吸収源計測事業試験地の概要

道府県名	北海道	秋田	愛媛	長野	広島	大分
伐採時期	2002.09	2001.11	2002.03	2002.03	2001.11	2001
前生樹種	カラマツ	スギ	スギ	アカマツ	スギ	ヒノキ
伐採時林齢 (年)	49	79	49	35	48	71
更新時期	2003.05	2002.04	2003.03	2002.04	2002.04	2002
更新樹種	カラマツ	スギ	ヒノキ	ヒノキ	スギ	ヒノキ
土壌群	褐色森林土	褐色森林土	褐色森林土	黒色土	黒色土	黒色土
標高(m)	240	200	520	830	770	1030
斜面方位	南西	東	西	北	南西	東
傾斜 (度)	18	17	30	3	32	20
斜面形	平衡	凸型	凹型	平坦	平衡	凸型
表層地質	砂岩・泥岩	砂岩	安山岩	半固結堆積物	玄武岩	火山砕屑岩
土壌採取地点数 (列*行)	104 (8*13)	100 (10*10)	100 (10*10)	100 (10*10)	100 (10*10)	100 (10*10)
採取点間隔 (xm*ym)	4*4	4*4	3*3	4*3	4*4	4*4

主要な気候、土壌、樹種をカバー

黒色土サイト

試験地の現況調査

ベンチマークサイトとしての妥当性、作業性を確認

- 1. 調査プロットの位置確認
 - 1) 林分確定 2) プロット基準杭探索
 - 3) 前回土壌調査位置確認
- 2. プロット概況

 - 1) 生育状況 2) 侵食等の地表面の状況
- 3. 作業性
 - 1) 土壌サンプリング地点 2) 堆積有機物の分布、堆積状況
 - 3) 下層植牛の繁茂状況
 - 4) 試料採取の容易さ

10/14 **北海道**(芦別:道有林) 道立林試 大野氏

10/28 **秋田**(阿仁:古河林業社有林) 秋田県 澤田氏 山一林業 松橋氏

38

長野(塩尻:県林業センター内) 県林試 小山氏、片倉氏

11/17 広島(廿日市:共同組合管理地) 県林試 涌嶋氏 (安田林業 安田氏)

大分 (九重:九州林産社有林) 12/7 県林試 高宮氏 九州林産 岩松氏

未実施 : 愛媛 (林道不通のため)

各試験地のベンチマークサイトとしての妥当性

- ・長野、広島、大分は植栽木がほぼ生残・成長している。
- ・秋田は根曲がり木が多い不成績造林地。
- ・北海道は植栽木が部分的にしか残っておらず、林分面積の 2/3程度は無立木状態。
- ・愛媛はアクセス不可
- →北海道、愛媛を除く4か所は、調査対象として適当。 北海道、愛媛は調査対象から除外することを提案

北海道	秋田	長野	広島	愛媛	大分
0	0	0	Δ	-	Δ
0	0	0	Δ	×	Δ
×	Δ	0	0	×	0
不適	適	適	適	不適	適
	0 0 ×	О О О О х <u>А</u>	O O Θ O O O × Δ O	O O Θ Δ O O Δ × Δ O O	O O Θ Δ - O O Δ × × Δ O O ×

42

褐色森林+サイト

調査方法の検討

前事業を踏襲

プロット内での各調査項目の配置

3深度 (0-5、5-10、17.5-22.5cm) 100mL円筒(採土補助器使用)

■ 堆積有機物採取

50×50cmを20カ所、TK分けず

□地上部バイオマス調査

20×20m区内の全立木(< φ 5cm) 胸高直径・樹高

□倒木調査

20×10m内の全数調査

■下層植生バイオマス

1×1mを20カ所 群落高、被度、優占種記録後、 全刈り取り、現地で生重量を測定。

現地調査の行程

各ブロック担当支所および本所で対応(8名程度)

