

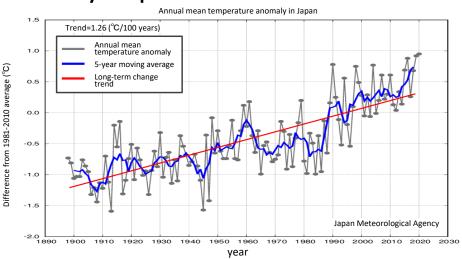
CLIMATE CHANGE ADAPTATION PLAN OF THE MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES (OUTLINE)

October 2021

Ministry of Agriculture, Forestry and Fisheries

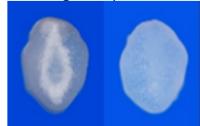
Table of Contents

•	Climate Change and Increase in Large-Scale Natural Disasters of to Global Warming	
•	Development and Promotion of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan	2
•	Basic Concept	3
•	Major Adaptation Measures in the Agriculture, Forestry and Fisheries Sectors	4
•	Examples of Leveraging the Opportunities Presented by Climar Change	
•	Examples of Climate Change Predictions in Japan	6
•	Agricultural Production Review	7
•	Paddy Rice	8
•	Fruit Trees	9
•	Land Use Crops (Wheat, Soybeans, Tea, etc.)	- 10
•	Horticultural Crops (Vegetables and Flowering Plants)	
•	Livestock	- 12
•	Pests, Weeds, etc	- 13
•	Agricultural Production Infrastructure	14
•	Mountainous Disaster and Forest Conservation Works and	
	Forest Road Facilities	
•	Planted Forests	
•	Natural Forests	- 17
•	Non-Timber Forest Products (Mushrooms, etc.)	18


•	Marine Fisheries 19
•	Marine Aquaculture 20
•	Inland Fisheries and Aquaculture 21
•	Constructed Fishing Grounds 22
•	Fishing Ports and Villages 23
•	Global Warming Prediction Research, Technology Development
•	Regional Deployment of Adaptation Measures Based on Future Prediction 25
•	Heat Stroke among Persons Engaged in the Agriculture, Forestry, and Fisheries Industries 26
•	Bird and Animal Damage 27
•	Food Supply and Demand 28
•	Food Manufacturing29
•	International Cooperation on Adaptation 30
•	Ongoing Review of the Adaptation Plan and Management of the

Climate Change and Increase in large-Scale Natural Disasters due to Global Warming

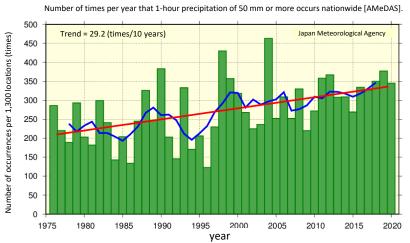
- OThe annual average temperature in Japan increases at a rate of 1.26°C per 100 years.
 - The annual average temperature in Japan in 2020 is the highest since statistics began being recorded in 1898.
- OThe agriculture, forestry and fisheries industries are susceptible to climate change and have already experienced quality deterioration due to high temperatures.
- Obue to the increase in rainfall and other factors, disasters tended to be more severe. Damage also occurred in the agriculture, forestry and fisheries sectors.


Secular change in annual mean temperature anomaly in Japan

Annual average temperature has been increasing for a long period of time, and especially since 1990, there have been frequent high temperature years.

■ Impacts of climate change on the agricultural sector

Rice: deterioration in quality due to high temperature



Cross section of white immature grain grain with white portion (left) and normal grain (right)

Apples: poor coloration and delayed coloration at maturity

Number of times there was an hourly precipitation of 50 mm or more per year

The average number of occurrences over the 10-year period 2011-2020 is 334 Increased by 1.5 times compared to 1976-1985

Damage to the agricultural sector

Soaked cucumber (Heavy rain caused by a front in August 2019)

A damaged glass house (Typhoon on the Boso Peninsula in 2019)

Development and Promotion of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan

Government-wide movement on climate change adaptation measures

(Impact Assessment)

March 2015 "First Climate Change Impact Assessment" was released (Ministry of the Environment)

(Planning)

November 2015 Cabinet approved the "Climate Change Adaptation Plan" (administrative plan)

(Legislation)

June 2018 Climate Change Adaptation Act promulgated.

(Planning)

November 2018 Cabinet approved the Climate Change Adaptation Plan based on the Act.

(Impact Assessment)

December 2020 the "Second Climate Change Impact Assessment" was released (Ministry of the Environment)

(Plan revision)

October 2021 Cabinet approved the revised "Climate Change Adaptation Plan"

Key points of the second round of climate change impact assessment

OEnhancement of scientific knowledge on the impacts of climate change In the field of agriculture, forestry and fisheries, 339 references were cited, about

- **3.5 times** as many as in the previous survey (96 references in the previous survey). (new predictions)
 - Poor coloring of grapes
 - Decreased production capacity and reproductive function of livestock
 - ➤ Increased flood damage in low elevation paddy fields
 - > Simultaneous collapse of hillside slopes and increase in mudslides
 - ➤ Decline in algae and shellfish aquaculture production due to changes in the distribution areas of migratory fish and increases in water temperature
 - Many studies see global rice, wheat, soybean, and corn yields declining, but impacts vary by region, CO2 concentration, and adaptation measures

History of the formulation and revision of the MAFF Climate Change Adaptation Plan

(Planning)

August 2015: Ministry of Agriculture, Forestry and Fisheries formulates climate change adaptation plan

(Plan revision)

November 2018: Revised Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan

(Plan revision)

October 2021: Revised Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan

Key points of the revised MAFF climate change adaptation plan

- O Promote the development and dissemination of stable production technologies and varieties that adapt to climate change based on Strategy for Sustainable Food Systems.
 - In apples and grapes, the introduction of excellent coloring varieties, etc.
 - Promotion of measures against heat, such as watering and ventilation in barns
- O Maintaining and improving of disaster prevention and mitigation functions in rural areas
- O Prevention of mountain disasters through the deployment of erosion control facilities and forest maintenance, etc.
- O Improvement of the precision of stock assessment and development of algae tolerant to high water temperatures, etc.
- O Establishing comprehensive food security by conducting research and analysis of food supply and demand, etc.

2

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Basic Concept]

Plan development based on						
current and future impact						
assessment						

- O Develop plans to respond accurately and effectively to the impacts of climate change, consistent with government-wide impact assessments
- O Organize and promote plans for each field and item, focusing on initiatives necessary for the next 10 years.

Countermeasures to the impact of global warming

- O Research and development of adaptive technologies and varieties that reduce the decline in production quantity and quality of crops, etc.
- O Conversion to adaptable varieties and crops, and dissemination of adaptation technologies

Disaster prevention and response to disasters caused by extreme weather events

- O Severe flooding damage to agricultural land and mountain disasters caused by torrential rains, etc.
- O Increased risk of storm surge due to rising sea levels, etc.

In preparation for this, it will systematically promote the development of facilities that contribute to disaster prevention.

Utilization of climate change

- O Expansion of production area due to reduction of low temperature damage
- O Introduction and conversion of subtropical/tropical crops and creation of producing areas
- O Increase in yield due to expansion of growing period and cultivation area by shortening snow cover period

Collaboration among stakeholders and role sharing, information sharing

- O National government: Scientific assessment of current and future impacts of climate change, basic research and development of adaptation technologies, presentation of supportive measures for local initiatives in terms of both software and hardware, and collection and dissemination of domestic and international information.
- O Regions: Independent selection and promotion of adaptation measures by regional entities, etc.
- O Effective implementation of adaptation plans through cooperation between national and local governments

Promote initiatives by continuously reviewing and optimizing the plan

- O Review of the current status and future impacts assessment based on the latest scientific findings in the wake of new reports by the IPCC and other organizations.
- O Confirmation of the progress of adaptation measures and reflection of the latest research results, etc.

Ongoing review of the adaptation plan based on the results of these latest assessments, etc.

Major Adaptation Measures in the Agriculture, Forestry and Fisheries Sectors

- The agriculture, forestry and fisheries industries are susceptible to climate change, and have already been facing growth problems and quality deterioration due to high temperatures.
- Climate change may concurrently present some positive effects on these sectors, such as the expansion of cultivation areas for some crops due to rising temperatures.

Paddy rice

- Deterioration in quality due to high temperatures.
- If the conversion to high temperature resistant varieties does not proceed, the percentage of the first-Cross section of immature grain class rice may decrease nationwide. with white portion (left) and normal grain (right)

 Thoroughly implement basic techniques such as fertilizer and water management.

