2. 航空レーザ計測

2.1 航空レーザ計測の概要

航空レーザ計測は、航空機に搭載したレーザ測距装置を用いて、地表面の3次元計測を行うものである。GNSS 衛星(GPS、GLONSS、Galileo 及び準天頂衛星等)および航空機に搭載したGNSSと、慣性計測装置(IMU: Inertial Measurement Unit)を用いて航空機の位置と姿勢を測定し、航空機から照射したレーザによる測距結果を統合して地表面の形状を計測するものである。

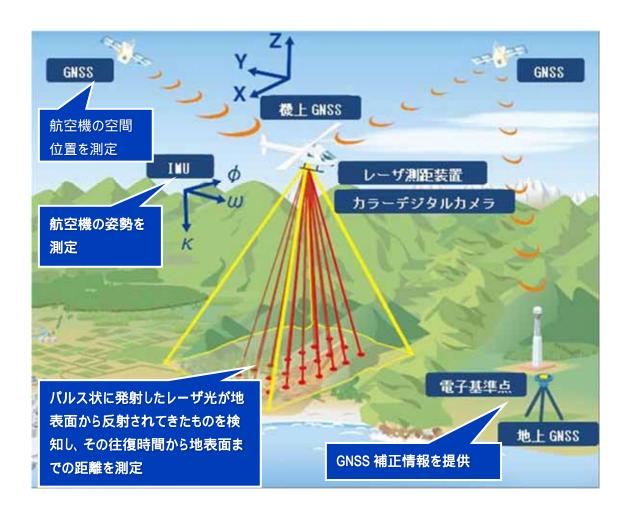


図 2-1 航空レーザ計測の概要

2.2 航空レーザ計測機器

航空レーザ計測機器は以下に示すように様々な種類のものがある。本業務では広範囲を迅速に計測する必要があるため、最大 3 システムの機材を使用することで、より円滑に遂行することに努めた。

表 2-1 航空レーザ計測機器

機材の名称と投入台数

Harrier68i (1台)

Terrain Mapper (1 台)

Terrain Mapper-2 (1台)

Harrier68i

Terrain Mapper

Terrain Mapper-2

図 2-2 航空レーザ計測機器

2.3 計測方法

2.3.1 航空レーザ計測方法

(1) 効率的に計測を行うための区域設定

多数の航空機が計測域に同時進入すると、航空機の安全運航上の判断から航空管制官により飛行が制限される可能性があるため、あらかじめ同一区域内に進入する航空機の間隔を十分に空けるよう調整した。さらに、近接区域間の航空機運航を円滑にするため、飛行コース (計測コース)を基本的に南北方向になるよう統一した。

(2) 区域内における航空機の運用体制の工夫

同一計測区域内で複数機の航空機を安全かつ効率的に運航してレーザ計測作業を進めるため、航空機の運用高度を区別することにより、航空管制による飛行制限や飛行回避を緩和するとともに、安全運航に努めた(図 2-3)。

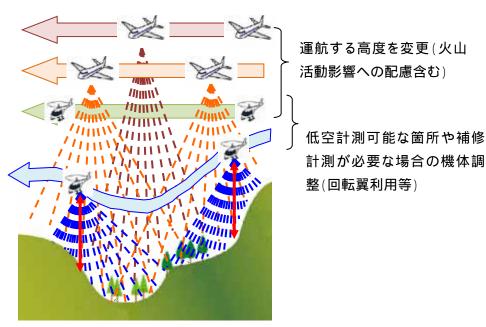


図 2-3 航空機の運用高度を調整した対応イメージ

(3) 航空機の運航における安全対策

航空機の運航にあたっては、事前に各機体運航に関する連絡調整を密に行うとともに、前日・当日連絡により事前の飛行予定地区、飛行コース番号、飛行高度等を各機体の運航担当者間で情報交換した。また、計測作業着手前に各社の運航関係者が集まり安全会議を行った。さらに、飛行中の安全確認を向上させるため、当日の飛行前にはメールで離陸時間、予定コース、飛行高度などの情報を共有するとともに上空では管制官の指示に従い、さらには航空機相互の動向を確認するために共通周波数による位置情報連絡を行った。

