4. 森林GISデータベース作成

森林 GIS への格納可能な本業務成果として、判読により得られた崩壊地、巨石および亀裂データを shape 形式のデータとして整備した。

崩壊主部はポリゴンデータ、流下侵食域はラインデータ、巨石はポイントデータ、亀裂はラインデータとし、属性情報として崩壊主部は平面投影面積、流下侵食域と亀裂は平面投影長さを付与し、地域毎に集計可能なデータで整理した。

また、座標系は、平面直角座標系Ⅱ系(JGD2011)とした。

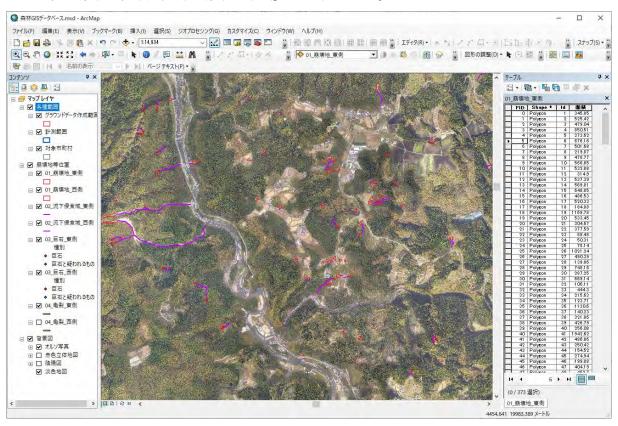


図 4-1 shape 形式の崩壊地等整備状況 (ARC GIS 上にてデータの一部を表示)

4.1 各データファイルにおける属性情報

本業務で判読した結果となる「崩壊主部」、「流下侵食域」、「巨石」、「巨石と疑われるもの」、「亀裂」については、以下の属性情報を付与した。

表 4-1 「崩壊主部」の GIS データ属性情報

テーブル名	属性タイプ	備考
FID	OID	GIS 自動付与
Shape	Geometry	GIS 自動付与
Id	Integer	位置的な依存なしの連番
面積	Double	フィールドプロパティ→小数点以下桁数:2 面積 (m²):平面直角座標系を加味してジオメトリ演算で 算出

表 4-2 「流下侵食域」の GIS データ属性情報

テーブル名	属性タイプ	備考
FID	OID	GIS 自動付与
Shape	Geometry	GIS 自動付与
Id	Integer	位置的な依存なしの連番
延長	Double	フィールドプロパティ→小数点以下桁数:2 長さ(m):平面直角座標系を加味してジオメトリ演算で算出

表 4-3 「巨石」、「巨石と疑われるもの」の GIS データ属性情報

テーブル名	属性タイプ	備考
FID	OID	GIS 自動付与
Shape	Geometry	GIS 自動付与
Id	Integer	位置的な依存なしの連番
判別	Integer	0: 巨石、1: 巨石と疑われるもの

表 4-4 「亀裂」の GIS データ属性情報

テーブル名	属性タイプ	備考
FID	OID	GIS 自動付与
Shape	Geometry	GIS 自動付与
Id	Integer	位置的な依存なしの連番
延長	Double	フィールドプロパティ→小数点以下桁数:2 長さ(m):平面直角座標系を加味してジオメトリ演算で算出

4.2 崩壊地等の分布状況の整理

本業務で作成した崩壊地、亀裂及び巨石の GIS データより、箇所数等を集計した。崩壊 箇所等集計結果については、東側の小国町及び南小国町の判読範囲における表 4-5 に、西 側の 4 市町(南関町、和水町、山鹿市、菊池市)の判読範囲における、崩壊箇所等集計結 果を表 4-6 に示す。また、巨石等の箇所数集計結果を、東側の 2 町については表 4-7 に、 西側の 4 市町については表 4-8 に示す。

また、崩壊地及び流下浸食域の規模について、GIS データから頻度分布を整理した。崩壊 主部面積の頻度分布を図 4-2 (東側2町)及び図 4-3 (西側4市町)に、流下侵食域延長 の頻度分布を図 4-4 (東側2町)及び図 4-5 (西側4市町)に示す。

表 4-5 判読範囲における崩壊箇所等集計結果(小国町・南小国町)

種別	箇所数	総面積(m²) または 総延長(m)	最大面積 (m²) または 最大延長(m)	平均面積 (m²) または 平均延長(m)
崩壊主部	373	143,761.3	3,263.7	385.4
流下侵食域	373	15,998.6	961.8	42.9
亀裂	5	142.4	44.3	28.5

注)崩壊主部については面積 (m²)、流下侵食域及び亀裂については延長 (m) の集計値を示す。

表 4-6 判読範囲における崩壊箇所等集計結果(西側4市町)

