3.4.2. 候補モデルの抽出および選択

表 3-2 には、流出モデルの特徴をタイプ別に整理した。このうち、前述の 3.4.1 の検討を 踏まえ、本事業では、赤枠内に示す分布型・準分布型モデルの活用が適切と判断した。

	集中型モデル	準分布型モデル	分布型モデル	
方法	流域を一様な一つの計算単位として取り扱い、流量やそれに付随する物質輸送を比較的単純な記述によって推定。	流域を支流域や細かいブロック等に分割し、 その単位内の構成要素は一律として、流域 の最下流地点で積算。モデル内の水や物質 の異動は、半経験的関係式によって推定。	表層、河道、地下水モデルへの分離し、	
パラメータ	流出係数(流域によって定まる係数)	気象、水文、植物、土壌、地形など	気象、水文、植物、土壌、地形など	
出力プロセス	演繹的	概念的	物理的	
演算時間	短時間	水文反応単位(HRUなど)数に依存	メッシュ数に依存	
流量の出力地点	各分割流域の下流端	各分割流域の下流端、HRU毎	任意に設定	
メリット	パラメータ調整が容易	シンプルな構造、キャリブレーションが簡 単	時間的・空間的に細かなデータの組み込 みや予測が可能	
デメリット	プロセスがブラックボックス、再現精度・予測精度に課題	単位(HRU、支流域など)内の空間変化は考慮されていない	多数のパラメータのキャリブレーション が必要	
適したケース	流量観測データ無し	シミュレーション期間やデータが限定的	小スケールで詳細なデータが有効	
モデル例	合理式, CN	SWAT, HSPF, TOPMODEL, AnnAGNPS	GETFLOWS, MIKE-SHE, KINEROS, PRMS	

表 3-2 流出モデルのタイプ別特徴の整理

次に、候補として抽出されたモデルに対し、選択条件への適合性に関する調査を行った。 その結果を表 3-3 に示す。

T = 11 &	ポイント1	ポイント2	ポイント3 時間スケールの調整が可能		ポイント4	******
モデル名	分布型 (準分布型)	森林関連 パラメータ	長期 日単位	短期 時間単位	地下水挙動 の解析が可能	適合数
SWAT	0	0	0	0	0	5
MIKE-SHE	0	Δ	0	0	0	4.5
GETFLOWS	0	Δ	0	0	0	4.5
AnnAGNPS	0	0	0	0	-	3
HSPS	0	0	0	-	0	3
PRMS	0	0	0	0	-	3
TOPMODEL	0	-	0	0	0	3
KINEROS2	0	Δ	-	0	-	2.5

表 3-3 候補モデルのモデル選定条件への適合性

「〇」を 1 点、「△」を 0.5 点、「・」を 0 点として積算し、ポイント化したモデルの選択条件への適合性について、ポイント数が最も高い「SWAT モデル」は、林野庁「山地保全調査(水源森林保全調査・有明海等の閉鎖性海域と森林に関する調査)委託事業 $(H28\sim R2$ 年度)」により、有明海に注ぐ菊池川等 3 河川における適用実績があり、モデル構造やパラメータ等について既に一定の知見が得られている。このことから、本調査では SWAT モデルを用いた解析・評価を行うこととした。

3.5. 調査対象流域の選定

3.5.1. 調査対象流域の選定条件に関する検討

「3.3 調査のアプローチ手法」で述べたとおり、本事業で調査対象とする流域の規模は2 通りあり、一つは、水源涵養機能の広域的な評価を行うための、比較的規模の大きい「評価

対象流域」と、もう一つは、現地調査 や航空レーザ解析などを通して、森 林の物理的状態と水動態との関係性 について検証し、パラメータ値の検 討等を行うための「モデル小流域」で ある。前者については、図 3-4 に示すとおり、仕様書上、3つの選定条件が示されている。

イ. 調査対象地域の選定

- ① 酒匂川水系の丹沢湖(三保ダム)、相模川水系の相模湖(相模ダム)、宮ケ瀬湖(宮ケ瀬ダム)の水源域
- ② 過去の同程度の降雨や渇水時の値との違いなどから過去と現在の値を比較した結果をモデルに反映可能なエリア
- ③ 森林整備による水源涵養機能が高まっていることを評価するために、40年程度前の林況の把握が可能なエリア

図 3-4 評価対象地域の選定

これを踏まえ、本調査では、以下の 4 点を評価対象流域の選定における重要ポイントと 捉え、上記の条件その他に係る各候補流域の状況について表 3-4 に整理した。

- 酒匂川水系の丹沢湖(三保ダム)、相模川水系の相模湖(相模ダム)、宮ケ瀬湖(宮ケ瀬ダム)の水源域であること
- 気象やダム流入量のデータの活用のし易さ
- 過去の森林情報の入手性の高さ
- 有識者へのヒアリングに基づくモデル小流域としての適性

