


図 2.17 40 林班 赤色立体地図

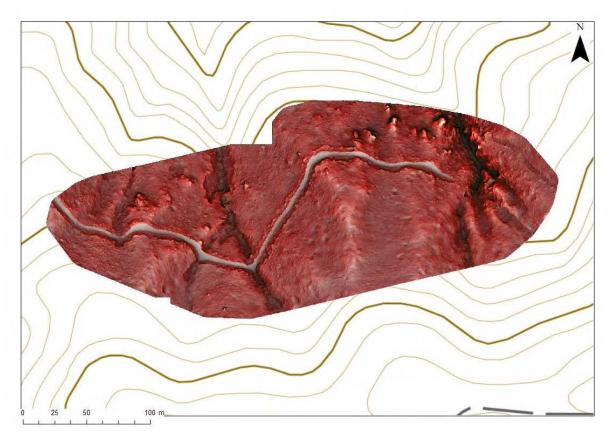



図 2.18 41 林班 赤色立体地図

## 2.2.2 毎木調査

# (1) 現地調査地点

現地調査候補地点として、スギ林分で 5 地点、ヒノキ林分で 5 地点を選定した。現地調査地点の位置図を図 2.19 および図 2.20 に示す。

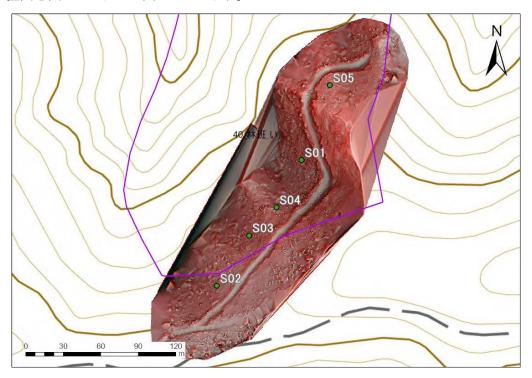



図 2.19 現地調査地点の位置図(40 林班い小班)

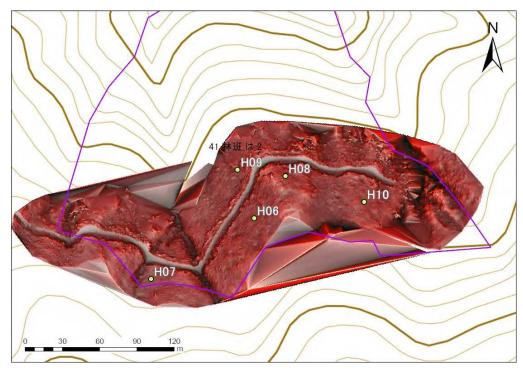



図 2.20 現地調査地点の位置図(41 林班は小班2)

### (2) 調査方法

本調査では、解析目的に即して、R02 年度に計測した UAV 計測データが存在する範囲内に、 全均等に林分を選定した。

現地では、円形の調査プロット(水平面積:400m2)を設け、プロットの中心の位置座標を ハンディ GNSS (GPS) 機器により記録し、プロット内の写真撮影を行う。胸高直径 6cm 以上 の樹木を対象として、樹種、本数、樹高、胸高直径等を計測した。

なお、現地の状況に応じ、水平面積を 200 m2 としたプロットでの調査も実施した。

### (3) 現地調査結果

現地調査結果を表 2-4 に示す。また調査を実施した各プロットの林分状況を図 2.21、図 2.22 に示す。

なお、S02、S05、H07、H08、H09では0.02haの面積でプロット調査を実施した。

| No. | 調査番号 | 樹種  | 上層木本数 (本) | 全木本数(本) | 平均樹高<br>(m) | 平均DBH<br>(cm) | 上層木<br>合計材積<br>(㎡) | 平均樹冠長<br>(m) | 樹冠長率 (%) | プロット面積<br>(ha) | 上層<br>haあたり本数<br>(本) | 全木<br>haあたり本数<br>(ha) | 上層<br>ha材積<br>(㎡/ha) |
|-----|------|-----|-----------|---------|-------------|---------------|--------------------|--------------|----------|----------------|----------------------|-----------------------|----------------------|
| 1   | S01  | スギ  | 57        | 62      | 18.0        | 24.2          | 23.333             | 7.93         | 42.15    | 0.04           | 1,425                | 1,550                 | 583.325              |
| 2   | S02  | スギ  | 27        | 27      | 18.3        | 25.4          | 11.793             | 9.08         | 48.28    | 0.02           | 1,350                | 1,350                 | 589.65               |
| 3   | S03  | スギ  | 51        | 51      | 17.0        | 25.7          | 21.506             | 7.92         | 46.66    | 0.04           | 1,275                | 1,275                 | 537.65               |
| 4   | S04  | スギ  | 51        | 51      | 17.0        | 24.3          | 19.161             | 8.7          | 49.51    | 0.04           | 1,275                | 1,275                 | 479.025              |
| 5   | S05  | スギ  | 23        | 23      | 13.6        | 22.9          | 6.182              | 7.2          | 52.59    | 0.02           | 1,150                | 1,150                 | 309.1                |
| 6   | H06  | ヒノキ | 33        | 34      | 15.1        | 22.6          | 10.206             | 8.26         | 53.52    | 0.04           | 825                  | 850                   | 255.15               |
| 7   | H07  | ヒノキ | 25        | 25      | 15.6        | 23.1          | 8.276              | 8.76         | 56.42    | 0.02           | 1,250                | 1,250                 | 413.8                |
| 8   | H08  | ヒノキ | 19        | 19      | 12.7        | 21.6          | 4.413              | 5.73         | 44.9     | 0.02           | 950                  | 950                   | 220.65               |
| 9   | H09  | ヒノキ | 17        | 18      | 15.2        | 24.2          | 6.168              | 7.75         | 49.52    | 0.02           | 850                  | 900                   | 308.4                |
| 10  | H10  | ヒノキ | 36        | 37      | 15.1        | 24.9          | 13.291             | 7.36         | 48.26    | 0.04           | 900                  | 925                   | 332.275              |