なお1日の計測作業終了時には、電子メールで当日の進捗状況と翌日の飛行予定の情報を 共有した。

2.4 計測計画および実施状況

1) 計測機器

航空レーザ計測において、以下の機器を使用した。 Harrier68i、Terrain Mapper、Terrain Mapper-2

2) 計測諸元

航空レーザ計測時の諸元を以下に示す。

表 2-2 計測諸元

項目	パラメータ設定値			
機器·機体	Harreir68i·回転翼	Terrain Mapper·固定翼		
計測密度	4点/m²	4 点/m²		
対地高度	500 m	2300 m		
飛行速度	144 km/h	241 km/h		
パルスレート	150 kHz	600 kHz		
スキャンレート	85 Hz	123.2 Hz		
スキャン角	± 30 °	± 20 °		
ラップ率	50%	50%		
項目	パラメータ設定値			
機器·機体	Harreir68i·回転翼	Terrain Mapper-2·固定翼		
計測密度	4 点/m2	4 点/m2		
対地高度	500 m	1472m ~ 2500 m		
飛行速度	144 km/h	252 km/h		
パルスレート	200 kHz	530 kHz		
スキャンレート	95 Hz	113 Hz		
スキャン角	± 30 °	± 20 °		
ラップ率	50% 50%			

3) 計測コース図

航空レーザ計測コース図を次頁に示す。

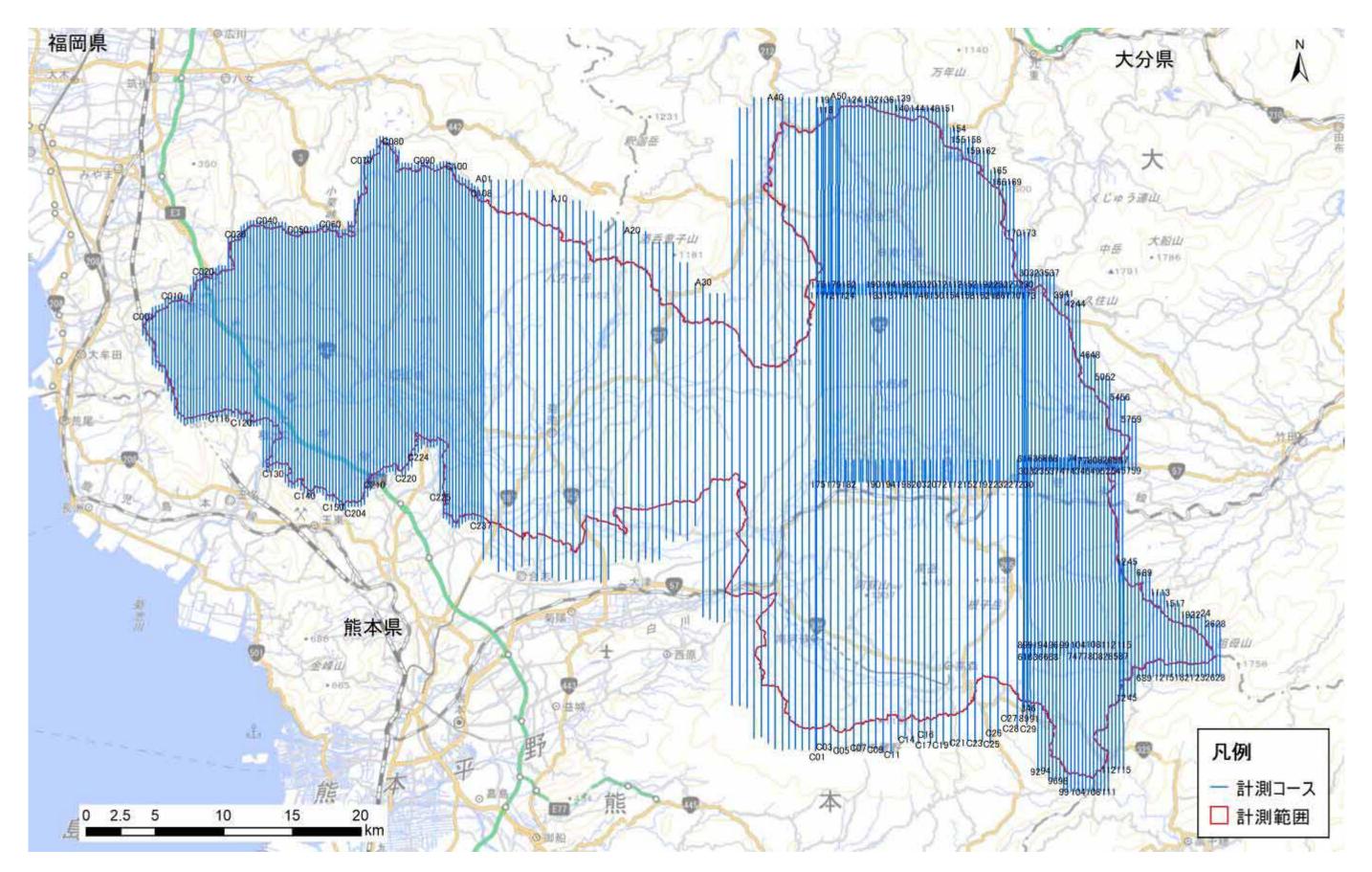


図 2-4 航空レーザ計測コース図

4) GNSS 基準局の設置

GNSS 基準局として電子基準点「菊池」、「三加和」、「鹿本」、「前津江」、「日之影」、「高森」、「緒方」、「阿蘇」、「久住」、「大分九重」を使用した。

5) 計測実施

計測実施日および実施コースの一覧を表 2-3~表 2-5 に示す。

表 2-3 計測実施日一覧(西部:アジア航測エリア)

実施日	実施コース番号			
2020年	固定翼	C4 C20 C24		
10月14日	凹化異	C1 ~ C20, C34		
10月15日	固定翼	C21~C33、C43~C50、補備 C5~C12		
10月16日	固定翼	C35~C37、補備 C21、C33		
11月 4日	回転翼	C1 ~ C24		
11月 9日	回転翼	C25 ~ C48		
11月10日	回転翼	C116 ~ C151		
11月11日	回転翼	C49 ~ C81, C152 ~ C155		
11月12日	回転翼	C82 ~ C108、C184 ~ C196		
11月13日	回転翼	C156 ~ C183, C204 ~ C216		
11月14日	回転翼	C217 ~ C237		
12月 1日	固定翼	C38~C42、再計測 C35~C37、補備 C31~C34		