種別	箇所数	総面積(m²) または 総延長(m)	最大面積 (m²) または 最大延長(m)	平均面積 (m²) または 平均延長(m)
崩壊主部	433	111,755.2	3,465.1	258.1
流下侵食域	245	5,232.2	194.1	21.4
亀裂	5	347.8	124.6	69.6

注)崩壊主部については面積(m²)、流下侵食域及び亀裂については延長(m)の集計値を示す。

表 4-7 判読範囲における巨石及び巨石と疑われるものの箇所数(小国町・南小国町)

細分	箇所数
巨石	7
巨石と疑われるもの	114
計	121

表 4-8 判読範囲における巨石及び巨石と疑われるものの箇所数(西側4市町)

細分	箇所数
巨石と疑われるもの	36

「崩壊主部」は東側の2町(小国町及び南小国町)の範囲では373箇所確認されたのに対して、西側4市町(南関町、和水町、山鹿市、菊池市)の範囲では433箇所が確認された。崩壊主部の総面積は東側2町(3,263.7 m^2)のほうが西側4市町(3,465.1 m^2)よりも大きく、平均面積も前者(385.4 m^2)のほうが後者(258.1 m^2)よりも大きかった。

崩壊主部面積の頻度分布はグラフ上ではL字状となっており、 $300m^2$ 未満の崩壊地が東側の範囲では約57%、西側の範囲では約76%を占めていた。一方、東西それぞれの範囲で、 $3,000m^2$ を超える大面積(最大 $3,465.1m^2$)の崩壊箇所も生じていた。

「流下侵食域」は、東側2町の範囲では373箇所、西側4市町では245箇所確認された。流下侵食域延長は、50m未満の箇所が東側の範囲では約77%、西側の範囲では約92%を占めていたが、東側の小国町では961.8m及ぶ流下浸食域も確認されていた。同町内では、300mを超える流下浸食域も同町内で6箇所確認された。

「亀裂」については小国町及び南小国町の範囲では5箇所、西側4市町の範囲でも5箇所が確認された。

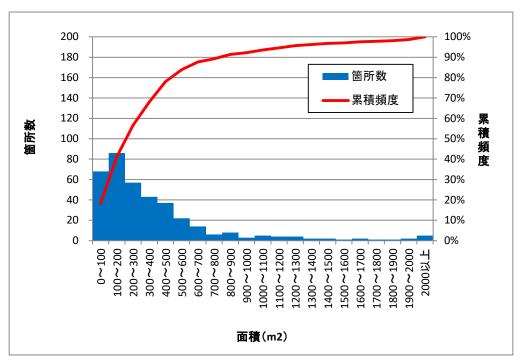


図 4-2 崩壊主部面積の頻度分布(小国町・南小国町)

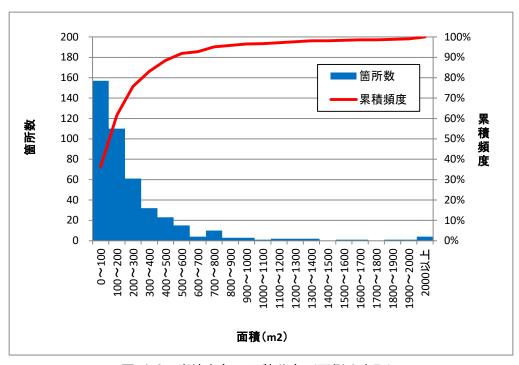


図 4-3 崩壊主部の面積分布(西側4市町)

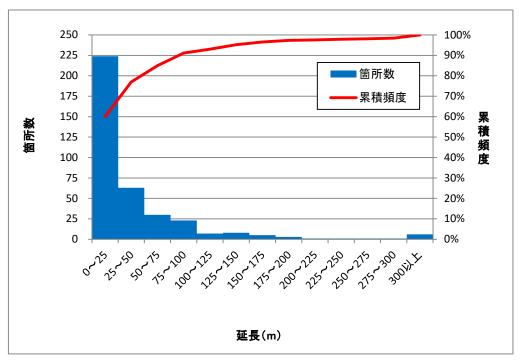


図 4-4 流下侵食域延長の頻度分布(小国町・南小国町)

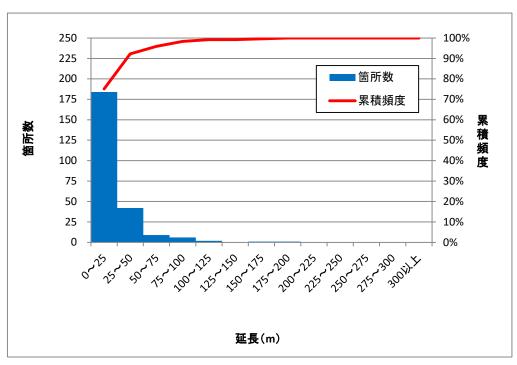


図 4-5 流下侵食域延長の頻度分布(西側4市町)

(以上)