条件 1 条件2 条件4 過去の林 モデル地区候補地としての 流入する湖 既往研究の有無・実測データ入手性 ダム・気 相情報の (モデル地区候補) 調査対象地としての 流域面積 林以外の影響の 象データ 入手性 直轄河川水系 林整備の積極導入 ヒアリング 落葉の供給・ 地 表面被覆分布 林簿 林簿 空中 ンム流入量 (ha) Ŕ 気象 子写真 量 (過去 現況 Δ 移動 2019年台風の影響 貝沢 (NO.4) 96 による流木閉塞あり 流出パターンが単純で解析しやすい 和模湖 No.1 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 (相模 Δ 0 \triangle 0 No.2 8 Χ ダム) No.3 15 \circ 相模川 観測期間が短い 2019年台風の影響でアクセス不可 大洞沢(No.2) 51 0 宮ケ瀬湖 No.1 48 0 (宮ケ瀬 0 0 0 0 0 0 0 0 0 Δ Χ Χ 7 0 No.3 ダハ) 5 No.4 0 道志ダム 0 0 0 0 (奥相模湖) 地質の影響か、流出パターンが単純ではい。 シカ被害の影響がある。 ヌタノ沢 7 丹沢湖 包川 \bigcirc 0 \wedge 0 0 Χ 0 0 0 Δ \bigcirc ΟΔ Χ (三保ダム) フチジリ沢 76

表 3-4 選定条件にかかる各候補流域の状況に関する整理表

以下に、調査結果について詳細を記す。

条件1: ダム水源域であること

本調査における評価対象地域として、酒匂川水系の丹沢湖(三保ダム)、相模川水系の相模湖(相模ダム)、宮ケ瀬湖(宮ケ瀬ダム)の水源域であることが、本事業の仕様書上、指定されている。今回、神奈川県のダム上流域が選定されている理由として、以下のことが挙げられる。

- 令和元年台風19号による甚大な被害があった。
- 神奈川県では水源林の整備に力を入れており、モニタリングデータの供与協力が得られる(※神奈川県自然環境保全センター、神奈川県庁のご厚意による)。
- イメージの湧きやすいメジャーなダムや水源が存在する。

条件 2: 気象やダム流入量のデータの活用のし易さ

気象やダム流入量データの活用のイメージとしては、ダム水源域における過去(40年程度前)と現在の洪水時や渇水時の流出量や流出遅延時間の比較、流出モデルのキャリブレーションにおける参照などが挙げられる。

具体的には、過去と同程度の降雨や渇水時の値との違いから、過去と現在の値を比較した結果をモデルに反映するため、気象やダム流入量のデータについて、以下の分析、検討が可能であることが重要である。

- アメダスデータによる洪水・渇水時および平均的な年の降雨量の比較
- 洪水・渇水時の時点における森林の状況と流量の関係性
- ダム上流の取水・導水等の状況
- 過去の洪水・渇水時におけるダム流入量をモデルへ反映する方法の検討

条件 3: 過去の森林情報の入手性の高さ

調査対象地は、現在の水源涵養機能が、森林整備や森林の充実により、過去の一時期に比べて高まっていることを評価できると期待できるエリアである必要がある。例えば、以下の条件を満たしていることが望ましい。

- 水道水源林等の整備が積極的に進められていた森林地域であること
- 森林簿や施業計画図が入手可能であること
- 森林簿の情報や航空写真等により、 40 年程度前の林況の把握が可能であること

これについて、神奈川県からは、近年の森林簿のほか、水源林整備履歴データ等が入手可能であることが分かった。ただし、40年ほど前からの全てのデータは残っていないため、データの無い時期の森林状態の把握には、空中写真の活用が有効であると考えられた。

国土地理院の Web サイト「地図・空中写真閲覧サービス」では、40 年程度前の空中写真 データの有無について確認が可能である。

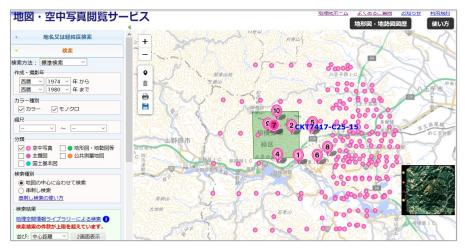


図 3-5「地図・空中写真閲覧サービス」Web サイト

調査した結果、今回の候補となっている水源域では、1970年代以降の空中写真(カラー・ 白黒)が入手可能であることが分かった。

条件 4: ヒアリング

神奈川県では、「森林のモニタリング調査」を実施しており、各試験流域の状況に詳しい神奈川県自然環境保全センターの内山氏や、過去にモニタリング調査の一試験地である大洞沢流域で研究・調査を行い、当該試験流域に知見のある、本事業委員の五味委員(東京農工大学)に各試験流域の状況についてヒアリングを行った。

