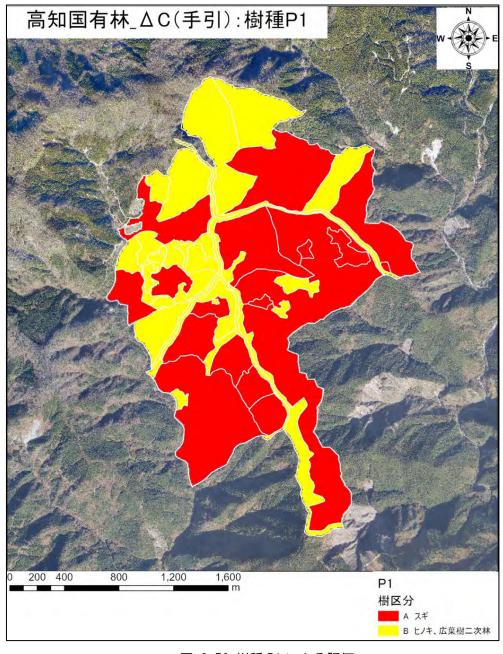


図 3.56 樹種 P1 による評価

立木密度 P2 の分布を図 3.57 に示す。

立木密度 P2 については、水色の立木密度 400~600 本/ha が多く、次いで 800~1、600 本/ha の最も配点の高い黄緑色の箇所が多かった。本調査範囲については 50 年生以上の小班が半分以上を占めており、立木密度がやや低い傾向にある。また、今回の立木密度の算出は、航空 LP データを使用した点群解析による上層木の抽出であり、スギ林の場合、実際の林況よりやや過小に算出されている箇所がある。

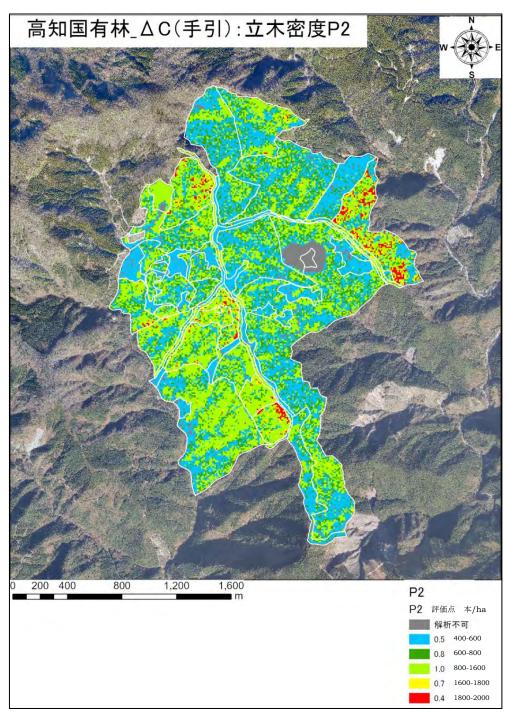


図 3.57 立木密度 P2 による評価