Livestock and forage crops

- During the summer, milk production, milk composition, and reproductive performance of dairy cattle decline, and the body mass index of beef cattle, pigs, and poultry deteriorates.
- Dry matter yields of forage crops are increasing year by year in some areas.
- Kyoto Prefecture: Development o clothing for livestock using cool
- Promotion of measures against heat, such as watering and ventilation in barns
- Development of productivity-enhancing technologies such as appropriate nutritional
- Construction of cultivation system for forage crops, development and dissemination of cultivation management technology

Forestry

- Occurrence of woody debris flow accompanying hillside collapses triggered by external forces that exceed forests' ability to stabilize slopes.
- Possible increased risks of mountain disasters such as hillside collapses and debris flow due to more frequent caused by heavy rain heavy rainfall.
- Possible increase in growth problems of Japanese cedar planted forests in areas with already lower precipitation.

Withering cedar trees due to drought

- Prevention of mountain disasters including through erosion control facility deployment and forest management.
- Research and study on climate change impacts on forests and forestry

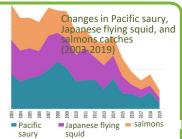
Fruit tree

- Poor skin color of apple and grape, peel puffing and sunburn of satsuma mandarin, and flowering disorder of Japanese pear.
- •There is a possibility that the suitable areas for apple and satsuma mandarin cultivation will shift year by year.

Photo source: MAFF, etc.

waterlogging damage to farmland caused by torrential rain

Introduction of superior-colored cultivars or yellow-green cultivars for apple and grape.


·convert to medium-late maturing citrus ('Shiranuhi', etc.), which prefer warmer climates to satsuma mandarin.

Agricultural production base

- In addition to the frequent occurrence of short duration heavy rainfall, drought due to low rainfall also occurred.
- A change in the timing of rice planting and an increase in water management labor.
- •The risk of waterlogging damage to farmland may increase.
- · Efficient use of agricultural water and maintaining and improving of disaster prevention and mitigation functions in rural areas through appropriate combination of hard and soft measures.

Fisheries

- Decline in catches of Pacific saury, Japanese flying squid and salmons.
- Mass death of scallop and ovster
- Decreased harvest of cultured laver due to shorter cultivation 30 period.
- Changes in the distribution area and body size of migratory fish stocks, and possible impact on fish farming areas due to the rising water temperatures in summer.

- · Comprehend the impact of marine environmental changes on fishery resources and improve the precision of stock assessment
- ·Improvement of aquaculture breeds tolerant to higher water temperatures and technology for monitoring harmful algal blooms over wider areas

«Examples of KPIs»

[Agriculture (paddy rice)] Percentage of area planted with high temperature resistant varieties (staple food rice)
[Forestry (timber production (plantation forests, etc.))] Percentage of prefectures where the pine weevil damage rate in pine forests to be conserved is kept at "slight damage" of less than 1%.

[Fishery (Migratory fish stocks (Ecology of fish, etc.)] Number of fish species assessed based on MSY (Maximum Sustainable Yields)

Examples of Leveraging the Opportunities Presented by Climate Change

Blood orange (Ehime, Japan)

In the Nanyo region of Ehime Prefecture, efforts have been made since around 2003 to introduce and popularize blood orange ("Tarocco" and "Moro") in order to deal with the impact of global warming and citrus anniversary supply, and steady production has been promoted.

(Cultivation area (Ehime Prefecture): 2008: 13.5 ha \rightarrow 2018: 27.3 ha)

Peach (Aomori Prefecture)

In the Central South Region, which accounts for 70% of the apple cultivation area in Aomori Prefecture, the production of peaches has been promoted in recent years, and efforts are being made to study promising varieties and improve cultivation techniques for high-quality production and branding.

(Cultivated area (Aomori Prefecture) 2007: 91.4 ha \rightarrow 2018: 122.2 ha)

Avocado (Ehime, Japan)

The introduction and spread of avocados has been promoted in the island and coastal areas of Matsuyama City, Ehime Prefecture since around 2008.

(Cultivation area (Ehime Prefecture): 10.8 ha in 2018)

In the future, the goal is to establish cultivation techniques for stable production and to expand the cultivation area to 10 ha in 2025.

Japanese cypress (Yamagata Prefecture)

As part of the project to introduce warmseason crops, a field experiment is underway to test the tree mortality of Japanese cypress, a tree species hitherto considered unsuitable in Yamagata, monitor their growth and occurrence of damage caused by climatic conditions, insects and wildlife, and explore the possibility of its introduction at scale.

Atemoya (Mie Prefecture)

In order to develop a subtropical fruit tree specialty that takes advantage of the mild climate of Mie Prefecture, we have studied the adaptability of Atemoya to cultivation, selected an excellent variety, and established cultivation techniques for stable production.

Although facility cultivation is required, it can be cultivated in winter with enough heat to prevent freezing, and we are working on its production in the prefecture. (Cultivation area (Mie Prefecture): 12a in 2020)

Processed yellowtail products (Hokkaido)

Since 2011, the increase in yellowtail landings in Hokkaido (Hakodate Port, etc.) has been utilized to develop processed products.

(Landings of yellowtail [fresh and processed] in Hokkaido: 2,190 tons in 2010 \rightarrow 10,817 tons in 2019)

Outline of the MAFF Climate Change Adaptation Plan [Examples of Climate Change Predictions in Japan]

Temperatures

- O Annual average temperatures at the end of the 21st century* will increase by an average of 1.4-4.5 °C nationwide compared to the end of the 20th century**, depending on the forecast scenario.
- O As temperatures rise, the annual number of extremely hot days increases in many areas of Japan
 - * End of 21st century: average of 2076-2095
- ** End of 20th century: 1980-1999 average

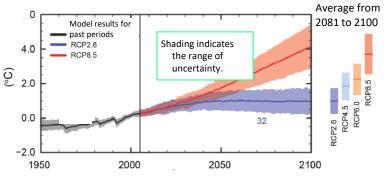


Figure: Image of average surface temperature change by prediction scenario (global average)

Source: IPCC Fifth Assessment Report Summary for Policy Makers

★RCP (Representative Concentration Pathway)

Scenarios that include time-series data on emissions and concentrations of greenhouse gases, etc.

- RCP2.6: Severe mitigation scenario (2 ° C rise scenario)
- RPC4.5, RCP6.0: Intermediate scenario
- RCP8.5: Scenario with very high GHG emissions (4° C rise scenario)

Rainfall

- OThe frequency of heavy and short duration rainfall will increase nationwide.
- O The rainy season precipitation zone in early summer (June) is expected to intensify and be located farther south than at present.

Tropical cyclone

- O Increase in the proportion of very intense tropical cyclones to all tropical cyclones worldwide
- O Typhoon strengthens near Japan
- O No change in the total annual amount of rainfall associated with typhoons near Japan, but an increase in the amount of precipitation from individual typhoons

Snowfall and snow accumulation

- OThe amount of snowfall and the deepest snowfall of the year are decreasing.
- O In some areas, snowfall during severe winters increases as water vapor increases due to rising temperatures.

Seawater temperature

O Annual average sea surface temperatures in the seas around Japan increased by 1.1 to 3.6 °C.

Sea level

O Annual average sea level rise of 0.39 to 0.71 m along the Japanese coast

Outline of the Climate Change Adaptation Plan of the MAFF [Agricultural **Production Review**]

	_	
	=	~
	_	Į
	_	ر
•	_	₹
	L	J
	Ω	ر
		١

	seriousness	urgency	certainty	impact
Paddy rice	•	•	•	
Fruit tree	•	•	•	Cultivation and livestock
Land use crops (wheat, soybeans, etc.)	•	_	_	farming are susceptible to climate change. Climate
Horticultural crops (vegetables, flowering plants)	*	•		change can be the cause of
Livestock farming	•	•	_	growth disorders and quality deterioration in various crops
Pests, weeds, etc.	•	•	•	and livestock.
Agricultural production infrastructure	•	•	•	

Legend:				
[Seriousness]	Extremely serious impact is recognized.	: Impact is recognized		- : Cannot be assessed at present
[Urgency]	: High	📤: Medium	: Low	- : Cannot be assessed at present
[Certainty]	: High	▲: Moderate	: Low	- : Cannot evaluate at present

Note: Severity, urgency and certainty in the table above are excerpts from the "Climate Change Impact Assessment Report" (published by the Ministry of the Environment in December 2020).

Countermeasure

Opevelopment and dissemination of cultivation stabilization technologies and corresponding technologies, including the conversion of varieties and commodities, in order to avoid and mitigate damage caused by climate change.

General agricultural production initiatives

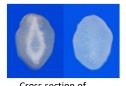
- OFarmers' own risk management for climate change and other efforts to reduce risks to agricultural production
- ODemonstration of the introduction of new adaptive technologies OContinue to work on measures that have been taken in the past.
- OMonitoring the impact of global warming in cooperation with local communities
- ODissemination of information through the Global Warming Impact Study Report, the Ministry of Agriculture, Forestry and Fisheries website, etc.