その結果、以下の情報が得られた。

- 宮川瀬ダム水源域内にある大洞沢試験流域では、流量観測データの入手が可能であるが、優占樹種が広葉樹であることや、宮ケ瀬ダム自体が比較的新しいダムであるため、過去のダム流入量データの蓄積が少ない。また、2019年台風の影響により、2020年夏の時点ではアクセス不可の状態になっている。
- 三保ダム水源域内にあるヌタノ沢流域やフチヂリ沢試験流域では、大洞沢試験流域と同様、流量観測データの入手は可能であるが、地質の影響により流出パターンが単純ではないことや、シカ被害の影響も少なくないため、当事業の調査に適しているとは言い難い。

• 相模ダム水源域内にある貝沢試験流域では、流量観測データの入手が可能であるほか、流出パターンが比較的単純のため、水文調査に適している。

3.5.2. 選定条件に基づく調査結果・選定

前述の 3.5.1 に基づく調査の結果、モデル小流域としては「貝沢試験流域」が妥当と考えらえた。

また、全体の評価対象流域としては、貝沢試験流域を包含する相模ダム水源域が有力候補と考えられたが、本事業の第1回委員会において、当該水源域は、山梨県の富士山頂を含む1,016 km² (101,600 ha) 程度の大規模な流域であり、森林以外の土地利用に関わる要素も多く含まれることから、流出モデルにより検証を試みるには適切な流域とは言い難いとの意見が出された。

そのため、相模川の本流は避け、支川である道志川流域と、三保ダム上流域、宮ケ瀬ダム 上流域の 3 流域に絞り込み、森林率やダム流入データの入手性等の見地から最適な流域を 選定すべく改めて検討を行った。

3.5.3. 評価対象流域の見直し

図 3-6 に候補となる評価対象流域の位置図、表 3-5 に各流域の概要を示す。

図 3-6 候補となる評価対象流域の位置図

表 3-5 ダム水源域の流域概要およびダム諸元

	宮ケ瀬ダム	道志ダム	三保ダム	
水系	相模川水系	相模川水系	酒匂川水系	
流域面積	100.56 km² (10,056ha)	111.66 km² (11,166ha)	156.45 km² (15,645ha)	
河川	中津川、早戸川	道志川	河内川	
貯水池	宮ケ瀬湖	奥相模湖	丹沢湖	
ダム竣工年	2000 年	1955 年	1979 年	
有効貯水容量	183,000,000m ³	616,100m³	54,500,000m³	
取水・導水の影響	有り(発電所)	無し	有り(発電所)	
流域の主な地質	東部は第三紀層丹沢層群(凝灰	玄武岩、安山岩、火山噴出物	花崗岩類	
	岩)、西部は深成岩(石英閃緑岩)	公武石、女山石、八山噴山 初		
森林率(森林面積)	89.7%(90.18 km²)	94.1%(105.07 km²)	94.4%(147.64 km²)	
人工林(針葉樹)率	32% (28.86 km ²)	44%(46.51 km²)	30% (44.29 km ²)	
植生図	型画 型	0 25 5 25 10km	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	

各水源域の状況を表 3-5 に整理したとおり、道志ダム上流域については、上流側において 発電所による導水などの影響がなく、過去のダム流入量データも入手可能であるほか、他の 2 流域に比べて人工林率も高かった。このことから、本事業では、モデル構築・検証および 評価を行うための流域として「道志ダム上流域」が最適と考え、選定することとした。

ただし、宮ケ瀬ダムや三保ダムの上流域についても、広葉樹優占の流域、あるいは崩壊から回復した流域を再現するにはふさわしい流域である可能性があり、後の応用的な解析にあたり、対象地として再度候補にあげる可能性があることに言及しておきたい。

3.6. 流出モデルに与えるべき諸条件の検討

3.6.1. SWAT モデルについて

(1) 概要

SWAT モデルとは、アメリカ農務省農業研究局 (USDAARS) によって開発された準分布型流出モデルである。特に農業流域の水、土砂、物質の移動を解析することに主眼を置いて開発されたモデルであり、Wellen et al. (2015) 2 によれば、1992 年から 2010 年の間に流域の栄養塩循環を扱ったモデルとして最も多く使われたモデルとされている。また、SWATモデルのコードは公開されており、必要に応じて改良することが可能である。