1日目 移動日

2日目 プロット・格子再設定 土壌試料採取

40分/箇所として6時間:9箇所/人=72箇所

3日目 4名:堆積有機物採取(20箇所)+土壌試料採取 4名:地上部、倒木、下層植生調査

4日目 移動日

*広島、大分:宿泊地~試験地が遠いため4泊5日

既存杭を参照し格子を復元

算定関連の動向と今後のスケジュールに

■ ついて

土壌資源研究室長 石塚成宏

全体の大きな流れとして、

- ・調査データベースに基づく数値
- ・論文発表ベースの数値
- ・それに伴う情報公開

47

スケジュール

	2021	2022	2023	2024	2025
現況確認	\Leftrightarrow	(愛媛)			
許可申請	(=	$\Rightarrow \Rightarrow \Rightarrow$			
現地調査		秋田・長野 広島・大分	(北海道·愛媛)		
試料調製		4		\Longrightarrow	
試料分析				\leftarrow	\Longrightarrow
とりまとめ				—	\Rightarrow

実施体制

現地調査:各試験地所在ブロックの支所+本所 試料調製:各試験地所在ブロックの本・支所

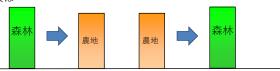
試料分析:外注予定

林野庁森林吸収源インベントリ情報整備事業 2022-02-16 令和3年度検討会

45

①CENTURY-ifosの改定

3) 調査結果の吸収・排出量算定報告への 反映方法の検討 酒井さんより別途説明


49

②土地利用変化関連

- (1) 各土地利用平均炭素蓄積量の改定
- (2) 農地・森林・草地間の土地利用変化時の移行係数の導入

枯死木、リターは森林のみが対象で伐採即排出

土壌は

土地利用変化があった場合 年々変化量 = 変化後の平均炭素量 - 変化前の平均炭素量 20年 として計算する(IPCC デフォルト法)

(1) 各土地利用平均土壌炭素蓄積量の改定

■森林土壌の土壌炭素量

• 現在利用している数値 :約85 t-C/ha

• Ugawa et al.2012_errata:70.6 t-C/ha (モニタリングデータの値) : 76 t-C/ha (日本の全森林の3Dマッピン Yamashita et al. 2022

グモデル算定値)

学術的には、 Yamashita et al. 2022の値が、日本の森林土壌の平均値と して最適

■農用地土壌の土壌炭素量

- 現在利用している数値 : 76.5 t-C/ha (1979年のデータをイ ンベントリコンパイラで集計した数値)
- 新たなデータに関する論文が受理済み(インベントリ用の数値は未 集計)
- ■開発地土壌の土壌炭素量

50

• 環境省プロで設定中 40 t-C/ha 弱になる見込み

土地利用変化関連の改定 概念図

改定後

		森林	農地	草地	開発地
改定前					
	森林	CENTU RY-jfos	移行係数	移行係数	平均炭素 量比較
	農地	移行係数	Roth-C	移行係数	平均炭素 量比較
	草地	移行係数	移行係数	Roth-C	平均炭素 量比較
	開発地	平均炭素 量比較	平均炭素 量比較	平均炭素 量比較	RVのみ