Efforts by Item

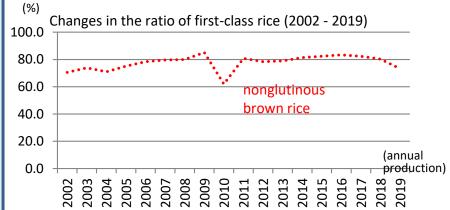
[Rice, fruit trees, pests, weeds, etc].

OMore focused efforts based on the fact that the climate change impact assessment report identified the significance as particularly large and the urgency and certainty as high (see table above).

[Other crops]


- ODevelopment of new adapted varieties and cultivation management techniques, or basic research for them, based on the forecast of future impacts.

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Paddy Rice]

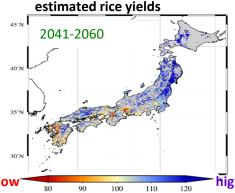


<Current status>

- O Deterioration in quality due to high temperature.
- O Yield reduction in some areas and in high temperature years.

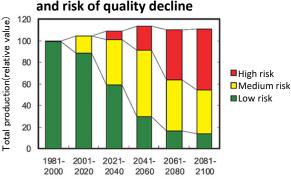
immature grain with white portion(left) and normal grain (right)

Note 1: Immature grains with white portion are grains that appear cloudy white due to insufficient starch accumulation. The occurrence increases when the average temperature for about 20 days after heading ear is 26 to 27° C or


Note 2: In 2010, due to the record-breaking hot summer, immature grains with white portion occurred and the ratio of first-class rice decreased significantly.

<Future prediction>

- O Rice yields will increase nationally from 2061 to 2080, but will begin to decline by the end of the 21st century.
- O The percentage of generated milky white grain compared to the 2010s is projected to increase in the 2040s, resulting in a significant increase in economic losses due to a decrease in the area of first-class rice.


In the case of climate change scenario with large increase in temperature and CO2 concentration

1) Prediction of the distribution of estimated rice yields

(Average yield for each decade, with the average yield for 1981-2000 set at 100)

Production: Relative to the average yield of 1981-2000, which is 100.

Risk of deterioration in quality: Estimated based on the projected increase in average daily temperature after heading.

Figure: Prepared based on the "Results of Agricultural Products Inspection for Rice" by MAFF

Source: NARO

Development and dissemination of adaptation technologies

[Measures for high temperature]

OThorough implementation of basic techniques such as manure management and water management

[Pest Control]

OThorough implementation of timely pest control, etc., using information on predicted outbreaks, etc.

Development and dissemination of varieties

[Measures for high temperature]

- OPromotion of development and dissemination of high temperature resistant varieties
- OFuture variety development should be based on providing high temperature resistance
- ODevelopment of varieties and breeding materials with resistance to high temperature sterility

mpact

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Fruit Trees]

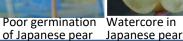
Impact

Countermeasures

< Current status>

- OPeel puffing and physiological fruit drop in citrus
- OPoor coloring, sunburn, and fruit softening in apples
- OPoor germination in Japanese pears, watercore in peaches, poor Regarding Japanese pears, there is a possibility that cultivation of varieties coloring in grapes, softening of persimmon fruit, etc.
- O In some areas, the suitable cultivation areas are expanding.

Poor coloring in apples



Poor coloring in grapes

Peel puffing of Satsuma mandarin

<Future prediction>

- O The optimal cultivation areas for Satsuma mandarins and apples have shifted O In grapes, peaches, sugar beets, etc., growth disorders caused by high
 - temperature occur.
- with high chilling requirements will become difficult in more areas.
- O In low temperature regions, where fruit trees have been difficult to grow, suitable areas for fruit tree cultivation have expanded.

Source: MAFF, "Future Prospects for Adaptation to the Impacts of Climate Change" (2019).

Development and dissemination of adaptation technologies

[High temperature measures]

(Mandarin Oranges)

- O Promote the use of calcium agents, etc., to prevent Peel puffing OPromoting the use of ethychlozate spraying to prevent poor coloration
- Opromotion of cultivation management techniques such as spraying with a mixture of gibberellin and prohydrojasmon (to prevent Peel puffing) and active use of shading materials (to prevent sunburn) (Apples)
- OPromotion of watering and introduction of reflective sheets to prevent sunburn and poor coloration of fruits
- OPromotion of cultivation management techniques to reduce the incidence of poor coloring and sunburn (Grapes)
- Opromotion of girdling, etc. as a measure against poor coloration (Pear)
- Opromote the introduction and dissemination of technical measures to reduce poor germination

Note: Figaron, gibberellin and prohydrojasmon are plant growth regulators.

Development and dissemination of varieties, conversion of products

[High temperature measures]

(Mandarin Oranges)

- OPromote planting to convert to mid/late-season citrus (Apples)
- OIntroduction of superior-colored varieties such as "Akibae"
- OSupport for cultivation demonstration utilizing elevation differences, planting for variety conversion, etc.

(Grapes)

OPromote the introduction of superior-colored varieties such as "Grose krone" and yellow-green varieties such as "Sunshine Muscat"

(Cross Item)

ODevelopment of breeding materials adapted to high temperature conditions and breeding of the relevant varieties

[Taking advantage of opportunities]

(Subtropical and tropical fruit trees)

OPromote initiatives to demonstrate the introduction of atemoya, avocado, mango, lychee, etc.

Countermeasures

<Current status>

- O Delay in sowing time and advance in heading time (i.e. shortening of growing period) in wheat
- O Decrease in hundred grain weight, pod number, and deterioration of seed quality in soybean
- O Suppression of sprout growth in tea, frost damage
- O Increase of disease in sugar beet
- O Overwinter survival of unharvested potato tubers expected to volunteer potatoes

<Future-prediction>

- O Increase in risk of frost damage and decrease of protein content in grain in wheat
- O Lower yield and deterioration of grain quality in wheat (Hokkaido)
- O Increase of diseases and deterioration of quality in sugar beet, soybeans, red beans, and potatoes (Hokkaido)

Sucking damage to soybeans by stink bugs (The damaged soybeans are on the right.)

Deformity of tea shoots due to frost damage. (right end is normal)

Development and dissemination of adaptation technologies

[Wheat and Barley]

- Oimplementation of basic technologies such as drainage and proper control of scab, etc.to reduce risks caused by high precipitation
- ODevelopment and dissemination of stable cultivation techniques to prevent frost damage

[Soybeans, red beans, etc.]

- OImplementation of drainage and dissemination of Farm-oriented enhancement for aquatic system as countermeasures against high precipitation, high temperature and drought
- ODevelopment and dissemination of weed control technology, etc. [Teal
- OIntroduction of frost prevention technology using power-saving frost prevention fan systems, etc. as a measure against frost damage
- OAs drought countermeasures, control evaporation of soil water by bedding grass, etc. and implement irrigation.
- ODemonstration and introduction of an integrated pest management system as a countermeasure against pests

[Sugar beet]

- OPeriodic monitoring of growth condition to take appropriate countermeasures against high temperature
- ODrainage coping with high precipitation

[Potato]

OPrevention of overwintering of unharvested potatoes by snow plowing and snow compaction

Development and dissemination of varieties

[Wheat and Barley]

- ODevelopment and dissemination of varieties resistant to scab, pre-harvest sprouting, etc. as a countermeasure against high precipitation and moisture
- O Development and dissemination of varieties adapted to climate change to prevent frost damage

[Soybean]

ODevelopment and dissemination of pest-resistant varieties

[Tea]

OPromote planting of varieties with resistance to pests

[Sugar beet]

- ODissemination of varieties with multiple disease resistance
- OAcquirement of expertise for selecting the best variety

Pre-harvest sprouting in wheat

Damage caused by the mulberry white beetle in tea

Countermeasures

< Current status>

[Open-air vegetables]

- O Harvest season tends to be earlier.
- O Increased frequency of growth disorders

[Flowering plants]

O Advance or delay in flowering period, poor growth (deformed flowers, short-stemmed flowers, etc.)

[Facility vegetables and flowers]

- O Poor fruit set, poor growth (split fruit, poorly colored fruit, etc.) of tomatoes, etc.
- O Delayed flower bud differentiation in strawberry
- O Collapse of greenhouses due to natural disasters

<Future prediction>

[Vegetables]

- O In many cases, it is assumed that the cultivation of leafy and root vegetables can be continued by shifting the cultivation period.
- O In leafy greens such as cabbage and lettuce, early growth, the northward expansion of cultivation areas, and an increase in weight are expected.
- O There are concerns about the impact on fruit size and yield of fruit crops (tomatoes, bell peppers).