SWATモデルの長所として次の点が挙げられる。

- 入手が容易な公表データを利用できる
- 大きな流域であっても比較的短期間に計算することができる(計算効率がよい)
- 解析スケールを任意に設定することが可能(流域レベル~小流域レベル)
- 実測データが無い流域でも予測可能
- 実測値を得ることが難しいパラメータについてキャリブレーションにより適切な 値を推定できる
- 水、土砂の移動、作物の成長、栄養塩の循環などに関連するプロセスは物理法則に 基づいてモデル化されている
- 長期的な予測が可能(気候変動などのシナリオにも対応可能)
- GIS ソフトとの親和性が高い (ArcGIS や QGIS 上で操作可能)
- ユーザーが多く、豊富な資料やユーザーグループを通した問題解決が可能
- 一方、SWATモデルの短所としては次の点が挙げられる。
 - 地下水の流れについてはシンプルなモデルしか実装されていない

² Wellen, Christopher, Ahmad-Reza Kamran-Disfani, and George B. Arhonditsis. "Evaluation of the current state of distributed watershed nutrient water quality modeling." Environmental science & technology 49.6 (2015): 3278-3290.

- 農業地域は高い精度で推定可能だが、人為活動が複雑な都市域は推定が困難
- 日本の森林地域では十分な解析事例がないため、試行錯誤的に進める必要がある

なお、地下水部分について、SWAT モデルのみで十分なシミュレーションができないと 判断された場合は、SWAT と親和性が高い地下水解析ソフト MODFLOW などを活用する ことも検討されたが、SWAT 既存のパラメータ調整により、一定程度のアウトプットが得 られることが見込まれたため、当面、他ソフトを補完的に使用する必要性はないとの判断に 至った。

本事業で構築した SWAT モデルは、QGIS のプラグインとして操作できる QSWAT3_64 version 1.1 を主に使用し、その他作業に応じて SWAT2012 (rev. 681), SWAT Editor 2012.10.23, SWAT-CUP2019 (v5.2.1.1) のソフトウェアを利用した。これらはいずれも SWAT のホームページ (https://swat.tamu.edu/) から入手可能である。

(2) モデル構築フロー

モデル構築の手順は、モデル設計・構築、パラメータ感度分析・設定、校正(キャリブレーション)、検証(バリデーション)、シミュレーション、新たな知見の蓄積及びフィードバックによる評価となっている。以下に基本的な SWAT モデル構築における各ステップをフロー図に示す(図 3-7)。

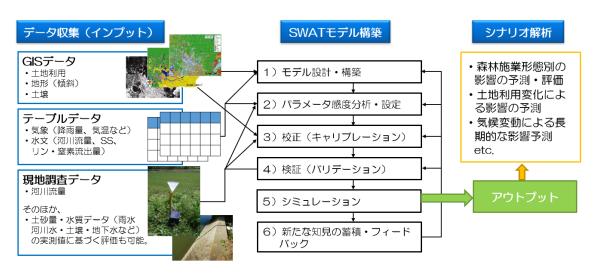


図 3-7 モデル構築における各ステップのフロー

(3) 基本インプット

SWAT モデルに必要な基本インプットには、標高 (DEM)、土地利用、土壌、気象データなどが含まれる。以下に、SWAT モデル構築に必要なデータの概要を述べる。

1) DEM データ

DEM データは任意の解像度のラスター形式で用意する。DEM データから自動的に計算される傾斜を任意に区分することができ、より細かな傾斜区分にするほど、より多くの水文応答単位(HRU)*が構築される。※(4)参照

2) 土地利用データ

土地利用データはラスター形式で用意し、ルックアップテーブル (対応表) を作成して データベースと紐づけて利用する。解像度は任意の値に設定することができる。対象流域 が森林地域の場合、土地利用データとして林相区分図を用いる場合がある。林相区分図の 作成方法については、「3.6.3. (2) 林相区分に関する整理」、「3.6.3. (3) 航空 LiDAR データ解析による立木密度の算出」、「3.6.3. (6) 林相区分図の作成」で詳述する。

3) 土壌データ

土壌データはラスター形式で用意し、ルックアップテーブル(対応表)を作成してデータベースと紐づけて利用する。解像度は任意の値に設定することができる。SWAT モデルのデフォルトのデータベースにはアメリカの土壌データベースは存在するが日本の土壌データベースは存在しないため、新規に情報を追加する必要がある。

4) 気象データ

SWATモデル構築に必要な気象データは、次のとおりである。

- 降水量 (mm)
- 各気象観測所の緯度経度、標高(m)
- 最高気温、最低気温(℃)
- 風速 (m/s)
- 相対湿度(%)
- 日射量 (MJ/m²)

(4) SWAT モデルにおける水文計算単位

SWAT モデルでは、地形、土地利用、土壌などの条件から似通った水文的挙動を示す HRU (Hydrologic Response Unit:水文応答単位) ごとに水文プロセスの計算が行われる (図 3-8)。