表 2-4 計測実施日一覧(東部:朝日航洋エリア)

実施日	実施コース番号				
2020年	回転翼	A1 - 20 P51 - 50			
10月26日	凹粒美	A1 ~ 28, B51 ~ 59			
10月27日	回転翼	B29 ~ 50			
10月31日	回転翼	C60 ~ 79			
11月 1日	回転翼	C80 ~ 87, E116 ~ 123, E124 ~ 128			
11月3日	回転翼	E150 ~ 173、E129 ~ 149			
11月 4日	回転翼	D92 ~ 115, D88 ~ 91, F214 ~ 230			
11月 5日	回転翼	F194 ~ 213、F174 ~ 193			
11月21日	固定翼	G15 ~ 29			
11月24日	固定翼	G1			
12月 1日	固定翼	G1 ~ 14			

6) 調整用基準点の設置

調整用基準点の一覧を表 2-5、表 2-6 に、配点位置を図 2-5 に示す。

測量実施日:2020年12月1日~12月14日

数量:19点(アジア航測実施) + 52点(朝日航洋実施) = 71点

表 2-5 調整用基準点座標(西部:アジア航測実施)

	III 正/11 至 十 灬 上				
点名	座標値(m)				
二二二	X(East)	Y(North)	Z(Height)		
W01	-28787.459	15047.201	114.110		
W02	-28581.308	12414.268	73.989		
W03	-38130.835	10661.936	78.426		
W04	-42764.918	8911.633	74.749		
W05	-23510.359	8919.096	215.539		
W06	-35156.147	6899.475	29.083		
W07	-29179.174	5773.377	33.726		
W08	-22391.532	6215.085	120.955		
W09	-46204.271	5365.004	66.299		
W10	-39445.512	4730.040	79.053		
W11	-44870.389	1431.164	29.121		
W12	-40387.204	1612.822	36.397		
W13	-26541.123	994.652	39.834		
W14	-31486.838	20.405	22.140		
W15	-22622.022	-1732.764	33.727		
W16	-34856.032	-2984.188	19.940		
W17	-31074.962	-5581.600	72.075		
W18	-24950.155 -7537.264		40.643		
W19	-21421.580	-8169.912	49.726		