Fruit cracking

Poor coloring in tomatoes

Chrysanthemum normal flower

Chrysanthemum deformed flower

Development and dissemination of adaptation technologies

[Open-air vegetables]

- O Promote adjustment of the cultivation period and timely pest control.
- O As a countermeasure against drought, deep tillage, application of organic matter, improvement of irrigation facilities, and use of mulch sheets to control soil moisture evaporation are promoted.
- O Appropriate control of spider mites, which tend to occur during droughts.

[Flowering plants]

- O Appropriate watering to prevent high temperature, etc.
- O Improvement of irrigation system, prevention of soil evaporation by mulching, etc., and timely control of pests that tend to occur during droughts.

[Facility vegetables and flowers]

- O As a countermeasure against high temperature, appropriate ventilation and shading, mulching to control soil temperature, introduction of fogging system, fan and pad cooling, circulation fans, heat pump cooling, etc.
- O As countermeasures against natural disasters in general, introduction of disaster-resistant low-cost weatherproof greenhouses, reinforcement of pipe greenhouses, introduction of auxiliary power sources, preparing BCP, etc.

Ground temperature

control mulch

open

chassis layout

Fine mist cooling

Simple installation of fan and pad

Heat pump

Equipment appearance and

installation conditions

[Flowering plants]

OSelection of varieties adapted to high temperature conditions

[Vegetables]

ODevelopment and dissemination of varieties adapted to high temperature conditions

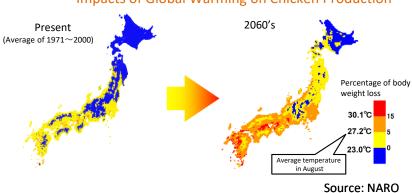
Development and

dissemination of varieties

OAppropriate variety selection

- O During the summer season, the milk yield and composition of dairy cattle decline, the O Impacts on livestock growth are predicted as global growth and meat quality of beef cattle, pigs and meat chickens decline, and the egglaying rate and egg weight of egg-laying hens decline.
- O Northward expansion of the habitat of arthropods such as mosquitoes and nucellus, biting midges, etc.
- O In the case of forage crops, there are some reported cases of increasing annual dry matter yield in forage corn during the period 2001-2012 in parts of the Kanto region.

Occurrence of Global Warming Impacts in Dairy Cattle


Main phenomena	Number of reporting prefectures					Outbreak of Main cause	Main impact
	R2	R1	H30	H29	H28	iviaiii cause	
Decrease in milk yield and milk composition	17	14	14	16	15	nign temnerature	Decline in quality and production volume
Falling dead	12	15	17	15	14	High temperature	Decline in production
Decline in breeding performance	11	8	7	8	9	High temperature	Decline in production
Disease outbreaks	2	3	4	3	3	High	Decline in quality and production volume
(Source: Crop Production Bureau, MAFF)							

<Future prediction>

- warming progresses.
- O In forage corn, the suitable area for double cropping is expected to expand in the 2080s.

Impacts of Global Warming on Chicken Production

Development and dissemination of adaptation technologies

Forage corn

(Livestock)

[High temperature measures]

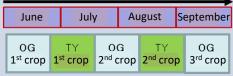
OEnsuring an appropriate livestock barn environment through the spread of heat-heat measures such as sprinkling and misting inside livestock barns, ventilation, and lime application and sprinkling of water on roofs

OGuidance and thorough implementation of appropriate feeding management techniques, such as feeding cold water and high-quality feed

O Development and dissemination of productivity-enhancing technologies, etc. to prevent the decline in body growth rate and fecundity in summer

Exhaust fan on barn wall

Lime application to barn roofs Sprinkler installation on barn roof


(Animal infectious disease)

OReview of risk management measures for arthropod-borne infectious

(Forage crops)

[Measures against high temperature and weather disasters] [Measures against pests and diseases]

- OEstablishment of cultivation system in response to climate change
- ODevelopment and dissemination of cultivation management technology

Examples of risk-distributed roughage production initiatives By planting grasses with different optimal harvest times, yield reduction due to unseasonable weather is mitigated. (OG: Orchard Grass, TY: Timothy)

Development and dissemination of varieties

(Forage crops)

[Measures against high temperature and weather disasters]

- ODevelopment and dissemination of varieties and breeding materials with heat resistance, wide ripening period, etc. [Pest Control]
- ODevelopment and dissemination of resistant varieties and breeding materials

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Pests, Weeds, etc.]

<Current status>

[Pests and Diseases]

O The distribution areas of the southern green stink bug and the golden apple snail have expanded from parts of the southwestern warm regions to parts of the Kanto region.

[Weeds]

- O Some weeds have expanded their distribution areas northwards because of successful overwintering.
- O Expansion of the distribution area of invasive weeds including invasive alien species

[Mycotoxins]

O Temperature may influence the distribution of aflatoxin-producing fungi.

<Future prediction>

[Pest]

- O Changes in the composition of pests and natural enemies in paddy fields, increase in damage due to an increase in the number of generations per year, and possibility of changes in the overseas situation of migratory pests
- O Possibility of increasing difficulty in pest control due to an increase in the amount of occurrence and changes in seasonal occurrence.

[Diseases]

O Increase of rice sheath blight under high CO₂ conditions

[Weeds]

Countermeasure

- O Possible expansion of established area and agricultural damage in some species [Mycotoxin]
- O Concerns about increasing density of mycotoxin-producing fungi in the soil

Golden apple snail

healthy infected rice sheath blight

Current distribution of the southern green stink bug

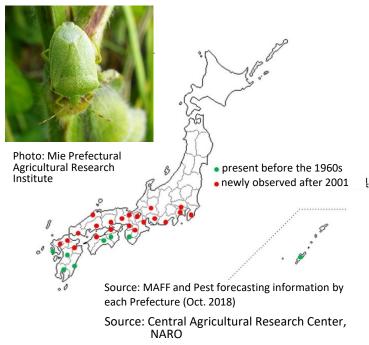


Photo: Kyushu-Okinawa Agricultural Research Center, NARO

Implementation of countermeasures

[Pests and Diseases]

- Ounderstand the situation of occurrence and damage of pests and review the plants and animals designated as harmful speciesthrough the pest forecasting service.
- OEstablishment of a pest control system that responds to climate change
- OReview and revision of import quarantine, pest risk analysis (PRA), and measures based on the results of PRA to prevent introduction of pests and diseases from overseas
- ODomestic quarantine, invasion alert survey and control of invasive pests

[Mycotoxin]

- Olnvestigating occurrence data
- OFormulate and disseminate safety improvement measures in cooperation with producers, and verify their effectiveness after a certain period of time.

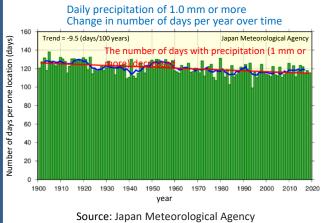
Research and Development

[Pests and Diseases]

- Obevelopment of technology for monitoring changes in the dispersal of long-distance migratory insect pests from overseas and technology for predicting changes in their distribution areas in Japan.
- O Development of prediction techniques for the entry and occurrence of transboundary pests such as planthoppers and cutworms
- O Development of a support system for control of the golden apple snail

[Weeds]

O Development of management techniques for invasive weeds that cause agricultural damage


13

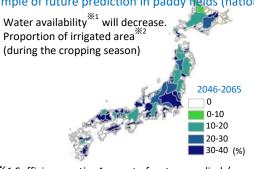
Impact

<Current status>

- O Short, heavy rains occur frequently, while droughts due to light rainfall also occur.
- O In response to high temperatures, changes in the timing of rice planting, changes in water management, etc., will affect water demand.

Coping with high temperatures and Impact on water demand (example)

O Late planting of rice
Postponement of irrigation period
O Daytime deep water and
nighttime drop water management
→Increase in the amount of water
used


Extension of waterlogging period →Increase in the amount of water used

Source: Institute of Rural Engineering, NARO

<Future prediction>

- O Decrease in snowmelt runoff volume, affecting water intake at agricultural water utilization facilities
- O Increased risk of waterlogging damage to farmland due to increased rainfall intensity
- O The number of days without rainfall has increased, affecting the recovery of reservoir storage capacity.

Example of future prediction in paddy fields (nationwide)

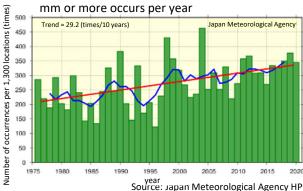
/ amount of caused by torrential rain

¾1 Sufficiency ratio: Amount of water supplied / amount of water required

※ 2 Total irrigated land in the basin between 2046 and 2065 Percentage of districts with lower fill rates relative to the number of districts

Source: Rural Engineering Research Division, NARO

Drought prevention measures


- OEfficient securing and utilization of agricultural water through an appropriate combination of hard and soft measures
 - Reduction of water consumption through automation of water management and use of pipelines, etc.
 - Effective use of existing water sources through changes in the operation of reservoirs and agricultural dams

Measures against waterlogging, etc.