表 2-4 現地調査結果一覧





図 2.21 現地調査地点の位置図(40 林班い小班、左:S01、右:S05)





図 2.22 現地調査地点の位置図(41 林班は小班2左: H06、右: H10)

### 2.2.3 林内、上空レーザ解析データ検証

取得した上空レーザ計測は当社特許第 4279894 号による樹頂点抽出を行い、現地調査箇所との比較を実施し、樹高、胸高直径、単木材積、林分材積等、解析精度に問題がないことを確認した。さらに、現地毎木調査結果、上空レーザ解析結果、昨年度実施した林内 UAV レーザ計測データを OWL manager で解析した森林資源量との比較を行い、樹高、胸高直径、単木材積、林分材積等の精度評価と林内 UAV レーザの解析有効範囲についてとりまとめた。

# (1) 上空レーザ計測データを用いた森林資源解析

上空 UAV レーザ計測により得られたデータを用いて、森林資源解析を実施した。解析の流れは図 2.23 の通り。

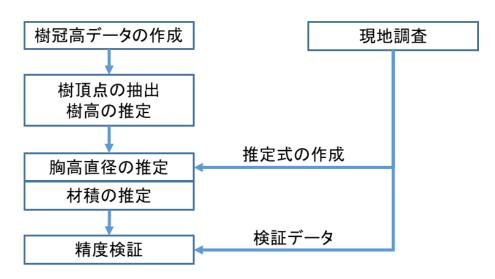



図 2.23 森林資源解析のフロー

## 1) 樹冠高データの作成

レーザ計測データのファーストパルスの点群データを用いて樹冠表層面の高さ(標高値)のモデルである樹冠表層高データ(DCSM; Digital Canopy Surface Model)を作成した。さらに地盤標高データ(DEM)との差分により、樹冠高データ(DCHM; Digital Canopy Height Model)を作成した(図 2.24、図 2.25)。

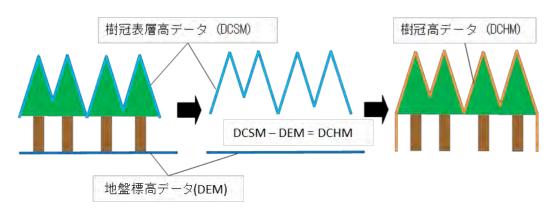



図 2.24 樹冠高データ (DCHM) の作成イメージ

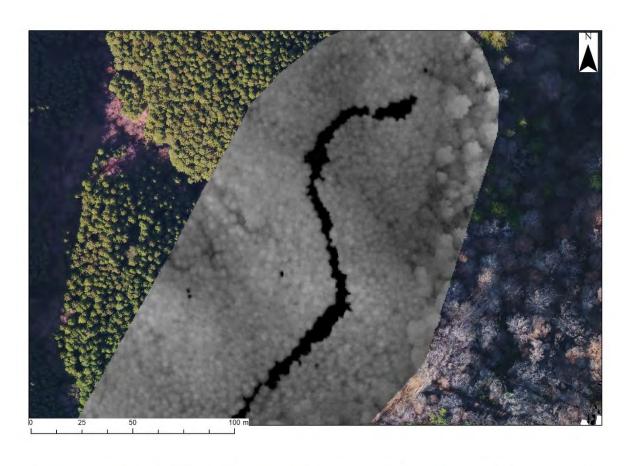





図 2.25 作成した樹冠高データ (上) と同位置のオルソ画像 (下)