表 2-6 調整用基準点座標(東部:朝日航洋実施)

				· (FIVEI	113 113 113 113 1 2 13 1		
点名	座標値(m)			点名	座標値(m)		
ЖП	X(East)	Y(North)	Z(Height)	νν п	X(East)	Y(North)	Z(Height)
E01	2663.332	20738.250	281.970	E27	4574.128	-2181.980	478.299
E02	10906.340	19665.460	672.904	E28	9817.417	-3297.890	493.498
E03	-1496.070	17919.970	338.386	E29	-10779.000	-3916.410	242.013
E04	6587.471	15385.750	421.743	E30	-17017.700	-4422.590	53.482
E05	10982.870	13796.760	603.685	E31	2086.524	-5283.810	476.199
E06	2403.932	13632.670	464.178	E32	-2048.850	-6319.860	933.011
E07	-20802.600	12673.480	391.688	E33	21767.590	-6049.290	673.871
E08	16602.500	11459.880	1143.679	E34	-8851.400	-7006.120	455.844
E09	-12375.700	10457.140	656.096	E35	7226.765	-7927.610	576.168
E10	-16716.800	9980.976	434.274	E36	-13228.100	-8688.730	159.176
E11	7615.256	9736.774	462.453	E37	12039.450	-9266.510	633.212
E12	3397.642	8403.097	525.250	E38	16982.880	-10360.000	804.374
E13	-8967.040	6586.974	583.138	E39	2584.817	-12045.400	672.228
E14	9589.177	6007.543	590.770	E40	22955.810	-12722.100	719.119
E15	20479.110	5015.388	881.127	E41	6411.408	-13097.800	1108.608
E16	15398.620	3980.920	791.382	E42	-2943.110	-13520.900	300.993
E17	-14452.500	3774.541	188.669	E43	15134.790	-15729.700	683.268
E18	2235.045	4041.855	724.307	E44	18999.120	-16685.900	818.064
E19	-20038.900	1936.785	68.241	E45	10640.690	-17078.800	603.756
E20	-9778.660	1798.910	284.839	E46	1510.566	-16998.600	391.469
E21	8981.604	593.140	850.508	E47	27142.590	-17562.200	823.092
E22	-3515.170	706.841	709.271	E48	22833.740	-19433.700	796.301
E23	-13781.800	-681.373	227.367	E49	6606.539	-20238.500	438.707
E24	23657.740	-945.336	513.919	E50	12001.120	-20694.100	572.463
E25	15102.170	-199.231	770.236	E51	17029.190	-21634.100	590.994
E26	18987.560	-1517.800	718.825	E52	24113.740	-24337.400	465.345