- OMaintaining and improving of disaster prevention and mitigation functions in rural areas through an appropriate combination of hard and soft measures.
 - Promotion of the prevention of waterlogging damage to farmland by improving drainage pump stations and drainage channels.
 - Grasp facilities and areas that are highly vulnerable to waterlogging, and conduct risk assessments such as developing hazard maps.
 - Promotion of the formulation of business continuity plans by facility managers.
 - Implementation of efficient countermeasures by effectively using existing facilities and utilizing the functions of local communities.
- OPrediction and assessment of medium- to long-term impacts based on new scientific findings
- OEstablishing an impact assessment method and clarifying the rationale for developing facilities based on future prediction

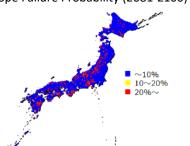
- O Concentrated torrential rainfall caused by the formation of linear precipitation zones triggers multiple surface collapses and mudslides.
- O Driftwood disasters occur frequently when collapsed sediment flows downstream, engulfing standing trees and sediment in the vicinity of the stream, causing a large amount of driftwood.

■ Number of times an hourly precipitation of 50 ■ Severe mountain disasters

caused by torrential rains

The outbreak of simultaneous collapses

Heavy rainfall in July, 2018 (Hiroshima, Japan)


The occurrence of severe driftwood disasters

July, 2017 XThis model was developed based on rainfall conditions and evastated northern disaster records in one area. It is necessary to verify the rainfall Kyushu conditions and disaster records for a wide area in the future. (Fukuoka, Japan) Source: Integrated Report on Climate Change Observation,

<Future prediction>

- O Increase in the frequency of heavy rainfall due to climate change, and increase in the number of simultaneous collapses of hillside slopes and mudslides due to increased localized heavy rainfall
- O Increased risk of damage from storm surges, tidal waves and tsunamis, and increased coastal erosion trends
- Slope Failure Probability (2081-2100)

Prediction and Impact Assessment 2018

■ 1/25-year probability with uncertainty Projected future changes in storm

X Storm surge anomaly (rise and fall of sea level due to storm surge) with a probability of occurrence of 1/25 years (4%

Source: Integrated Report on Climate Change Observation, Prediction and Impact Assessment 2018

Implementation of countermeasures, research and development, etc.

[Increased risk of occurrence of mountain disasters]

OPromotion of mountain control measures and forest improvement based on the "Five-Year Acceleration Plan for Disaster Prevention, Disaster Mitigation, and Building National Resilience" and other measures

Opevelopment of forest road facilities in consideration of the increased frequency of torrential rains.

(Response to changes in the form of disasters such as river flooding)

- Opposite efforts to improve and conserve forests in the upper reaches of rivers, etc., in cooperation with efforts for watershed flood control.
- OReduce the risk of driftwood disasters by installing driftwood-catching dams, conducting forest maintenance such as thinning to promote the development of root systems, cutting down dangerous trees in mountain streams, and changing forest types with consideration for the stream ecosystem.
- OControl of sediment runoff through the careful placement of erosion control dams.

[Increased risk from storm surges, tidal waves and tsunamis]

OStrengthen development of coastal disaster prevention forests to protect against tsunami and wind damage.

[Research and development, etc.]

- OStudy to improve the accuracy of identifying high-risk areas for mountain disasters by using laser surveying, etc.
- OStudy on the development of facilities to cope with disaster risks and forest management utilizing the disaster prevention and mitigation functions of forests.

Impact

Countermeasures

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change **Adaptation Plan [Planted Forests]**

<Current status>

- O It has been reported that cedar forests are declining due to increased water stress caused by the drying of the atmosphere in some areas.
- O It has been reported that high temperatures increase the risk of forest pests and diseases.
- XSince factors other than temperature can also affect damage, careful verification of the current impact is needed.

Withering cedar trees due to drought

Vectors of pine wilt disease (Bursaphelenchus xylophilus)

<Future prediction>

- OVulnerability of planted cedar forests may increase in areas with low rainfall
- OThere are examples of studies that predict an increase in the distribution of forest pests and diseases

Decreased growth and death of trees due to increased temperatures, dryness, and weather damage

Occurrence in areas where pine beetle damage has not been seen in the past, such as high latitudes and high elevations

Research and study on the impact of climate change on the forest and forestry sectors is needed.

Research and Development

- OAssessment of climate change impact prediction and adaptation measures for forestry
- OContinue monitoring of forest damage

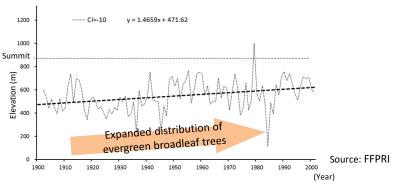
Long-term monitoring of plantation forest growth

Pine wood nematode disease monitoring study sites

Implementation of countermeasures

- OEvaluate the adaptability of plantation trees by conducting wide-area planting tests of seeds and seedlings of major plantation tree species from different origins.
- OControl of forest pests shall be continued in cooperation with prefectures, etc. based on the Law for the Control of Forest Pests in order to prevent the spread of forest pests

Responding to Climate Change. Promotion of variety development


Prevention of infection (chemical spraying)

Felling and extermination (fumigation treatment)

Measures against pine weevil damage

- O There are areas where deciduous broadleaf trees are likely to have been replaced by evergreen broadleaf trees due to rising temperatures.
 - The upper limit of the potential vertical distribution of evergreen broadleaf forests

The upper elevation of the warm-temperate evergreen broad-leaved forest zone on Mt. Tsukuba has increased by 147 m over the past 100 years*.

* Estimating the distribution limit elevation of evergreen broad-leaved trees using climate data for the past 100 years

<Future prediction>

- O It has been reported that the distribution area of some cooltemperate species decreases and that of some warm-temperate species increases.
- Distribution prediction model for beech forests

 (Fig. A)

 Beech forests (C) CCSR/NIES (2091–2100)

 (D) RCM20 (2081–2100)

 (Fig. B, C, D) Distribution

The probability of beech distribution in 2081-2100 decreases when the temperature rises 4.9° C above the present level (C) or 2.9° C above the present level (D).

Implementation of countermeasures

OPromote appropriate conservation and management through ongoing monitoring surveys and other measures in "protected forests" and "green corridors" in state-owned forests.

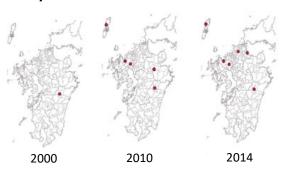
A black bear in the Green Corridor

probabilities

Source: FFPRI

Protected forests that are properly protected and managed

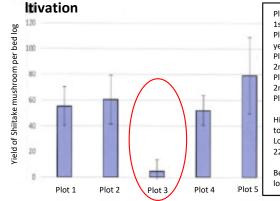
Countermeasures


<Current status>

O Increase in temperature during the summer, resulting in the outbreak of pathogenic bacteria and a decrease in the amount of shiitake mushroom bodies (mushrooms) produced

Hedgerow infected with pathogen

More reports of damage caused by Hypocreia spp. in Kyushu



Source: Kyusyu Research Center, FFPRI

<Future prediction>

- ODecrease in outbreaks of pathogenic fungi and the amount of shiitake mushroom bodies (mushrooms) due to rising temperatures in the summer
- Olmpact of rising temperatures in winter on log cultivation

■ Impacts of temperature treatment in summer on shiitake

Plot 1: High temp, treatment i Plot 2: Low temp, treatment in 1st Plot 3: High temp. treatment in Plot 4: Low temp. treatment in

High temp, treatment: Exposure to 32° C for 2 weeks in August Low temp. treatment: Exposure to 22° C for 2 weeks in August

Bed logs tested (per plot): 12 Oak logs (L=1m, d=approx.10cm)

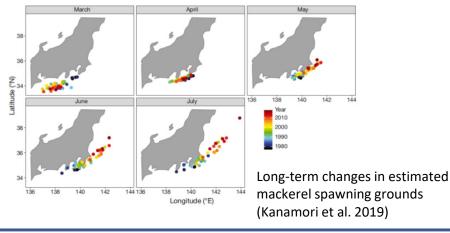
Shiitake mushroom yield decreased in the second year of inoculation in the test area under high temperature

Vertical line: Standard deviation, * Yield: Dry weight (g) Source: Kyusyu Research Center, FFPRI

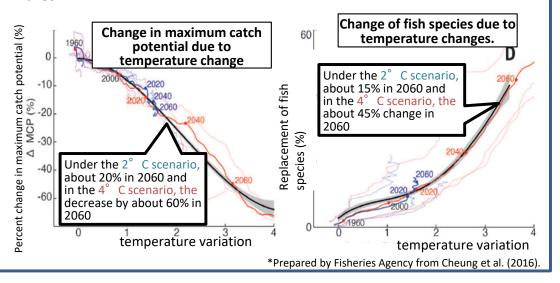
Understanding of the impact

- O Estimation of damage caused by pathogens and infection routes
- O Occurrence of damage caused by the mushroom fly
- O Yield in high temperature environment in summer
- O Promote accumulation of data on outbreaks of pathogens, yield, etc.