# 2) 樹頂点の抽出

東京電力株式会社と当社で共同開発した樹頂点抽出技術(特許第 4279894 号)を用いてスギ、ヒノキの樹頂点抽出を行った。手順は以下のとおりである(図 2.26)。抽出した樹頂点はShape 形式で整備した。

- 1. 樹冠高データ (DCHM) から樹冠形状指数を計算した。樹冠形状指数は、樹冠表層面の凹凸形状を角度で表した指数で、凸部(梢端)ほど高い値になり、凹部(樹冠縁)ほど低い値になる。この指数値の高低差を利用することで単木(樹頂点)の識別が容易になる。
- 2. 樹冠形状指数を用いて、樹冠部を抽出した。これにより、樹冠サイズが大きい個体から小さい個体まで、正確に樹冠部を抽出できる。
- 3. 最後に樹冠部内で樹冠高データ (DCHM) の数値(高さ) が最も大きいメッシュの位置を 樹頂点として抽出した。この際、過剰抽出 (1つの樹冠で複数の樹頂点が抽出される等) を 避けるため、樹頂点間の距離を計算し、極端に短い距離にある樹頂点は、最も高い位置に あるものだけを残して除去した。

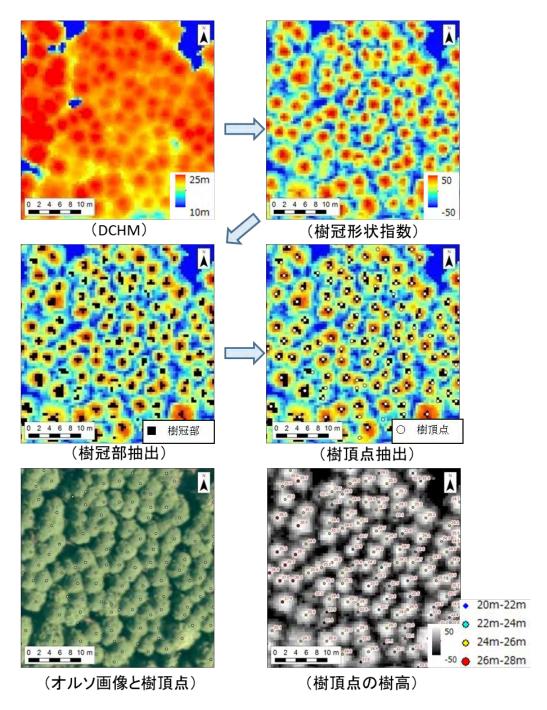



図 2.26 樹頂点抽出の流れ

### 3) 樹高の推定

スギ、ヒノキの樹高について、樹冠高データ及び樹頂点位置等の情報を基に単木の樹高を推 定した (図 2.27)。

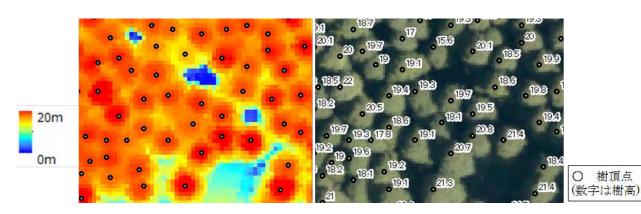



図 2.27 樹高の推定例(左:樹冠高データ、右:樹高計測例)

樹頂点

### 4) 胸高直径の推定

胸高直径は推定式を用いて単木ごとに求めた。この推定式は、現地調査で得た各プロットの平 均胸高直径を目的変数とし、樹冠高データから得た樹高と樹冠情報(樹冠投影面積、樹冠長、樹 冠長率、樹冠表面積、樹冠体積) を説明変数 (パラメータ) として、回帰分析することで作成し たものである。胸高直径の推定のイメージを図 2.28 に示す。

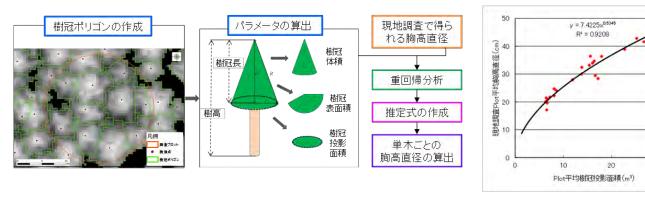



図 2.28 胸高直径の推定イメージ

#### ① 回帰分析に使用する用語

補正 R<sup>2</sup>値…回帰式を評価する場合、一般的に R<sup>2</sup>値が使用される。しかし、重回帰分析に おいて説明変数の数が違う場合、 $R^2$ 値から式の良否を評価することはできない(説明変 数の数が大きいほど R<sup>2</sup>値は良好な値を示す)。このような説明変数の数の影響を取り除 き、見かけ上の当てはまりの良さを差し引いた数値が補正  $\mathbb{R}^2$ 値である。この数値が高い ほど、回帰式から求められる予測値が目的変数に近く、回帰式の当てはまりが良いことを 示す。自由度調整済決定係数ともいわれる。