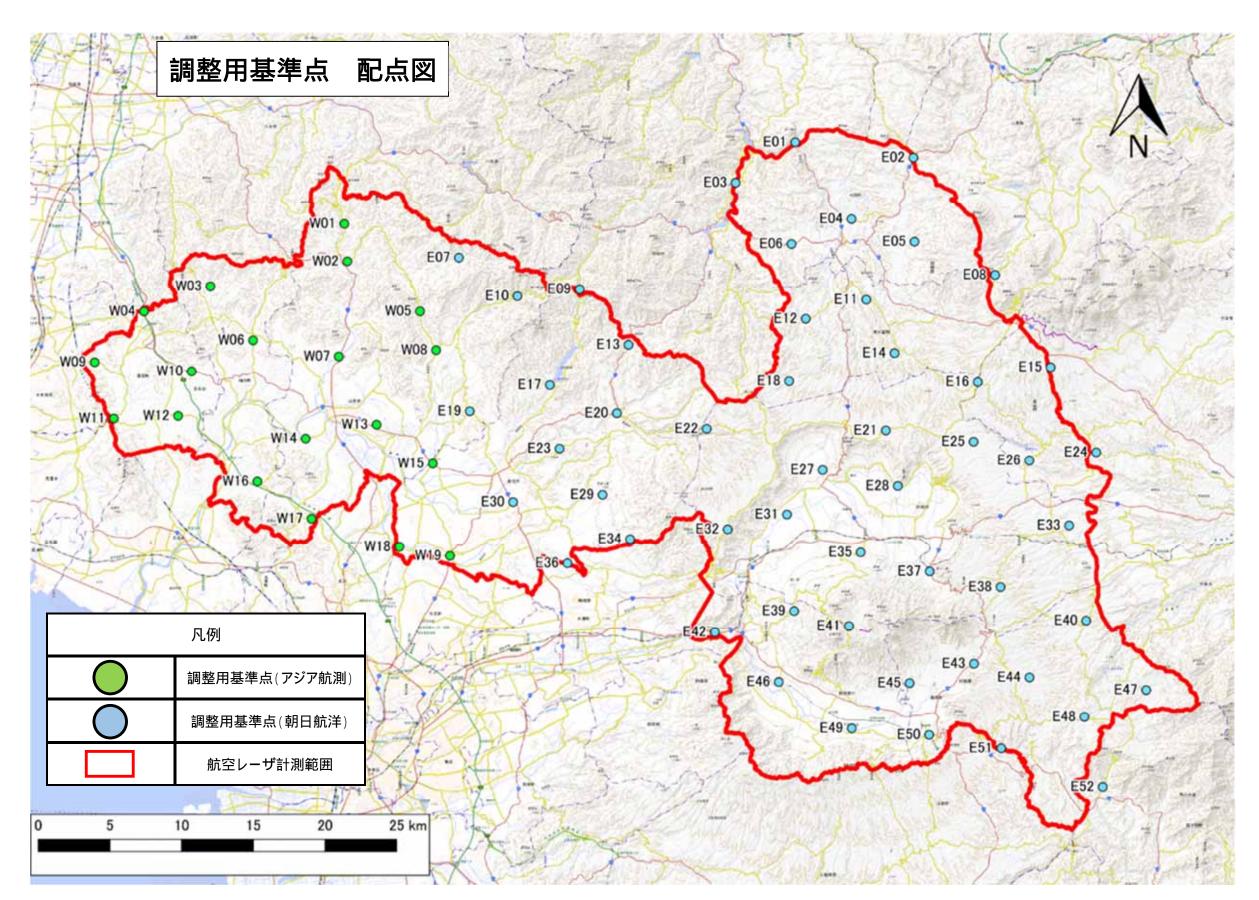


図 2-5 調整用基準点配点図

2.5 航空レーザ計測データ作成

航空レーザ計測時に取得された各種データの処理を行った。データ処理フローを図 2-6 に示す。

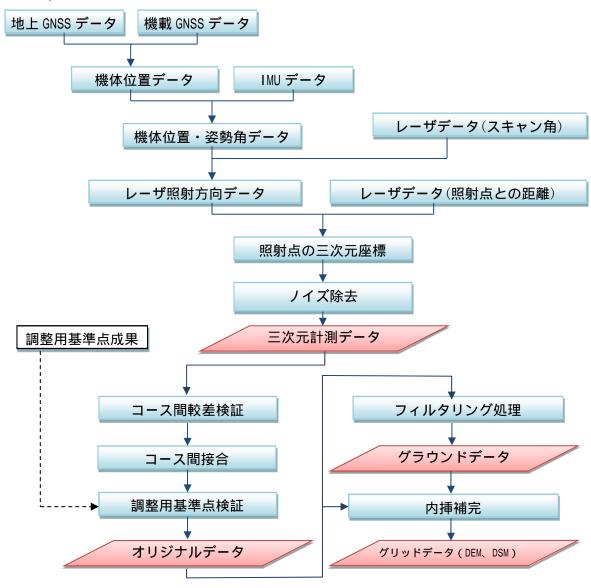


図 2-6 航空レーザデータの処理フロー

2.5.1 三次元計測データ作成

GNSS データ、IMU (Inertial Measurement Unit) データおよび地上 GNSS データ (国家電子基準点データ) を使用し GNSS / IMU 解析をおこない、機体位置・姿勢角データを算出した。さらに、レーザの照射方向や照射点との距離データと機体位置・姿勢角データとを組み合わせ照射点の三次元座標を算出し、ノイズ除去を行い、三次元計測データを作成した。