Research and Development


- O Study of cultivation method to suppress temperature rise in the field
- O Promote the development, demonstration, and dissemination of cultivation techniques and varieties of shiitake adapted to a warming climate.

Outline of the Climate Change Adaptation Plan of the Ministry of Agriculture, Forestry and Fisheries [Marine Fisheries]


<Current status>

- ONorthward shift of mackerel spawning grounds and extension of spawning period
- OIncrease in catches of yellowtail and Spanish mackerel
- ODecrease in return rates of chum salmon
- ODecrease in recruitment and survival of Japanese flying squid
- Offshore shift of fishing grounds and spawning grounds for saury
- ODecrease in pollock recruitment
- OIn some areas, the processing and distribution industries have been affected by the above changes.

<Future prediction>

- O Decrease in global potential maximum catch
- O The following forecasts have been reported for the waters around Japan
 - •Decrease in the distribution area of salmon and trout
 - Offshore shift to high seas of Pacific saury fishing grounds
 - The sparse distribution is expanding and size of Japanese flying squid is decreasing in the Japan Sea.
 - Northward shifts of adult Japanese anchovy distribution and high survival area of juvenile anchovy
 - Northward shifts of yellowtail distribution and changes in their wintering area

adaptation plan

[Migratory fish]

ONecessity to properly assess the impact of environmental changes in promoting resource management based on scientific stock assessment

OFor this purpose, marine environmental surveys will be utilized to improve the accuracy of predicting fishing grounds and stock assessment results, which will lead to promote measures for adaptive fisheries production in response to environmental changes.

[Target species for multiplication]

Opevelopment of release methods for juvenile salmon and other fish in consideration of marine environmental changes. [Fishing environment]

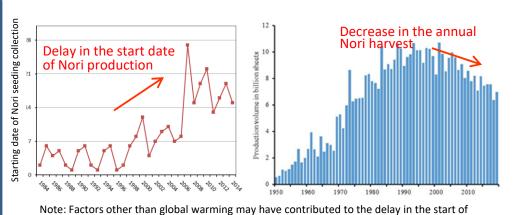
Oldentification of factors affecting harmful algal blooms and countermeasures based on real-time information from various coastal observations

Impact

Counterme

Se

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Marine Aquaculture]

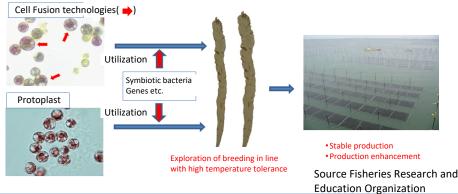

<Current status>

Olncrease in mass death of scallop and oyster, and changes in their amount of production in various regions

ODecrease in annual harvest of cultivated laver due to delays of seeding periods

Oldentification of northward shift of harmful algal bloom, and occurrence of warm-water species in cold regions and their acceleration

ODelay harvest timing of nori and their unstable amount of production due to high water temperature in autumn



<Future prediction>

- O In yellowtail aquaculture, mortality will increase in summer and growth rates will increase in autumn and winter.
- O In red sea bream aquaculture, growth rate will decrease, and risk of infectious diseases will increase.
- O The suitable areas for yellowtail, tiger puffer, and flatfish cultivation will move northward, and some areas will become unsuitable for cultivation.
- O Ocean acidification is expected to affect mollusks and echinoderms that have calcium carbonate skeletons and shells. Acidification of the oceans will affect mollusks and echinoderms with calcium carbonate skeletons and shells, and other sensitive aquaculture species.
- O Harmful algal blooms related to rising sea temperatures are expected to increase the risk of bivalve die-offs.

Examples of Initiatives

O Development of breeding materials for Nori and other species with high water temperature tolerance using novel breeding technologies such as cell fusion and protoplast selection technologies

adaptation plan

[Red Tide]

OContinuation of research on the relevance of climate change

Ounderstand the physiological and ecological characteristics of harmful algae, and develop prediction and prevent technologies for harmful algal blooms.

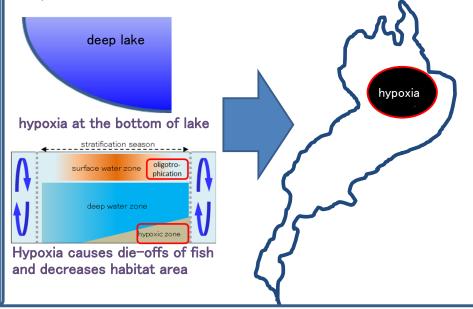
[Growth, Disease Control]

production and the change in yield.

ODevelopment aquaculture varieties with high water temperature tolerance, etc.

Obevelop countermeasure technologies for fish and shellfish diseases that occur at high temperatures and create guidelines for countermeasures against diseases that are feared to invade Japan.

[Ocean Acidification]

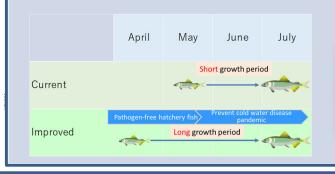

ODevelopment countermeasure technologies based on predictions of the impact of acidification on bivalve aquaculture, etc.

Impact

mpact

Countermeasures

- O Impacts on inland fisheries and aquaculture are not yet apparent.
- O However, in some lakes and marshes, the warm winter has weakened the circulation of lake water, resulting in a decrease in dissolved oxygen at the bottom of the lake and a tendency toward anoxia.
- O High mortality of Japanese pond smelt due to high lake water temperature



<Future prediction>

- O Habitat contraction of cold-water fish (larger contraction especially in rivers in Honshu)
- O Decrease in catches of Japanese pond smelt due to high water temperature in lakes
- O Earlier run-up of ayu (sweetfish) and reduction in the number of run-ups due to rising water temperatures in the ocean and rivers

Examples of Initiatives

- OStudy of release methods with changes in the run-up of ayu
- OMaximize the effect of hatchery release for juvenile ayu of the appropriate growth stage and time.

adaptation plan

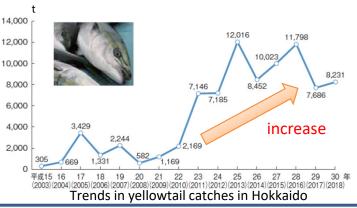
[Understanding the impact]

- OAssess environmental changes in rivers and lakes and their impact on habitats for important resources
- OCollect information on disease caused by high water temperature

[Growth, Disease Control]

- Obevelopment of technologies for hatchery release and prey plankton production, etc., for the advancement of feeding and releasing techniques for Japanese pond smelt.
- OAnalyze the impact of rising water temperature on the run-up, run-down, and growth of ayu fish, and develop effective discharge methods.
- OResearch on the characteristics and pathogenic factors of pathogens originating from high water temperature, and development of technology for control measures

- ONorthward expansion of the southern limit of the distribution of algae in the family Sciaenidae
- Oincrease in feeding behavior and expansion of distribution of plant-eating fish such as lingcod
- OChanges in the distribution of many marine organisms



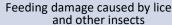
A flock of Eigo and Notorious Sparrowhawk


<Future prediction>

- OChanges in the species composition and existing amount of seaweed beds due to rising sea temperatures, and the impact on rocky root resources
- ONorthward shift of the distribution of many target species

adjustment measures

- O Promotion of wide-area measures that integrate the understanding of the factors behind the decline of seaweed beds and tidal flats in each sea area, hard measures such as the creation of seaweed beds and tidal flats implemented by local governments, and soft measures such as conservation activities implemented by fishermen and local residents.
- OStrengthen the monitoring system, develop infrastructure to cope with changes in the distribution of fish and seaweed, and promote the development of fishing grounds based on the life history of fishery organisms in cooperation with resource management efforts.



grouper

Installation of fish reefs

Installation of fish reefs to serve as habitats

Extermination of pests

Change of seagrass bed component species to southern seaweeds

Responding to changes in constituent species Creation of seaweed beds

- OAnalysis of tide level observation records shows that the sea level is on the rise.
- ORegarding storm surges, it has been pointed out that there is a high possibility that the occurrence of extreme high tide levels is increasing, and regarding storm waves, it has been confirmed that the maximum value of significant wave height is also on the increase.

Storm surge damage caused by low pressure

High waves over the breakwater

<Future prediction>

- Olf the sea level rises, the functions of coastal disaster prevention facilities, fishing port facilities, etc. may be degraded or damaged, and coastal areas may be submerged or flooded, and coastal erosion may be accelerated.
- OThere is a risk that storm surges and tidal waves may cause many coastal disaster prevention facilities and structures such as fishing port facilities to become unsafe.