必要なのは移行係数と平均炭素量

枯死木、リターは改定前と同じ構造で、炭素蓄積量のみ改定 ※農地、草地、開発地では0 として計算

森林の枯死木・リターの平均炭素蓄積量

枯死有機物量のデータを調査ベースの平均値に変更

CENTURYモデルの温帯のデフォルト設定から計算した値 土壌インベントリ調査の結果 に変更

枯死木のインベントリ調査ベースの値はUgawa et al.2012*

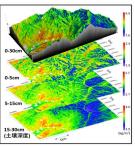
リターは4.9 t-C/ha 枯死木は倒木のみで4.2 t-C/ha

土壌インベントリ調査(第二期)から 倒木:根株:立枯木=42:33:25

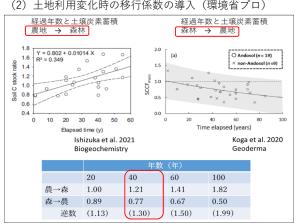
従って、<u>枯死木は4.2×(100/42) = 10 t-C/ha</u>

54

53


(1) 各土地利用平均土壌炭素蓄積量の改定

Yamashita et al. 2022 Geoderma


- ・地形因子、火山からの距離などを 考慮に入れた多数の因子から予測
- ・0-5cm、5-15cm、15-30cmごとに仮 比重、石礫率、炭素濃度を予測して 計質
- ・地点単純平均は70.6tCだが、本推定 では76tCと予測
 - 2500点の地点バイアスを補正

土壌炭素貯留量の3次元分布(拡大図)

(2) 土地利用変化時の移行係数の導入(環境省プロ)

土地利用変化係数は、農→森 1.21 森→農 0.77 移行期間は40年 森→草 0.858 移行期間は20年

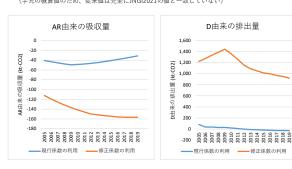
表 6-11 土地利用カテゴリー毎の土壌炭素ストック量 (鉱質土壌)

土地利用カテゴリー		炭素ストック量		備考	
森林		76 [t-C/ha] (2018 年度)		深度 0-30 cm において CENTURY-jfos で計算した、インベ ントリ年の前年の全国平均値。なお、2004 年度以前の値は、 2005 年度値を代揮。(参考値は表 6-12 を参照)	
転用前	農地	農地 田		[t-C/ha]	深度 0-30 cm におけるデータ
		普通畑	2	[t-C/ha]	農業環境技術研究所 中井信委員 提供データ (未公表)
		樹園地	Π.	[t-C/ha]	※「農地から転用された草地」及び「草地から転用された
		農地	П	[t-C/ha]	農地」にはこの炭素ストック量を適用しない。
		(平均)			
		草地		[t-C/ha]	
		湿地		[t-C/ha]	デフォルト値(2006年IPCCガイドライン Table 2.3, Wetland soils/ Warm temperate)。
	B	開発地			現在精査中
	その他の土地		-		土地転用状況に応じて設定
	森林		76 [t-C/ha]		深度 0-30cm において CENTURY-jfos で得られた 20 年生森 林における単位面積当たり炭素ストック量の平均値。
Arr PD 40	農地		IE		転用のない農地の算定に含まれる。
転用後	草地		IE		転用のない草地の算定に含まれる。
	湿地		-		現在精査中
	開発地		-		土地転用状況に応じて設定
	その他の土地		-		

③新モデルの検討

Yassoモデル、RothCモデルなどの導入を検討 地域の区切り方などの見直し(単純化)を想定

④最適地点数の検討


地点数を減らした時にどれくらい推定精度が 低下するかを検討するアイデア

学術的にこういった方法が受け入れられるか 慎重に判断

59

京都議定書ARD算定值(再計算)

■ ARについては、年間12万t-CO₂程度の吸収増加(吸収係数の増加が主要因)。 ■ Dについては、年間100万t-CO₂程度の排出増加(開発地転用の排出増が主要因)。 (手元の概算値のため、従来値は完全にJNGl2021の値と一致していない)

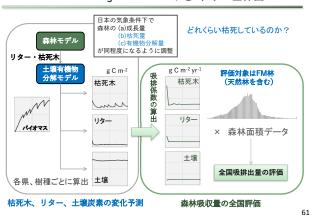
CENTURY-jfosの改定 に向けた取り組みについて

- 1. CENTURY-jfos2007のしくみ
- 2. 今年度の検討状況 人工林の材枯死率の見直しについて

60

2022年1月18日 土地利用分野算定委員会

数値を示して基本方針を提言



2023年1月 土地利用分野算定委員会にて決定予定

2023年4月に提出される国連報告書に反映 ※パリ協定下最初の報告

CENTURY-jfos2007のしくみ -全体図-

58