- 三次元計測データの点検は以下の内容について実施した。
- ①GNSS/IMU解析時の衛星数およびPDOPの点検
- ②航空レーザ計測データの計測漏れの点検
- ③三次元計測データの欠測率の点検
- ④積雪による影響の確認

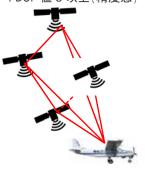
(1) GNSS/IMU 解析時の衛星数および PDOP

計測時の航空機の機体位置および姿勢角の精度が、算出される三次元計測データの精度に大きく影響することから、「林野庁測定規程」(以下、「規程」)では計測時の受信衛星数が GPS 衛星のみ使用する場合は 5 個以上、GLONASS 衛星を使用する場合には 6 個以上であることと記されている。また、衛星の配置状況(※PDOP:図 2-7)も三次元計測データの精度に影響するため、PDOP の点検も実施した。計測時の衛星数と PDOP の推移の例を図2-8 に示す。

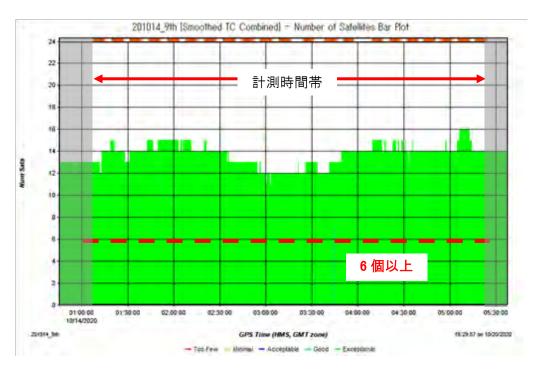
点検の結果、計測時間帯の受信衛星数は最低で5個であり、「規程」の規定値を満たしていることを確認した。またPDOPはほぼ全計測時間帯で3以下であることを確認した。

受信衛星数 「林野庁測定規程」第 285 条 4 二		
規定	5 個以上(GPS 衛星のみ) 6 個以上(GLONASS 衛星併用)	
本業務	5 個以上(GPS 衛星のみ) 6 個以上(GLONASS 衛星併用)	

PDOP とは


Position Dilution Of Precisionの略。位置精度の低下率を表す。4つの衛星を結んでできる四面体の体積が大きいほど、PDOPの値は小さくなり、精度は高くなる。衛星の配置状況に依存するものであり、3以下が良好とされている。

PDOP 値 3 以下(精度良)


衛星の配置が広がっていて、衛星を結んでできる体積が大きいほど PDOP の値は小さ〈なり、観測精度は良〈なる。

PDOP 值 3 以上(精度悪)

衛星の配置が偏っていて、衛星を結んでできる体積が小さいほど PDOP の値は大き〈なり、観測精度は悪〈なる。

図 2-7 PDOP の概念図

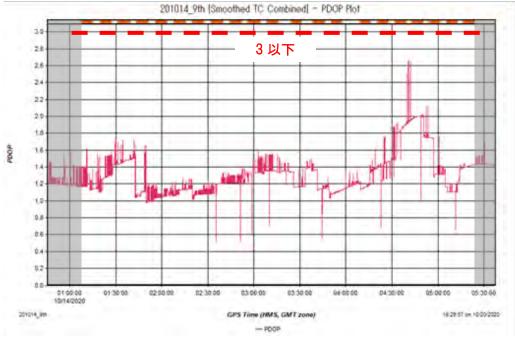


図 2-8 衛星数と PDOP の推移の例

(2) 航空レーザ計測データの漏れの点検

航空レーザ計測データが計測対象範囲全域を網羅したことを点検するため、計測漏れ点 検図を作成した。計測漏れは、計測時の不安定な気流等により航空機が傾き、サイドラッ プが不足した場合や雲等によりレーザデータが欠落した場合に発生することがある。

本業務の計測時は、雲もなく気象状況も良好であり、航空レーザ計測データが計測対象 範囲を網羅していることを確認した。計測漏れ点検図を図 2-9、図 2-10 に示す。