Wave overtopping by high waves

Coasts that need to be protected against storm surge and tidal waves

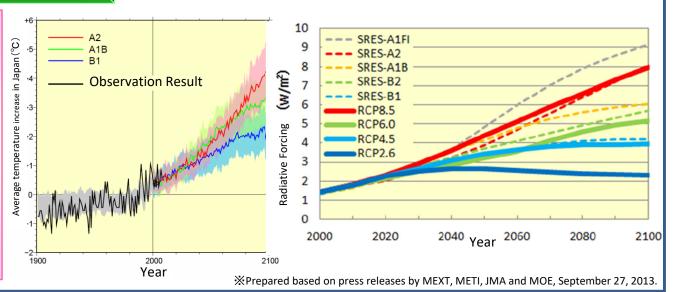
Basic Concept

- OFishing ports are located in coastal areas, and it is predicted that the safety and convenience of the facilities will be greatly affected by the rise in sea level, tidal deviation, and increase in wave height due to climate change, therefore strategic and adaptive adaptation measures will be taken.
- OPromote disaster prevention and disaster mitigation measures against typhoons and cyclones, which are expected to become more severe in the future and create disaster-resistant fishing communities.

Basic Measures

- O Monitoring of tide levels and waves to accurately detect signs of climate change impacts in response to rising sea levels, tide level anomalies due to extreme weather events, and increased wave heights
- O Based on the results, systematically promote the development of fishing port facilities and coastal conservation facilities that take into account long-term changes in external forces due to the impact of climate change.

Raising of breakwaters


Raising the parapet

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Global Warming Prediction Research, Technology Development]

Projected increase in average temperature in Japan

OThe projected average temperatures in Japan under the A2 (emphasis on economic development and regionalism), A1B (emphasis on economic development, globalization, and energy balance), and B1 (emphasis on sustainable development and globalization) scenarios of the multiple climate prediction models used in the IPCC AR4 show that the average temperatures in Japan will increase by 4.0° C, 3.2° C, and 2.1° C, respectively, from the end of the 20th century (1980-1999) to the end of the 21st century (2090-2099). 4.0° C, 3.2° C, and 2.1° C, respectively, by the end of the 21st century (2090-2099), exceeding the global average (3.4° C, 2.8° C, and 1.8° C) in all scenarios.

predictive research

(Impact Assessment)

[Current Status]

O Implementation of various impact assessments in the field of agriculture, forestry and fisheries

[Future vision (goal)]

- O More predictive research on needed items
- O Provide information that will serve as an opportunity for local communities to take actions on climate change

technological development

(Technology Development)

[Current Status]

O Focusing on technological development to adapt to issues that are currently affecting rice and fruit trees, such as quality deterioration

[Future vision (goal)]

- O Development of varieties, breeding materials and stable production technologies based on medium- and long-term perspectives based on forecasting research, etc.
- O Develop technologies to take advantage of the opportunities presented by climate change
- O Development of technologies that contribute to international contributions to the Asian monsoon region, where climatic conditions and production structures are different from those in Europe and the United States, such as the technology development towards building a new food system with improved productivity, sustainability and resilience.

Regional Deployment of Adaptation Measures Based on Future Prediction

(Image of Cooperation, Division of Roles, and Information Sharing among related Parties)

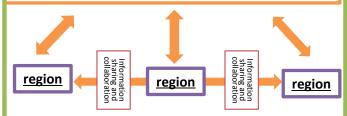
National government (Ministry of Agriculture, Forestry and Fisheries)

- O Implementation of current and future impact assessment
- O Research and development of basic response technologies
- O Provide support measures to facilitate on-site efforts

Introduction of an early warning system
Introduction of new varieties and demonstration
of adaptation technology
Introduction of weather-resistant greenhouses

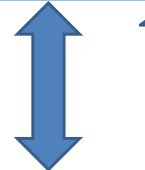
Introduction of weather-resistant greenhouses and adaptive materials

O Collection and dissemination of domestic and international information

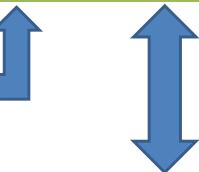

(Provision of information through global warming impact study reports, etc.)

Regional deployment of adaptation measures based on future prediction

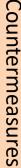
- O Provide more precise impact predictions and adaptation measures in this plan to regions with similar climatic conditions by analyzing and organizing them in an easy-to-understand manner.
- O Production areas in the region will implement and promote adaptation measures based on their own judgment and choice.


Region (local government, etc.)

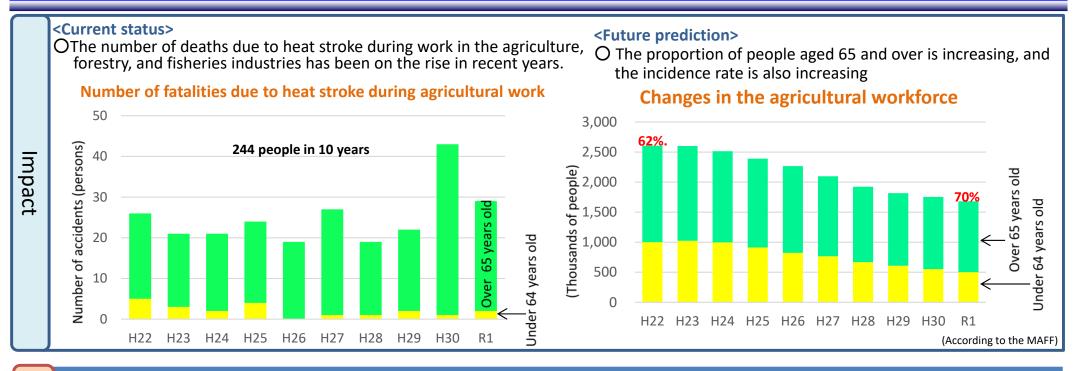
- O Independent selection of adaptation measures offered as options
- O Planning and promotion as a region


OImplementation of adaptation measures

e.g., introduction of new varieties, introduction of adaptive technology in cultivation management, etc.



Provide information, analysis and support to the community


Information sharing on the status of adaptation efforts in the region.

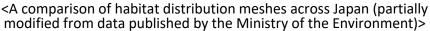
Dissemination and enlightenment to all segments of the public (users and consumers of agricultural, forestry and marine products, etc.)

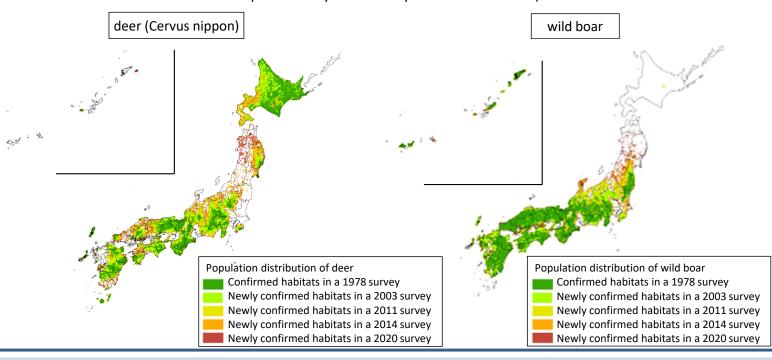
Basic measures

- OIn accordance with the Action Plan for Prevention of Heat Stroke, public information on heat stroke prevention will be disseminated by strengthening cooperation among relevant government ministries and agencies during the period of the "Campaign for Strengthening Prevention of Heat Stroke" from April to September every year.
- O Requesting prefectures and related organizations to inform workers in the agriculture, forestry, and fisheries industries about precautions such as frequent intake of water and salt, and use of sweat-absorbent and quick-drying clothing, as well as creating posters and flyers to raise awareness.
- O Promote awareness and guidance on heat stroke prevention measures for workers in the agriculture, forestry, and fisheries industries, including promotion of the use of the MAFF application, which has an additional function to notify workers of "heat stroke alert," in cooperation with relevant ministries and agencies, prefectures, and related organizations.
- O Promote the development of automated technologies for agricultural work conducted outdoors during the hot season, and actively introduce robotic technologies and ICT to lighten the workload.

Awareness-raising posters and flyers

A pruning robot for lightening the workload of pruning in forestry




Weeding Robot for Lightening the Workload of Weeding

OAlthough the direct causal relationship with climate change is not clear, it has been reported that the expansion of the distribution of wild birds and animals has caused damage to agricultural crops, forestation trees, and fishery resources, as well as soil erosion.

<Future prediction>

O As for Japanese deer, it is predicted that the suitable habitat for Japanese deer in 2103 will increase to more than 90% of the national territory due to the decrease in snow cover caused by climate change. (Similar findings have not been confirmed for wild boar, etc.)

A radish field ravaged by wild boars

Standing trees damaged by deer stripping

[Bird and animal damage prevention]

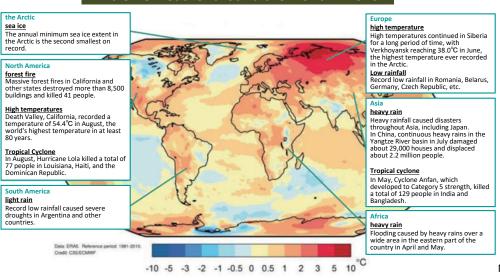
O Since there are concerns about the expansion of the habitat area and the number of wild birds and animals, we will continue to promote the installation of intrusion prevention fences, the reinforcement of trapping activities including wide-area measures, the upgrading of techniques for trapping and damage control, and human resource development.

[Survey]

Countermeasures

mpact

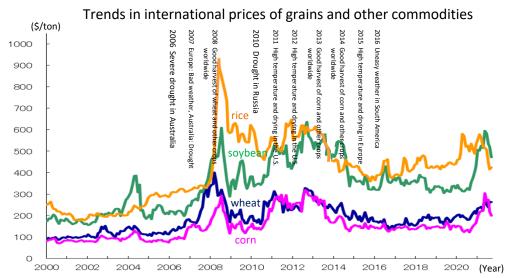
- O Grasping information on the habitat conditions of wild birds and animals
- O Continued monitoring of damage to agriculture, forestry and fisheries caused by wild birds and animals


Impact

<Current status>

O The impacts of climate change on yields and other factors has been reported in many parts of the world, especially for major grains (wheat, soybeans, corn, and rice).

Extreme weather around the world in 2020



Temperature anomalies for January-October 2020 relative to 1981-2020 average

Source: 2021 White Paper on the Environment, Sound Material-Cycle Society and Biodiversity (MOE)

<Future prediction>

O Globally, numerous literature review studies have confirmed that projected future temperature increases will reduce yields of rice, wheat, soybeans, and corn.

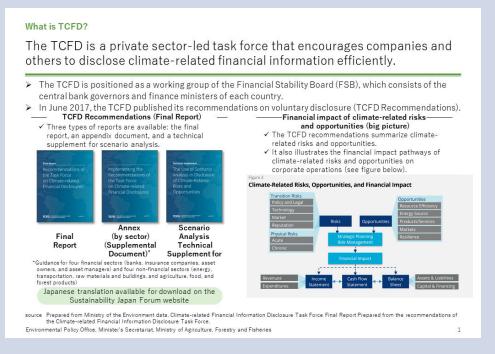
Note 1: For wheat, corn and soybeans, the settlement price is the closing price on the Chicago Board of Trade on the first Friday of each month. The price of rice is the FOB price of 100% Thai milled leach rice (2nd class) on the first Wednesday of each month as published by the National Board of Trade of Thailand.

Note 2: For the highest historical price, the highest price published by the National Board of Trade of Thailand for rice, and the highest closing price of the period for all trading days on the Chicago Board of Trade for all prices other than rice.

In order to prepare for unforeseen circumstances, we will analyze and assess the impact of climate change, conduct research and analysis on Japan's future food supply and demand, and study and review countermeasures to establish comprehensive food security.

- OCollection and analysis of information on domestic and international food supply and demand trends and analysis of their impact on the stable supply of food in Japan, and provision of a wide range of information
- OThe agro-meteorological information satellite monitoring system developed in cooperation with JAXA was opened to the public and utilized to monitor food supply trends overseas.
- OBased on the results of the IPCC's climate change assessment and the world's ultra-long-term food supply and demand predictions based on economic growth predictions, etc., we will consider appropriate responses to risks with a view to future food supply and demand in Japan.
- OContinuously conduct medium- to long-term forecasts of global food supply and demand based on trends in each country's economic growth and policies.

Outline of the Ministry of Agriculture, Forestry and Fisheries Climate Change Adaptation Plan [Food Manufacturing]


<Current status>

O The food manufacturing industry is considered to be particularly vulnerable to the impacts of climate change on raw material procurement and quality, and there are reports of cases where these impacts have already begun to occur.

<Future prediction>

O Historically, companies have perceived climate change as a risk and an opportunity.

- OPromote efforts by food-related businesses to disclose climate-related information based on the guidance in the TCFD recommendations (the final report on a framework for disclosing information on climate change risks and opportunities) and examples of initiatives.
- OThe food manufacturing industry is considered to be particularly vulnerable to the impact of raw material procurement and quality through, for example, deterioration in the quality of agricultural crops, reduced yields, and the impact of disasters on the supply chain.
- OIn view of the expected tightening of imported raw materials due to climate change and increased global demand for raw materials, it is necessary to consider the reduction of losses in the supply chain and diversification and backup of suppliers for sustainable and stable procurement of raw materials.

Why TCFD?
The comparability of disclosures about climate-related risks and opportunities is important. Therefore, investors and financial institutions require disclosures based on the TCFD framework The TCFD has put in place a common and globally comparable framework for climate-related disclosure. In order for investors and financial institutions to assess a company's resilience to climate-related risks and opportunities when making investment and financing decisions, companies are required to disclose information based on TCFD recommendations. disclosure of information Investors and financial **Food Business** "Visualization" of efforts institutions To Climate-Related Risks Identify climate-related risks and Take risk management measures and Evaluate and utilize information Accelerate innovation efforts **ESG Investment** disclosed by each company properly We develop a husiness plan that orporates future climate-related risks of each business to Climate Climate-related risks and Change Risks and Opportunities to increase the sustainability opportunities Sustainable Investments and Loans *The impact on companies due to non-compliance with the TCFD recommendations is that it may hinder sustainable management of companies in the short to medium term. For details, please refer to the Ministry the Environment's "Recommendations for Management Strategy Planning Utilizing TCFD: A Practical Guide fo Scenario Analysis Incorporating Climate-Related Risks and Opportunities' source TCFD Consortium, Sumitomo Mitsui Financial Group Website Environmental Policy Office, Minister's Secretariat, Ministry of Agriculture, Forestry and Fisheries

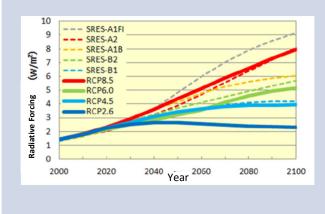
Source: Introduction to the Disclosure of Information on Climate Change Risks and Opportunities in the Food, Agriculture, Forestry and Fisheries Industries (TCFD Guide), published by MAFF in June 2021)

<Paris Agreement (Adaptation: Article 7)>

- O Recognizing the importance of support and international cooperation in adaptation efforts and the importance of taking into account the needs of developing countries and countries particularly vulnerable to the adverse impacts of climate change
- O Strengthen cooperation to enhance action on adaptation (e.g., scientific knowledge)

O Provide ongoing international support to developing countries for the implementation of this article.

<International Agriculture, Forestry and Fisheries Research Strategy>


- O Promotion of technological development in developing regions To contribute to global efforts to ensure global food security and to solve various problems in emerging and developing countries by conducting joint research in developing regions, and to disseminate the results widely.
- information sharing, strengthening organizations, enhancing O Promotion of international agriculture, forestry and fisheries research leading to increased international contributions on a global scale

As the chair of the Global Research Alliance (GRA) on Greenhouse Gases in Agriculture, we held a side event at COP23 to introduce the GRA's initiatives (November 2017).

Cooperation through the provision of scientific knowledge, etc.

OProvision of scientific findings to the IPCC Sixth Assessment Report, etc.

International cooperation through contributions to international organizations

- OPromote the technology development towards building a new food system with improved productivity, sustainability and resilience.
- OPromote the spread of measures to strengthen community resilience in mountain watersheds by utilizing the disaster prevention and mitigation functions of forests.

Technical cooperation

OSupport initiatives for sustainable forest management and forest conservation in developing countries, and promote the development of technologies that contribute to enhancing the forest functions of disaster prevention and mitigation.

Ongoing Review of the Adaptation Plan and Management of the Progress of Initiatives

Ministry of Agriculture, Forestry and Fisheries Climate change adaptation plan

Adaptive response to long-term challenges with uncertainty

Review and inspection of adaptation plans

- (i) Review of current and future impact assessments (government-wide)
- O When to conduct a review
 - New impact assessment
 - Publication of the latest scientific findings by the IPCC, etc.
 - Emergence of new issues, etc.

- (2) <u>Inspection of the progress of initiatives</u> (Ministry of Agriculture, Forestry and Fisheries)
- O Inspection from a professional perspective in the field of agriculture, forestry and fisheries
 - Status of dissemination of adaptation measures
 - Results and progress of research and development, etc.

Adaptation plans will be reviewed at the time of the review of current and future impact assessments.